1
|
Karna B, Pellegata NS, Mohr H. Animal and Cell Culture Models of PPGLs - Achievements and Limitations. Horm Metab Res 2024; 56:51-64. [PMID: 38171372 DOI: 10.1055/a-2204-4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on rare tumors heavily relies on suitable models for basic and translational research. Paragangliomas (PPGL) are rare neuroendocrine tumors (NET), developing from adrenal (pheochromocytoma, PCC) or extra-adrenal (PGL) chromaffin cells, with an annual incidence of 2-8 cases per million. While most PPGL cases exhibit slow growth and are primarily treated with surgery, limited systemic treatment options are available for unresectable or metastatic tumors. Scarcity of appropriate models has hindered PPGL research, preventing the translation of omics knowledge into drug and therapy development. Human PPGL cell lines are not available, and few animal models accurately replicate the disease's genetic and phenotypic characteristics. This review provides an overview of laboratory models for PPGLs, spanning cellular, tissue, organ, and organism levels. We discuss their features, advantages, and potential contributions to diagnostics and therapeutics. Interestingly, it appears that in the PPGL field, disease models already successfully implemented in other cancers have not been fully explored.
Collapse
Affiliation(s)
- Bhargavi Karna
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Chang WC, Chen MJ, Hsiao CD, Hu RZ, Huang YS, Chen YF, Yang TH, Tsai GY, Chou CW, Chen RS, Chuang YJ, Liu YW. The anti-platelet drug cilostazol enhances heart rate and interrenal steroidogenesis and exerts a scant effect on innate immune responses in zebrafish. PLoS One 2023; 18:e0292858. [PMID: 37903128 PMCID: PMC10615288 DOI: 10.1371/journal.pone.0292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/01/2023] [Indexed: 11/01/2023] Open
Abstract
RATIONALE Cilostazol, an anti-platelet phosphodiesterase-3 inhibitor used for the treatment of intermittent claudication, is known for its pleiotropic effects on platelets, endothelial cells and smooth muscle cells. However, how cilostazol impacts the endocrine system and the injury-induced inflammatory processes remains unclear. METHODS We used the zebrafish, a simple transparent model that demonstrates rapid development and a strong regenerative ability, to test whether cilostazol influences heart rate, steroidogenesis, and the temporal and dosage effects of cilostazol on innate immune cells during tissue damage and repair. RESULTS While dosages of cilostazol from 10 to 100 μM did not induce any noticeable morphological abnormality in the embryonic and larval zebrafish, the heart rate was increased as measured by ImageJ TSA method. Moreover, adrenal/interrenal steroidogenesis in larval zebrafish, analyzed by whole-mount 3β-Hsd enzymatic activity and cortisol ELISA assays, was significantly enhanced. During embryonic fin amputation and regeneration, cilostazol treatments led to a subtle yet significant effect on reducing the aggregation of Mpx-expressing neutrophil at the lesion site, but did not affect the immediate injury-induced recruitment and retention of Mpeg1-expressing macrophages. CONCLUSIONS Our results indicate that cilostazol has a significant effect on the heart rate and the growth as well as endocrine function of steroidogenic tissue; with a limited effect on the migration of innate immune cells during tissue damage and repair.
Collapse
Affiliation(s)
- Wei-Chun Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Feng Yuan Hospital of the Ministry of Health and Welfare, Taichung, Taiwan
| | - Mei-Jen Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Rong-Ze Hu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yu-Shan Huang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yu-Fu Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Tsai-Hua Yang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Guan-Yi Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chih-Wei Chou
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ren-Shiang Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
3
|
Shi S, Shu T, Li X, Lou Q, Jin X, He J, Yin Z, Zhai G. Characterization of the Interrenal Gland and Sexual Traits Development in cyp17a2-Deficient Zebrafish. Front Endocrinol (Lausanne) 2022; 13:910639. [PMID: 35733778 PMCID: PMC9207535 DOI: 10.3389/fendo.2022.910639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike the Cytochrome P450, family 17, subfamily A, member 1 (Cyp17a1), which possesses both 17α-hydroxylase and 17,20-lyase activities involved in the steroidogenic pathway that produces androgens and estrogens, Cytochrome P450, family 17, subfamily A, polypeptide 2 (Cyp17a2) possesses only 17α-hydroxylase activity and is known essential for the synthesis of cortisol. Besides with expressed in testes and ovaries, where the cyp17a1 is mainly expressed, cyp17a2 is also expressed in the interrenal gland in fish. Until now, the roles of cyp17a2 in fish, especially in sexual traits development and hypothalamic-pituitary-interrenal (HPI) axis, are poorly studied. To investigate the roles of Cyp17a2 in teleosts, the cyp17a2-null zebrafish was generated and analyzed by us. The significantly decreased cortisol concentration was observed both in the cyp17a2-deficient males and females at adult stage. The interrenal gland enlargement, increased pituitary proopiomelanocortin a (pomca) expression, decreased locomotion activity and response to light-stimulated stress were observed in cyp17a2-deficient fish. Intriguingly, the cyp17a2-deficient males were fertile and with normal breeding tubercles on the pectoral fin, but females were infertile, deficient in genital papilla and with decreased gonadosomatic index (GSI). The increased progesterone (P4), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and 11-ketotestosterone (11-KT) in the cyp17a2-deficient males and females were observed. The increased concentration of testosterone (T) and estradiol (E2) was observed in cyp17a2-/- females and cyp17a2-/- males, respectively. By examining the ovaries development of cyp17a2-deficient fish at 3 months postfertilization (mpf), we observed that the oocytes were over-activated. Taken together, our findings demonstrate that Cyp17a2 is indispensable for production and physiology of cortisol, and cyp17a2-deficiency resulted in diminished cortisol but accumulated P4 and DHP, which may result in the over-activated oocytes in cyp17a2-deficient females.
Collapse
Affiliation(s)
- Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Zhai,
| |
Collapse
|
4
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|
5
|
Samaras A, Pavlidis M. A Modified Protocol for Cortisol Analysis in Zebrafish ( Danio rerio), Individual Embryos, and Larvae. Zebrafish 2020; 17:394-399. [PMID: 33090929 DOI: 10.1089/zeb.2020.1898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A modified protocol for the extraction and analysis of cortisol in individual zebrafish, Danio rerio, embryo, and larva samples has been developed and evaluated. Recovery efficiency of the method was high, specifically calculated at 93.8% ± 6.5%. Dilution tests showed high parallelism, while increasing the number of individuals used in each extraction sample resulted in a linear, although slightly underestimated, increase of cortisol yield. Results of cortisol content from 0, 3, and 5 days postfertilization (dpf) fish using the proposed protocol were within the range of most published studies analyzing cortisol in pooled samples of 10-30 individuals. Moreover, 5 dpf larvae had significantly higher cortisol levels than embryos, a pattern commonly observed in literature. Finally, application of an osmotic stress in 5 dpf larvae led to a statistically significant increase in cortisol content.
Collapse
|
6
|
van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish ( Danio rerio) Larvae. Front Immunol 2020; 11:727. [PMID: 32411141 PMCID: PMC7201046 DOI: 10.3389/fimmu.2020.00727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0–6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 μg/ml; 4–5 dpf). Dexamethasone, but not cortisol, exposure at 0–6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0–6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1β, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Suzanne Cromwijk
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Katharina Tschigg
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joep Althuizen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert Whelan
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marcel Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
7
|
Early life exposure to cortisol in zebrafish (Danio rerio): similarities and differences in behaviour and physiology between larvae of the AB and TL strains. Behav Pharmacol 2020; 30:260-271. [PMID: 30724799 DOI: 10.1097/fbp.0000000000000470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maternal stress and early life stress affect development. Zebrafish (Danio rerio) are ideally suited to study this, as embryos develop externally into free-feeding larvae. The objective of this study was therefore to assess the effects of increased levels of cortisol, mimicking thereby maternal stress, on larval physiology and behaviour. We studied the effects in two common zebrafish strains, that is, AB and Tupfel long-fin (TL), to assess strain dependency of effects. Fertilized eggs were exposed to a cortisol-containing medium (1.1 μmol/l) or control medium from 0 to 6 h following fertilization, after which at 5-day following fertilization, larval behaviour and baseline hypothalamus-pituitary-interrenal cells axis functioning were measured. The data confirmed earlier observed differences between AB larvae and TL larvae: a lower hypothalamus-pituitary-interrenal axis activity in TL larvae than AB larvae, and slower habituation to repeated acoustic/vibrational stimuli in TL larvae than AB larvae. Following cortisol treatment, increased baseline levels of cortisol were found in AB larvae but not TL larvae. At the behavioural level, increased thigmotaxis or 'wall hugging' was found in AB larvae, but decreased thigmotaxis in TL larvae; however, both AB larvae and TL larvae showed decreased habituation to repeated acoustic/vibrational stimuli. The data emphasize that strain is a critical factor in zebrafish research. The habituation data suggest a robust effect of cortisol exposure, which is likely an adaptive response to increase the likelihood of detecting or responding to potentially threatening stimuli. This may enhance early life survival. Along with other studies, our study underlines the notion that zebrafish may be a powerful model animal to study the effects of maternal and early life stress on life history.
Collapse
|
8
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
9
|
Drummond BE, Wingert RA. Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. CANCER CELL & MICROENVIRONMENT 2018; 5:e1630. [PMID: 29707605 PMCID: PMC5922780 DOI: 10.14800/ccm.1630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specialized renal epithelial cells known as podocytes are essential components of the filtering structures within the kidney that coordinate the process of removing waste from the bloodstream. Podocyte loss initiates many human kidney diseases as it triggers subsequent damage to the kidney, leading to progressive loss of function that culminates with end stage renal failure. Podocyte morphology, function and gene expression profiles are well conserved between zebrafish and humans, making the former a relevant model to study podocyte development and model kidney diseases. Recently, we reported that whole genome sequencing of the zeppelin (zep) zebrafish mutant, which exhibits podocyte abrogation, revealed that the causative lesion for this defect was a splicing mutation in the breast cancer 2, early onset (brca2) gene. This was a surprising and novel discovery, as previous research on brca2/BRCA2 in a number of vertebrate animal models had not implicated an explicit role for this gene in kidney mesoderm development. Interestingly, the abrogation of the podocyte lineage in zep mutants was also accompanied by the formation of a larger interrenal (IR) gland, which is analogous to the adrenal gland in mammals, and suggested a fate switch between the renal and inter renal mesodermal derivatives. Mirroring these findings, knockdown of brca2 also recapitulated the loss of podocytes and increased IR population. In addition, brca2 overexpression was sufficient to partially rescue podocytes in zep mutants, and induced ectopic podocyte formation in wild-type embryos. Interestingly, immunofluorescence studies indicated that zep mutants had elevated P-h2A.X levels, suggesting that DNA repair is dysfunctional in these animals and contributes to the zep phenotype. Moving forward, this unique zebrafish mutant provides a new model to further explore how brca2 contributes to the development of tissues including the kidney mesoderm-roles which may have implications for renal diseases as well.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
10
|
Lysosomal activity maintains glycolysis and cyclin E1 expression by mediating Ad4BP/SF-1 stability for proper steroidogenic cell growth. Sci Rep 2017; 7:240. [PMID: 28325912 PMCID: PMC5428257 DOI: 10.1038/s41598-017-00393-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
The development and differentiation of steroidogenic organs are controlled by Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1). Besides, lysosomal activity is required for steroidogenesis and also enables adrenocortical cell to survive during stress. However, the role of lysosomal activity on steroidogenic cell growth is as yet unknown. Here, we showed that lysosomal activity maintained Ad4BP/SF-1 protein stability for proper steroidogenic cell growth. Treatment of cells with lysosomal inhibitors reduced steroidogenic cell growth in vitro. Suppression of autophagy did not affect cell growth indicating that autophagy was dispensable for steroidogenic cell growth. When lysosomal activity was inhibited, the protein stability of Ad4BP/SF-1 was reduced leading to reduced S phase entry. Interestingly, treatment of cells with lysosomal inhibitors reduced glycolytic gene expression and supplying the cells with pyruvate alleviated the growth defect. ChIP-sequence/ChIP studies indicated that Ad4BP/SF-1 binds to the upstream region of Ccne1 (cyclin E1) gene during G1/S phase. In addition, treatment of zebrafish embryo with lysosomal inhibitor reduced the levels of the interrenal (adrenal) gland markers. Thus lysosomal activity maintains steroidogenic cell growth via stabilizing Ad4BP/SF-1 protein.
Collapse
|
11
|
Chou CW, Lin J, Hou HY, Liu YW. Visualizing the Interrenal Steroidogenic Tissue and Its Vascular Microenvironment in Zebrafish. J Vis Exp 2016. [PMID: 28060344 DOI: 10.3791/54820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol introduces how to detect differentiated interrenal steroidogenic cells through a simple whole-mount enzymatic activity assay. Identifying differentiated steroidogenic tissues through chromogenic histochemical staining of 3-β-Hydroxysteroid dehydrogenase /Δ5-4 isomerase (3β-Hsd) activity-positive cells is critical for monitoring the morphology and differentiation of adrenocortical and interrenal tissues in mammals and teleosts, respectively. In the zebrafish model, the optical transparency and tissue permeability of the developing embryos and larvae allow for whole-mount staining of 3β-Hsd activity. This staining protocol, as performed on transgenic fluorescent reporter lines marking the developing pronephric and endothelial cells, enables the detection of the steroidogenic interrenal tissue in addition to the kidney and neighboring vasculature. In combination with vibratome sectioning, immunohistochemistry, and confocal microscopy, we can visualize and assay the vascular microenvironment of interrenal steroidogenic tissues. The 3β-Hsd activity assay is essential for studying the cell biology of the zebrafish interrenal gland because to date, no suitable antibody is available for labeling zebrafish steroidogenic cells. Furthermore, this assay is rapid and simple, thus providing a powerful tool for mutant screens targeting adrenal (interrenal) genetic disorders as well as for determining disruption effects of chemicals on steroidogenesis in pharmaceutical or toxicological studies.
Collapse
Affiliation(s)
| | - Jamie Lin
- Department of Life Science, Tunghai University
| | - Hsin-Yu Hou
- Department of Life Science, Tunghai University
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University;
| |
Collapse
|
12
|
Kwong RWM, Kumai Y, Perry SF. Neuroendocrine control of ionic balance in zebrafish. Gen Comp Endocrinol 2016; 234:40-6. [PMID: 27179885 DOI: 10.1016/j.ygcen.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022]
Abstract
Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H(+)-ATPase-rich cells for Na(+) uptake, Na(+)/K(+)-ATPase-rich cells for Ca(2+) uptake, and Na(+)/Cl(-)-cotransporter expressing cells for both Na(+) and Cl(-) uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.
| | - Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Wilson KS, Tucker CS, Al-Dujaili EAS, Holmes MC, Hadoke PWF, Kenyon CJ, Denvir MA. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol 2016; 230:125-42. [PMID: 27390302 PMCID: PMC5064771 DOI: 10.1530/joe-15-0376] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head-trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared 'bolder' than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and development in the zebrafish and that, like other species, manipulating GC status pharmacologically, physiologically or genetically in early life leads to programmable metabolic and behavioural traits in adulthood.
Collapse
Affiliation(s)
- K S Wilson
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C S Tucker
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - E A S Al-Dujaili
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M C Holmes
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P W F Hadoke
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M A Denvir
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
14
|
Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish. Sci Rep 2016; 6:22582. [PMID: 26940285 PMCID: PMC4778074 DOI: 10.1038/srep22582] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/18/2016] [Indexed: 11/08/2022] Open
Abstract
In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish.
Collapse
|
15
|
Griffin A, Parajes S, Weger M, Zaucker A, Taylor AE, O'Neil DM, Müller F, Krone N. Ferredoxin 1b (Fdx1b) Is the Essential Mitochondrial Redox Partner for Cortisol Biosynthesis in Zebrafish. Endocrinology 2016; 157:1122-34. [PMID: 26650568 PMCID: PMC4769370 DOI: 10.1210/en.2015-1480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo.
Collapse
Affiliation(s)
- Aliesha Griffin
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Meltem Weger
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Andreas Zaucker
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Angela E Taylor
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Donna M O'Neil
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Ferenc Müller
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Nils Krone
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| |
Collapse
|
16
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
|
18
|
Gutierrez-Triana JA, Herget U, Castillo-Ramirez LA, Lutz M, Yeh CM, De Marco RJ, Ryu S. Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool. Endocrinology 2015; 156:3394-401. [PMID: 26132917 DOI: 10.1210/en.2015-1021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Luis A Castillo-Ramirez
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Markus Lutz
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Chen-Min Yeh
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Rodrigo J De Marco
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System (J.A.G.-T., U.H., L.A.C.-R., M.L., C.-M.Y., R.J.D.M., S.R.), Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany; and The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (U.H., L.A.C.-R.), University of Heidelberg, D-69120 Germany
| |
Collapse
|
19
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
20
|
Hall CJ, Boyle RH, Sun X, Wicker SM, Misa JP, Krissansen GW, Print CG, Crosier KE, Crosier PS. Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. Nat Commun 2014; 5:3880. [PMID: 24852213 DOI: 10.1038/ncomms4880] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.
Collapse
Affiliation(s)
- Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Rachel H Boyle
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Xueying Sun
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sophie M Wicker
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - June P Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Geoffrey W Krissansen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
21
|
Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ, Crosier KE, Crosier PS. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metab 2013; 18:265-78. [PMID: 23931757 DOI: 10.1016/j.cmet.2013.06.018] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/30/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.
Collapse
Affiliation(s)
- Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Parajes S, Griffin A, Taylor AE, Rose IT, Miguel-Escalada I, Hadzhiev Y, Arlt W, Shackleton C, Müller F, Krone N. Redefining the initiation and maintenance of zebrafish interrenal steroidogenesis by characterizing the key enzyme cyp11a2. Endocrinology 2013; 154:2702-11. [PMID: 23671259 DOI: 10.1210/en.2013-1145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zebrafish are emerging as a model to study steroid hormone action and associated disease. However, steroidogenesis in zebrafish is not well characterized. Mammalian P450 side-chain cleavage enzyme (CYP11A1) catalyzes the first step of steroidogenesis, the conversion of cholesterol to pregnenolone. Previous studies describe an essential role for zebrafish Cyp11a1 during early development. Cyp11a1 has been suggested to be the functional equivalent of mammalian CYP11A1 in the zebrafish interrenal gland (equivalent to the mammalian adrenal), gonad, and brain. However, reported cyp11a1 expression is inconsistent in zebrafish larvae, after active cortisol synthesis commences. Recently a duplicated cyp11a gene, cyp11a2, has been described, which shares an 85% identity with cyp11a1. We aimed to elucidate the specific role of the two cyp11a paralogs. cyp11a1 was expressed from 0 to 48 hours post-fertilization (hpf), whereas cyp11a2 expression started after the development of the interrenal primordium (32 hpf) and was the only paralog in larvae. cyp11a2 is expressed in adult steroidogenic tissues, such as the interrenal, gonads, and brain. In contrast, cyp11a1 was mainly restricted to the gonads. Antisense morpholino knockdown studies confirmed abnormal gastrulation in cyp11a1 morphants. cyp11a2 morphants showed impaired steroidogenesis and a phenotype indicative of metabolic abnormalities. The phenotype was rescued by pregnenolone replacement in cyp11a2 morphants. Thus, we conclude that cyp11a1 is required for early development, whereas cyp11a2 is essential for the initiation and maintenance of zebrafish interrenal steroidogenesis. Importantly, this study highlights the need for a comprehensive characterization of steroidogenesis in zebrafish prior to its implementation as a model organism in translational research of adrenal disease.
Collapse
Affiliation(s)
- Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chou CW, Chiu CH, Liu YW. Fibronectin mediates correct positioning of the interrenal organ in zebrafish. Dev Dyn 2013; 242:432-43. [PMID: 23362214 DOI: 10.1002/dvdy.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Chih-Wei Chou
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| | - Chih-Hao Chiu
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| | - Yi-Wen Liu
- Department of Life Science; Tunghai University; Taichung; Taiwan; R.O.C
| |
Collapse
|
24
|
Nesan D, Vijayan MM. Role of glucocorticoid in developmental programming: evidence from zebrafish. Gen Comp Endocrinol 2013; 181:35-44. [PMID: 23103788 DOI: 10.1016/j.ygcen.2012.10.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
The vertebrate corticosteroid stress response is highly conserved and a key function is to restore homeostasis by mobilizing and reallocating energy stores. This process is primarily initiated by activation of the hypothalamus-pituitary-adrenal axis, leading to the release of corticosteroids into the circulation. In teleosts, cortisol is the primary corticosteroid that is released into the circulation in response to stress. This steroid activates corticosteroid receptors that are ligand-bound transcription factors, modulating downstream gene expression in target tissues. Recent research in zebrafish (Danio rerio) has identified novel roles for cortisol in early developmental processes, including organogenesis and mesoderm formation. As cortisol biosynthesis commences only around the time of hatch in teleosts, the early developmental events are orchestrated by cortisol that is maternally deposited prior to fertilization. This review will highlight the molecular events leading to the development of the corticosteroid stress axis, and the possible role of cortisol in the developmental programming of stress axis function. Use of zebrafish as a model may lead to significant insights into the conserved role of glucocorticoids during early development with potential implications in biomedical research, including fetal stress syndromes in humans.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
25
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
26
|
Kumai Y, Ward MAR, Perry SF. β-Adrenergic regulation of Na+ uptake by larval zebrafish Danio rerio in acidic and ion-poor environments. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1031-41. [PMID: 23019213 DOI: 10.1152/ajpregu.00307.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential role of adrenergic systems in regulating Na(+) uptake in zebrafish (Danio rerio) larvae was investigated. Treatment with isoproterenol (a generic β-adrenergic receptor agonist) stimulated Na(+) uptake, whereas treatment with phenylephrine (an α(1)-adrenergic receptor agonist) as well as clonidine (an α(2)-adrenergic receptor agonist) significantly reduced Na(+) uptake, suggesting opposing roles of α- and β-adrenergic receptors in Na(+) uptake regulation. The increase in Na(+) uptake associated with exposure to acidic water (pH = 4.0) was attenuated in the presence of the nonselective β-receptor antagonist propranolol or the β(1)-receptor blocker atenolol; the β(2)-receptor antagonist ICI-118551 was without effect. The stimulation of Na(+) uptake associated with ion-poor water (32-fold dilution of Ottawa tapwater) was unaffected by β-receptor blockade. Translational gene knockdown of β-receptors using antisense oligonucleotide morpholinos was used as a second method to assess the role of adrenergic systems in the regulation of Na(+) uptake. Whereas β(1)- or β(2B)-receptor knockdown led to significant decreases in Na(+) uptake during exposure to acidic water, only β(2A)-receptor morphants failed to increase Na(+) uptake in response to ion-poor water. In support of the pharmacology and knockdown experiments that demonstrated an involvement of β-adrenergic systems in the control of Na(+) uptake, we showed that the H(+)-ATPase-rich (HR) cell, a subtype of ionocyte known to be a site of Na(+) uptake, is innervated and appears to express β-adrenergic receptors (propranolol binding sites) at 4 days postfertilization. These data indicate an important role of adrenergic systems in regulating Na(+) uptake in developing zebrafish.
Collapse
Affiliation(s)
- Yusuke Kumai
- Dept. of Biology, Univ. of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
27
|
Development and fibronectin signaling requirements of the zebrafish interrenal vessel. PLoS One 2012; 7:e43040. [PMID: 22937010 PMCID: PMC3428036 DOI: 10.1371/journal.pone.0043040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Background The early morphogenetic steps of zebrafish interrenal tissue, the teleostean counterpart of the mammalian adrenal gland, are modulated by the peri-interrenal angioblasts and blood vessels. While an organized distribution of intra-adrenal vessels and extracellular matrix is essential for the fetal adrenal cortex remodeling, whether and how an intra-interrenal buildup of vasculature and extracellular matrix forms and functions during interrenal organogenesis in teleosts remains unclear. Methodology and Principal Findings We characterized the process of interrenal gland vascularization by identifying the interrenal vessel (IRV); which develops from the axial artery through angiogenesis and is associated with highly enriched Fibronectin (Fn) accumulation at its microenvironment. The loss of Fn1 by either antisense morpholino (MO) knockdown or genetic mutation inhibited endothelial invasion and migration of the steroidogenic tissue. The accumulation of peri-IRV Fn requires Integrin α5 (Itga5), with its knockdown leading to interrenal and IRV morphologies phenocopying those in the fn1 morphant and mutant. fn1b, another known fn gene in zebrafish, is however not involved in the IRV formation. The distribution pattern of peri-IRV Fn could be modulated by the blood flow, while a lack of which altered angiogenic direction of the IRV as well as its ability to integrate with the steroidogenic tissue. The administration of Fn antagonist through microangiography exerted reducing effects on both interrenal vessel angiogenesis and steroidogenic cell migration. Conclusions and Significance This work is the first to identify the zebrafish IRV and to characterize how its integration into the developing interrenal gland requires the Fn-enriched microenvironment, which leads to the possibility of using the IRV formation as a platform for exploring organ-specific angiogenesis. In the context of other developmental endocrinology studies, our results indicate a highly dynamic interrenal-vessel interaction immediately before the onset of stress response in the zebrafish embryo.
Collapse
|
28
|
Mazilu JK, McCabe ERB. Moving toward personalized cell-based interventions for adrenal cortical disorders: part 1--Adrenal development and function, and roles of transcription factors and signaling proteins. Mol Genet Metab 2011; 104:72-9. [PMID: 21764344 DOI: 10.1016/j.ymgme.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022]
Abstract
Transdifferentiation of an individual's own cells into functional differentiated cells to replace an organ's lost function would be a personalized approach to therapeutics. In this two part series, we will describe the progress toward establishing functional transdifferentiated adrenal cortical cells. In this article (Part 1), we describe adrenal development and function, and discuss genes involved in these processess and selected for use in our pilot studies of transdifferentiation that are presented in the second article (Part 2).
Collapse
Affiliation(s)
- Jaime K Mazilu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
29
|
O'Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 2011; 358:318-30. [PMID: 21871448 DOI: 10.1016/j.ydbio.2011.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/02/2023]
Abstract
Podocytes help form the glomerular blood filtration barrier in the kidney and their injury or loss leads to renal disease. The Wilms' tumor suppressor-1 (Wt1) and the FoxC1/2 transcription factors, as well as Notch signaling, have been implicated as important regulators of podocyte fate. It is not known whether these factors work in parallel or sequentially on different gene targets, or as higher-order transcriptional complexes on common genes. Here, we use the zebrafish to demonstrate that embryos treated with morpholinos against wt1a, foxc1a, or the Notch transcriptional mediator rbpj develop fewer podocytes, as determined by wt1b, hey1 and nephrin expression, while embryos deficient in any two of these factors completely lack podocytes. From GST-pull-downs and co-immunoprecipitation experiments we show that Wt1a, Foxc1a, and Rbpj can physically interact with each other, whereas only Rbpj binds to the Notch intracellular domain (NICD). In transactivation assays, combinations of Wt1, FoxC1/2, and NICD synergistically induce the Hey1 promoter, and have additive or repressive effects on the Podocalyxin promoter, depending on dosage. Taken together, these data suggest that Wt1, FoxC1/2, and Notch signaling converge on common target genes where they physically interact to regulate a podocyte-specific gene program. These findings further our understanding of the transcriptional circuitry responsible for podocyte formation and differentiation during kidney development.
Collapse
Affiliation(s)
- Lori L O'Brien
- Center for Regenerative Medicine and Department of Medicine, Massachusetts General Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
30
|
In vivo alternative assessment of the chemicals that interfere with anterior pituitary POMC expression and interrenal steroidogenesis in POMC: EGFP transgenic zebrafish. Toxicol Appl Pharmacol 2010; 248:217-25. [DOI: 10.1016/j.taap.2010.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/29/2010] [Accepted: 08/14/2010] [Indexed: 11/23/2022]
|
31
|
Chou CW, Hsu HC, Quek SI, Chan WK, Liu YW. Arterial and venous vessels are required for modulating developmental relocalization and laterality of the interrenal tissue in zebrafish. Dev Dyn 2010; 239:1995-2004. [DOI: 10.1002/dvdy.22335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Stewart RA, Lee JS, Lachnit M, Look AT, Kanki JP, Henion PD. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 2010; 100:127-52. [PMID: 21111216 DOI: 10.1016/b978-0-12-384892-5.00005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combined experimental attributes of the zebrafish model system, which accommodates cellular, molecular, and genetic approaches, make it particularly well-suited for determining the mechanisms underlying normal vertebrate development as well as disease states, such as cancer. In this chapter, we describe the advantages of the zebrafish system for identifying genes and their functions that participate in the regulation of the development of the peripheral sympathetic nervous system (PSNS). The zebrafish model is a powerful system for identifying new genes and pathways that regulate PSNS development, which can then be used to genetically dissect PSNS developmental processes, such as tissue size and cell numbers, which in the past haves proved difficult to study by mutational analysis in vivo. We provide a brief review of our current understanding of genetic pathways important in PSNS development, the rationale for developing a zebrafish model, and the current knowledge of zebrafish PSNS development. Finally, we postulate that knowledge of the genes responsible for normal PSNS development in the zebrafish will help in the identification of molecular pathways that are dysfunctional in neuroblastoma, a highly malignant cancer of the PSNS.
Collapse
Affiliation(s)
- Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|