1
|
Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and manipulation. Cell 2022; 185:235-249. [PMID: 34995481 PMCID: PMC8792364 DOI: 10.1016/j.cell.2021.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.
Collapse
Affiliation(s)
- Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Pancreatic β Cells Inhibit Glucagon Secretion from α Cells: An In Vitro Demonstration of α-β Cell Interaction. Nutrients 2021; 13:nu13072281. [PMID: 34209449 PMCID: PMC8308288 DOI: 10.3390/nu13072281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α-β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification.
Collapse
|
3
|
Ma X, Jain NM, Hitscherich P, Seetamraju S, Lee EJ. Stem Cell-Derived Insulin-Producing Cells in 3D Engineered Tissue in a Perfusion Flow Bioreactor. Tissue Eng Part A 2021; 27:1182-1191. [PMID: 33218288 DOI: 10.1089/ten.tea.2020.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To circumvent the lack of donor pancreas, insulin-producing cells (IPCs) derived from pluripotent stem cells emerged as a viable cell source for the treatment of type 1 diabetes. While it has been shown that IPCs can be derived from pluripotent stem cells using various protocols, the long-term viability and functional stability of IPCs in vitro remains a challenge. Thus, the principles of three-dimensional (3D) tissue engineering and a perfusion flow bioreactor were used in this study to establish 3D microenvironment suitable for long-term in vitro culture of IPCs-derived from mouse embryonic stem cells. It was observed that in static 3D culture of IPCs, the viability decreased gradually with longer time in culture. However, when a low flow (0.02 mL/min) was continuously applied to 3D IPC containing tissues, enhanced survival and function of IPCs were demonstrated. IPCs cultured under low flow exhibited a significantly enhanced glucose responsiveness and upregulation of Ins1 compared to that of static culture. In summary, this study demonstrates the feasibility and benefits of 3D engineered tissue environment combined with perfusion flow in vitro for culturing stem cell-derived IPCs.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Neha M Jain
- Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Pamela Hitscherich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Sahiti Seetamraju
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Eun Jung Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
4
|
April-Monn SL, Wiedmer T, Skowronska M, Maire R, Schiavo Lena M, Trippel M, Di Domenico A, Muffatti F, Andreasi V, Capurso G, Doglioni C, Kim-Fuchs C, Gloor B, Zatelli MC, Partelli S, Falconi M, Perren A, Marinoni I. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2020; 111:273-287. [PMID: 32241015 DOI: 10.1159/000507669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Molecular mechanisms underlying the development and progression of pancreatic neuroendocrine tumors (PanNETs) are still insufficiently understood. Efficacy of currently approved PanNET therapies is limited. While novel treatment options are being developed, patient stratification permitting more personalized treatment selection in PanNET is yet not feasible since no predictive markers are established. The lack of representative in vitro and in vivo models as well as the rarity and heterogeneity of PanNET are prevailing reasons for this. In this study, we describe an in vitro 3-dimensional (3-D) human primary PanNET culture system as a novel preclinical model for more personalized therapy selection. We present a screening platform allowing multicenter sample collection and drug screening in 3-D cultures of human primary PanNET cells. We demonstrate that primary cells isolated from PanNET patients and cultured in vitro form islet-like tumoroids. Islet-like tumoroids retain a neuroendocrine phenotype and are viable for at least 2 weeks in culture with a high success rate (86%). Viability can be monitored continuously allowing for a per-well normalization. In a proof-of-concept study, islet-like tumoroids were screened with three clinically approved therapies for PanNET: sunitinib, everolimus and temozolomide. Islet-like tumoroids display varying in vitro response profiles to distinct therapeutic regimes. Treatment response of islet-like tumoroids differs also between patient samples. We believe that the presented human PanNET screening platform is suitable for personalized drug testing in a larger patient cohort, and a broader application will help in identifying novel markers predicting treatment response and in refining PanNET therapy.
Collapse
Affiliation(s)
- Simon Leonhard April-Monn
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Renaud Maire
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Mafalda Trippel
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Annunziata Di Domenico
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Capurso
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Unit of Pathology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | | | - Beat Gloor
- Inselspital, University of Bern, Bern, Switzerland
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland,
| |
Collapse
|
5
|
Vlahos AE, Kinney SM, Kingston BR, Keshavjee S, Won SY, Martyts A, Chan WC, Sefton MV. Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy. Biomaterials 2020; 232:119710. [DOI: 10.1016/j.biomaterials.2019.119710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
|
6
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
7
|
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 2019; 22:810-823. [PMID: 29859172 DOI: 10.1016/j.stem.2018.05.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies.
Collapse
Affiliation(s)
- Julie B Sneddon
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuvo Roy
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal Desai
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Zbinden A, Marzi J, Schlünder K, Probst C, Urbanczyk M, Black S, Brauchle EM, Layland SL, Kraushaar U, Duffy G, Schenke-Layland K, Loskill P. Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol 2019; 85-86:205-220. [PMID: 31238092 DOI: 10.1016/j.matbio.2019.06.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The increasing prevalence of diabetes, its heterogeneity, and the limited number of treatment options drive the need for physiologically relevant assay platforms with human genetic background that have the potential to improve mechanistic understanding and e\xpedite diabetes-related research and treatment. In this study, we developed an endocrine pancreas-on-a-chip model based on a tailored microfluidic platform, which enables self-guided trapping of single human pseudo-islets. Continuous, low-shear perfusion provides a physiologically relevant microenvironment especially important for modeling and monitoring of the endocrine function as well as sufficient supply with nutrients and oxygen. Human pseudo-islets, generated from the conditionally immortalized EndoC-βH3 cell line, were successfully injected by hydrostatic pressure-driven flow without altered viability. To track insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, dynamic sampling of the supernatant as well as non-invasive real-time monitoring using Raman microspectroscopy was established on-chip. Dynamic sampling indicated a biphasic glucose-stimulated insulin response. Raman microspectroscopy allowed to trace glucose responsiveness in situ and to visualize different molecular structures such as lipids, mitochondria and nuclei. In-depth spectral analyses demonstrated a glucose stimulation-dependent, increased mitochondrial activity, and a switch in lipid composition of insulin secreting vesicles, supporting the high performance of our pancreas-on-a-chip model.
Collapse
Affiliation(s)
- Aline Zbinden
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Julia Marzi
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Katharina Schlünder
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Max Urbanczyk
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Scott Black
- The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Eva M Brauchle
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Shannon L Layland
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Udo Kraushaar
- The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Garry Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Dept. of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Peter Loskill
- Dept. of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany.
| |
Collapse
|
9
|
Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells. Mater Today Bio 2019; 2:100006. [PMID: 32159143 PMCID: PMC7061575 DOI: 10.1016/j.mtbio.2019.100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients’ own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward the implantation site in vivo. This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.
Collapse
|
10
|
Kowalska M, Rupik W. Development of endocrine pancreatic islets in embryos of the grass snake Natrix natrix
(Lepidosauria, Serpentes). J Morphol 2018; 280:103-118. [DOI: 10.1002/jmor.20921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| |
Collapse
|
11
|
Jiaojiao Y, Sun C, Wei Y, Wang C, Dave B, Cao F, Liandong H. Applying emerging technologies to improve diabetes treatment. Biomed Pharmacother 2018; 108:1225-1236. [PMID: 30372824 DOI: 10.1016/j.biopha.2018.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Insulin, as the most important drug for the treatment of diabetes, can effectively control the blood glucose concentration in humans. Due to its instability, short half-life, easy denaturation and side effects, the administration way of insulin are limited to subcutaneous injection accompany with poor glucose control and low patient compliance. In recent years, emerging insulin delivery systems have been developed in diabetes research. In this review, a variety of stimuli-responsive insulin delivery systems with their response mechanism and regulation principle are described. Further, the introduction of stem cell transplantation and mobile application based delivery technologies are prudent for the diabetes treatment. This article also discusses the advantages and limitations of current strategies, along with the opportunities and challenges for future insulin therapy.
Collapse
Affiliation(s)
- Yu Jiaojiao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Caifeng Sun
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Yuli Wei
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Chaoying Wang
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | | | - Fei Cao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Hu Liandong
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
12
|
Spelios MG, Afinowicz LA, Tipon RC, Akirav EM. Human EndoC-βH1 β-cells form pseudoislets with improved glucose sensitivity and enhanced GLP-1 signaling in the presence of islet-derived endothelial cells. Am J Physiol Endocrinol Metab 2018; 314:E512-E521. [PMID: 29351476 DOI: 10.1152/ajpendo.00272.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional (3D) pseudoislets (PIs) can be used for the study of insulin-producing β-cells in free-floating islet-like structures similar to that of primary islets. Previously, we demonstrated the ability of islet-derived endothelial cells (iECs) to induce PIs using murine insulinomas, where PI formation enhanced insulin production and glucose responsiveness. In this report, we examined the ability of iECs to spontaneously induce the formation of free-floating 3D PIs using the EndoC-βH1 human β-cell line murine MS1 iEC. Within 14 days, the coculturing of both cell types produced fully humanized EndoC-βH1 PIs with little to no contaminating murine iECs. The size and shape of these PIs were similar to primary human islets. iEC-induced PIs demonstrated reduced dysregulated insulin release under low glucose levels and higher insulin secretion in response to high glucose and exendin-4 [a glucagon-like peptide-1 (GLP-1) analog] compared with monolayer cells cultured alone. Interestingly, iEC-PIs were also better at glucose sensing in the presence of extendin-4 compared with PIs generated on a low-adhesion surface plate in the absence of iECs and showed an overall improvement in cell viability. iEC-induced PIs exhibited increased expression of key genes involved in glucose transport, glucose sensing, β-cell differentiation, and insulin processing, with a concomitant decrease in glucagon mRNA expression. The enhanced responsiveness to exendin-4 was associated with increased protein expression of GLP-1 receptor and phosphokinase A. This rapid coculture system provides an unlimited number of human PIs with improved insulin secretion and GLP-1 responsiveness for the study of β-cell biology.
Collapse
Affiliation(s)
- Michael G Spelios
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Lauren A Afinowicz
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Regine C Tipon
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
| | - Eitan M Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York
- Stony Brook University School of Medicine , Stony Brook, New York
| |
Collapse
|
13
|
Perugini V, Best M, Kumar S, Guildford AL, Bone AJ, Macfarlane WM, Santin M, Phillips GJ. Carboxybetaine-modified succinylated chitosan-based beads encourage pancreatic β-cells (Min-6) to form islet-like spheroids under in vitro conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:15. [PMID: 29290028 PMCID: PMC5748029 DOI: 10.1007/s10856-017-6018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 05/13/2023]
Abstract
In vitro, pancreatic β-cells tend to reduce their ability to aggregate into islets and lose insulin-producing ability, likely due to insufficient cell-cell and cell-matrix interactions that are essential for β-cell retention, viability and functionality. In response to these needs, surfaces of succinylated chitosan-based beads (NSC) were modified with zwitterionic carboxy-betaine (CB) moieties, a compatible osmolyte known to regulate cellular hydration state, and used to promote the formation of β-cell spheroids using a conventional 2D cell culture technique. The NSC were synthesised by ionic gelation and surface-functionalised with CB using carbodiimide chemistry. Scanning electron microscopy (SEM), dynamic laser scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) were employed as characterisation tools to confirm the successful modification of the succinylated chitosan material into spherical beads with rough surfaces and a diameter of 0.4 µm. NSC with and without CB were re-suspended at concentrations of 0.1, 0.3 and 0.6 mg/mL in saline medium and tested in vitro with MIN6 murine pancreatic β-cell line. Results showed that a concentration of 0.3 mg/mL, NSC-CB encouraged pancreatic MIN6 cells to proliferate and form spheroids via E-cadherin and Pdx-1 activation within 48 h in culture. These spheroids, with a size of approximately 80 µm, exhibited high cell viability and enhanced insulin protein expression and secretion when compared to cells organised by the non-modified beads.
Collapse
Affiliation(s)
- Valeria Perugini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Mark Best
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Sandeep Kumar
- Cellon S.A., ZAE Robert Steichen, 16 rue Hèierchen, L-4940, Bascharage, Luxembourg
| | - Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Adrian J Bone
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Wendy M Macfarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK.
| | - Gary J Phillips
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
14
|
Berezin AE. New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55687-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Reissaus CA, Piston DW. Reestablishment of Glucose Inhibition of Glucagon Secretion in Small Pseudoislets. Diabetes 2017; 66:960-969. [PMID: 28130310 PMCID: PMC5360306 DOI: 10.2337/db16-1291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Misregulated hormone secretion from the islet of Langerhans is central to the pathophysiology of diabetes. Although insulin plays a key role in glucose regulation, the importance of glucagon is increasingly acknowledged. However, the mechanisms that regulate glucagon secretion from α-cells are still unclear. We used pseudoislets reconstituted from dispersed islet cells to study α-cells with and without various indirect effects from other islet cells. Dispersed islet cells secrete aberrant levels of glucagon and insulin at basal and elevated glucose levels. When cultured, murine islet cells reassociate to form pseudoislets, which recover normal glucose-regulated hormone secretion, and human islet cells follow a similar pattern. We created small (∼40-µm) pseudoislets using all of the islet cells or only some of the cell types, which allowed us to characterize novel aspects of regulated hormone secretion. The recovery of regulated glucagon secretion from α-cells in small pseudoislets depends upon the combined action of paracrine factors, such as insulin and somatostatin, and juxtacrine signals between EphA4/7 on α-cells and ephrins on β-cells. Although these signals modulate different pathways, both appear to be required for proper inhibition of glucagon secretion in response to glucose. This improved understanding of the modulation of glucagon secretion can provide novel therapeutic routes for the treatment of some individuals with diabetes.
Collapse
Affiliation(s)
- Christopher A Reissaus
- Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - David W Piston
- Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
16
|
Parween S, Kostromina E, Nord C, Eriksson M, Lindström P, Ahlgren U. Intra-islet lesions and lobular variations in β-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep 2016; 6:34885. [PMID: 27713548 PMCID: PMC5054357 DOI: 10.1038/srep34885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The leptin deficient ob/ob mouse is a widely used model for studies on initial aspects of metabolic disturbances leading to type 2 diabetes, including insulin resistance and obesity. Although it is generally accepted that ob/ob mice display a dramatic increase in β-cell mass to compensate for increased insulin demand, the spatial and quantitative dynamics of β-cell mass distribution in this model has not been assessed by modern optical 3D imaging techniques. We applied optical projection tomography and ultramicroscopy imaging to extract information about individual islet β-cell volumes throughout the volume of ob/ob pancreas between 4 and 52 weeks of age. Our data show that cystic lesions constitute a significant volume of the hyperplastic ob/ob islets. We propose that these lesions are formed by a mechanism involving extravasation of red blood cells/plasma due to increased islet vessel blood flow and vessel instability. Further, our data indicate that the primary lobular compartments of the ob/ob pancreas have different potentials for expanding their β-cell population. Unawareness of the characteristics of β-cell expansion in ob/ob mice presented in this report may significantly influence ex vivo and in vivo assessments of this model in studies of β-cell adaptation and function.
Collapse
Affiliation(s)
- Saba Parween
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elena Kostromina
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Nord
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Per Lindström
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Ichihara Y, Utoh R, Yamada M, Shimizu T, Uchigata Y. Size effect of engineered islets prepared using microfabricated wells on islet cell function and arrangement. Heliyon 2016; 2:e00129. [PMID: 27441299 PMCID: PMC4946309 DOI: 10.1016/j.heliyon.2016.e00129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/29/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023] Open
Abstract
Pancreatic islets are heterogeneous clusters mainly composed of α and β cells, and these clusters range in diameter from 50 to several hundred micrometers. Native small islets are known to have a higher insulin secretion ability in vitro and to provide better transplantation outcomes when compared with large islets. In this study, we prepared microengineered pseudo-islets from dispersed rat islet cells using precisely-fabricated agarose gel-based microwells with different diameters (100, 300, or 500 μm) to investigate the function and survival of islet cell aggregates with well-controlled sizes. We observed that dead cells were rarely present in the small pseudo-islets with an average diameter of ∼60 μm prepared using 100 μm microwells. In contrast, we observed more dead cells in the larger pseudo-islets prepared using 300 and 500 μm microwells. The relative amount of hypoxic cells was significantly low in the small pseudo-islets whereas a hypoxic condition was present in the core region of the larger pseudo-islets. In addition, we found that the small-sized pseudo-islets reconstituted the in vivo-tissue like arrangement of the α and β cells, and restored the high insulin secretory capacity in response to high glucose. These results clearly suggest that precise size control of pseudo-islets is essential for maintaining islet cell function and survival in vitro. The small-sized pseudo-islets may be advantageous for providing a better therapeutic approach for treating type 1 diabetes mellitus via islet reorganization and transplantation.
Collapse
Affiliation(s)
- Yumie Ichihara
- Diabetes Center, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Corresponding author at: Research Fellow of the Japan Society for the Promotion of Science (JSPS). Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba 263–8522, Japan.Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1-33 Yayoi-choInage-kuChiba263-8522Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yasuko Uchigata
- Diabetes Center, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
18
|
Canonical Wnt signaling pathway contributes to the proliferation and survival in porcine pancreatic stem cells (PSCs). Cell Tissue Res 2015; 362:379-88. [PMID: 26085341 DOI: 10.1007/s00441-015-2220-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic stem cells (PSCs) transplantation is a potential therapeutic approach to type 1 diabetes mellitus (D1M). However, before clinical use, there are some major hurdles to be faced that need to be comprehensively considered and given some potential solutions in vitro. Human PSCs are difficult to obtain and have a short replicative senescence. As an alternative, we instead established porcine PSCs; as insulin is highly conserved and physiological glucose levels are similar between human and porcine. In order to solve the problems during transplantation therapy, such as the need for an enormous amount of PSCs and good cell survival in overactive autoimmunity induced by reactive oxygen cpecies (ROS) in D1M patients, we utilized Wnt3a overexpression to activate the canonical Wnt signaling pathway in PSCs. We found that the expression of proliferation genes, such as c-Myc, was up-regulated as the downstream of β-catenin, which promoted the PSCs proliferation and made cell numbers to meet the transplantation needs. We also showed that activation of the Wnt pathway made cells more readily tolerate ROS-caused mitochondria injury and cell apoptosis, thus making cells survive in autoimmune patients. The present study provides a theoretical basis for cell transplantation therapy of diabetes.
Collapse
|
19
|
Berezin AE. Diabetes mellitus and cellular replacement therapy: Expected clinical potential and perspectives. World J Diabetes 2014; 5:777-786. [PMID: 25512780 PMCID: PMC4265864 DOI: 10.4239/wjd.v5.i6.777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is the most prevailing disease with progressive incidence worldwide. Despite contemporary treatment type one DM and type two DM are frequently associated with long-term major microvascular and macrovascular complications. Currently restoration of failing β-cell function, regulation of metabolic processes with stem cell transplantation is discussed as complements to contemporary DM therapy regimens. The present review is considered paradigm of the regenerative care and the possibly effects of cell therapy in DM. Reprogramming stem cells, bone marrow-derived mononuclear cells; lineage-specified progenitor cells are considered for regenerative strategy in DM. Finally, perspective component of stem cell replacement in DM is discussed.
Collapse
|