1
|
Korsakova SA, Kryuchkov NP, Yakovlev EV, Bystrov DA, Hagemans F, Simkin IV, Libet PA, Crassous JJ, Yurchenko SO. Spinning microrods in a rotating electric field with tunable hodograph. J Colloid Interface Sci 2025; 692:137456. [PMID: 40187132 DOI: 10.1016/j.jcis.2025.137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HYPOTHESIS In external high-frequency rotational electric fields, the polarization of rod-like colloidal particles experiences a slight temporal delay relative to the field, resulting in a torque that acts upon the particles. This torque depends on the hodograph of the external rotating electric field (the spatial curve traced by the tip of the electric field vector as it changes over time), enabling control over the rotational dynamics of rod-like colloidal particles. EXPERIMENTS The experiments were conducted using synthesized monodisperse silica microrods with average size of 3.29×1.12×1.12μm3 dispersed in deionized water, at a mass fraction of 0.2%. The external electric field was generated using an 8-electrode system, and it rotated within the system's plane along an elliptical hodograph at a frequency of 30 kHz. We used an optical microscope with magnification objective of equipped with a CCD-camera (Thorlabs). The experimental data were processed using Fiji software. FINDINGS The external high-frequency rotational electric field allows for controlled imposition of three types of rotational dynamics onto rod-like colloidal particles: (i) asynchronous continuous rotation - tunable spinners, (ii) oscillations around a certain direction with sporadic rod flips - rotational jumpers with enhanced directional ordering, and (iii) a regime of "arrested" particle orientation along the principal axes of field anisotropy.
Collapse
Affiliation(s)
- Sofia A Korsakova
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Daniil A Bystrov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - Ivan V Simkin
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Pavel A Libet
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, Moscow, 105005, Russia.
| |
Collapse
|
2
|
Arabsalmani N, Ghouchani A, Jafarabadi Ashtiani S, Zamani M. Exploring Bio-Impedance Sensing for Intelligent Wearable Devices. Bioengineering (Basel) 2025; 12:521. [PMID: 40428140 PMCID: PMC12109311 DOI: 10.3390/bioengineering12050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The rapid growth of wearable technology has opened new possibilities for smart health-monitoring systems. Among various sensing methods, bio-impedance sensing has stood out as a powerful, non-invasive, and energy-efficient way to track physiological changes and gather important health information. This review looks at the basic principles behind bio-impedance sensing, how it is being built into wearable devices, and its use in healthcare and everyday wellness tracking. We examine recent progress in sensor design, signal processing, and machine learning, and show how these developments are making real-time health monitoring more effective. While bio-impedance systems offer many advantages, they also face challenges, particularly when it comes to making devices smaller, reducing power use, and improving the accuracy of collected data. One key issue is that analyzing bio-impedance signals often relies on complex digital signal processing, which can be both computationally heavy and energy-hungry. To address this, researchers are exploring the use of neuromorphic processors-hardware inspired by the way the human brain works. These processors use spiking neural networks (SNNs) and event-driven designs to process signals more efficiently, allowing bio-impedance sensors to pick up subtle physiological changes while using far less power. This not only extends battery life but also brings us closer to practical, long-lasting health-monitoring solutions. In this paper, we aim to connect recent engineering advances with real-world applications, highlighting how bio-impedance sensing could shape the next generation of intelligent wearable devices.
Collapse
Affiliation(s)
- Nafise Arabsalmani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran; (N.A.); (S.J.A.)
| | - Arman Ghouchani
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark;
| | - Shahin Jafarabadi Ashtiani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran; (N.A.); (S.J.A.)
| | - Milad Zamani
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark;
| |
Collapse
|
3
|
Mathew A, Kulkarni Y. Active matter as the underpinning agency for extraordinary sensitivity of biological membranes to electric fields. Proc Natl Acad Sci U S A 2025; 122:e2427255122. [PMID: 40117314 PMCID: PMC11962423 DOI: 10.1073/pnas.2427255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Interaction of electric fields with biological cells is indispensable for many physiological processes. Thermal electrical noise in the cellular environment has long been considered as the minimum threshold for detection of electrical signals by cells. However, there is compelling experimental evidence that the minimum electric field sensed by certain cells and organisms is many orders of magnitude weaker than the thermal electrical noise limit estimated purely under equilibrium considerations. We resolve this discrepancy by proposing a nonequilibrium statistical mechanics model for active electromechanical membranes and hypothesize the role of activity in modulating the minimum electrical field that can be detected by a biological membrane. Active membranes contain proteins that use external energy sources to carry out specific functions and drive the membrane away from equilibrium. The central idea behind our model is that active mechanisms, attributed to different sources, endow the membrane with the ability to sense and respond to electric fields that are deemed undetectable based on equilibrium statistical mechanics. Our model for active membranes is capable of reproducing different experimental data available in the literature by varying the activity. Elucidating how active matter can modulate the sensitivity of cells to electric signals can open avenues for a deeper understanding of physiological and pathological processes.
Collapse
Affiliation(s)
- Anand Mathew
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX77204
| | - Yashashree Kulkarni
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX77204
| |
Collapse
|
4
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2025; 24:47-76. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
5
|
Jiang Z, Xu Y, Sun L, Srinivasan S, Wu QJ, Xiang L, Ren L. Enhanced Electroacoustic Tomography with Supervised Learning for Real-time Electroporation Monitoring. PRECISION RADIATION ONCOLOGY 2024; 8:110-118. [PMID: 40336975 PMCID: PMC11935180 DOI: 10.1002/pro6.1242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 05/09/2025] Open
Abstract
Background Nanosecond pulsed electric fields (nsPEF)-based electroporation is a new therapy modality potentially synergized with radiation therapy to improve treatment outcomes. To verify its treatment accuracy intraoperatively, electroacoustic tomography (EAT) has been developed to monitor in-vivo electric energy deposition by detecting ultrasound signals generated by nsPEFs in real-time. However, utility of EAT is limited by image distortions due to the limited-angle view of ultrasound transducers. Methods This study proposed a supervised learning-based workflow to address the ill-conditioning in EAT reconstruction. Electroacoustic signals were detected by a linear array and initially reconstructed into EAT images, which were then fed into a deep learning model for distortion correction. In this study, 56 distinct electroacoustic data sets from nsPEFs of different intensities and geometries were collected experimentally, avoiding simulation-to-real-world variations. Forty-six data were used for model training and 10 for testing. The model was trained using supervised learning, enabled by a custom rotating platform to acquire paired full-view and single-view signals for the same electric field. Results The proposed method considerably improved the image quality of linear array-based EAT, generating pressure maps with accurate and clear structures. Quantitatively, the enhanced single-view images achieved a low-intensity error (RMSE: 0.018), high signal-to-noise ratio (PSNR: 35.15), and high structural similarity (SSIM: 0.942) compared to the reference full-view images. Conclusions This study represented a pioneering stride in achieving high-quality EAT using a single linear array in an experimental environment, which improves EAT's utility in real-time monitoring for nsPEF-based electroporation therapy.
Collapse
Affiliation(s)
| | - Yifei Xu
- University of CaliforniaIrvineUSA
| | | | | | | | | | - Lei Ren
- University of Maryland School of MedicineBaltimoreUSA
| |
Collapse
|
6
|
Zhang L, Ren Y, Peng Y, Luo Y, Liu Y, Wang X, Yang Y, Liu L, Ai P, Yang X, Li Y, Mao Q, Wang F. Tumor treating fields for newly diagnosed high-grade glioma based on the criteria of 2021 WHO CNS5: A retrospective analysis of Chinese patients in a single center. Cancer Med 2024; 13:e7350. [PMID: 38859683 PMCID: PMC11165168 DOI: 10.1002/cam4.7350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVE High-grade glioma (HGG) is known to be characterized by a high degree of malignancy and a worse prognosis. The classical treatment is safe resection supplemented by radiotherapy and chemotherapy. Tumor treating fields (TTFields), an emerging physiotherapeutic modality that targets malignant solid tumors using medium-frequency, low-intensity, alternating electric fields to interfere with cell division, have been used for the treatment of new diagnosis of glioblastoma, however, their administration in HGG requires further clinical evidence. The efficacy and safety of TTFields in Chinese patients with HGG were retrospectively evaluated by us in a single center. METHODS We enrolled and analyzed 52 patients with newly diagnosed HGG undergoing surgery and standard chemoradiotherapy regimens from December 2019 to June 2022, and followed them until June 2023. Based on whether they used TTFields, they were divided into a TTFields group and a non-TTFields group. Progression-free survival (PFS) and overall survival (OS) were compared between the two groups. RESULTS There were 26 cases in the TTFields group and 26 cases in the non-TTFields group. In the TTFields group, the median PFS was 14.2 months (95% CI: 9.50-18.90), the median OS was 19.7 months (95% CI: 14.95-24.25) , the median interval from surgery to the start of treatment with TTFields was 2.47 months (95% CI: 1.47-4.13), and the median duration of treatment with TTFields was 10.6 months (95% CI: 9.57-11.63). 15 (57.69%) patients experienced an adverse event and no serious adverse event was reported. In the non-TTFields group, the median PFS was 9.57 months (95% CI: 6.23-12.91) and the median OS was 16.07 months (95% CI: 12.90-19.24). There was a statistically significant difference in PFS (p = 0.005) and OS (p = 0.007) between the two groups. CONCLUSIONS In this retrospective analysis, TTFields were observed to improve newly diagnosed HGG patients' median PFS and OS. Compliance was much higher than reported in clinical trials and safety remained good.
Collapse
Affiliation(s)
- Li Zhang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanming Ren
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Youheng Peng
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yong Luo
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanhui Liu
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Xiang Wang
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yuan Yang
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Lei Liu
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ping Ai
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xiaoyan Yang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yanchu Li
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Qing Mao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Feng Wang
- Head and Neck Oncology Ward, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Najafi H, Farahavar G, Jafari M, Abolmaali SS, Azarpira N, Tamaddon AM. Harnessing the Potential of Self-Assembled Peptide Hydrogels for Neural Regeneration and Tissue Engineering. Macromol Biosci 2024; 24:e2300534. [PMID: 38547473 DOI: 10.1002/mabi.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Spinal cord injury, traumatic brain injury, and neurosurgery procedures usually lead to neural tissue damage. Self-assembled peptide (SAP) hydrogels, a type of innovative hierarchical nanofiber-forming peptide sequences serving as hydrogelators, have emerged as a promising solution for repairing tissue defects and promoting neural tissue regeneration. SAPs possess numerous features, such as adaptable morphologies, biocompatibility, injectability, tunable mechanical stability, and mimicking of the native extracellular matrix. This review explores the capacity of neural cell regeneration and examines the critical aspects of SAPs in neuroregeneration, including their biochemical composition, topology, mechanical behavior, conductivity, and degradability. Additionally, it delves into the latest strategies involving SAPs for central or peripheral neural tissue engineering. Finally, the prospects of SAP hydrogel design and development in the realm of neuroregeneration are discussed.
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, 71937-11351, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| |
Collapse
|
8
|
Sahin C, Giraud A, Jabrah D, Patil S, Messina P, Bozsak F, Darcourt J, Sacchetti F, Januel AC, Bellanger G, Pagola J, Juega J, Imamura H, Ohta T, Spelle L, Chalumeau V, Mircic U, Stanarčević P, Vukašinović I, Ribo M, Sakai N, Cognard C, Doyle K. Electrical impedance measurements can identify red blood cell-rich content in acute ischemic stroke clots ex vivo associated with first-pass successful recanalization. Res Pract Thromb Haemost 2024; 8:102373. [PMID: 38617048 PMCID: PMC11015511 DOI: 10.1016/j.rpth.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Background Electrochemical impedance spectroscopy can determine characteristics such as cell density, size, and shape. The development of an electrical impedance-based medical device to estimate acute ischemic stroke (AIS) clot characteristics could improve stroke patient outcomes by informing clinical decision making. Objectives To assess how well electrical impedance combined with machine learning identified red blood cell (RBC)-rich composition of AIS clots ex vivo, which is associated with a successfully modified first-pass effect. Methods A total of 253 clots from 231 patients who underwent thrombectomy in 5 hospitals in France, Japan, Serbia, and Spain between February 2021 and October 2023 were analyzed in the Clotbase International Registry. Electrical impedance measurements were taken following clot retrieval by thrombectomy, followed by Martius Scarlet Blue staining. The clot components were quantified via Orbit Image Analysis, and RBC percentages were correlated with the RBC estimations made by the electrical impedance machine learning model. Results Quantification by Martius Scarlet Blue staining identified RBCs as the major component in clots (RBCs, 37.6%; white blood cells, 5.7%; fibrin, 25.5%; platelets/other, 30.3%; and collagen, 1%). The impedance-based RBC estimation correlated well with the RBC content determined by histology, with a slope of 0.9 and Spearman's correlation of r = 0.7. Clots removed in 1 pass were significantly richer in RBCs and clots with successful recanalization in 1 pass (modified first-pass effect) were richer in RBCs as assessed using histology and impedance signature. Conclusion Electrical impedance estimations of RBC content in AIS clots are consistent with histologic findings and may have potential for clinically relevant parameters.
Collapse
Affiliation(s)
- Cansu Sahin
- Department of Physiology, University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM)- Science Foundation Ireland (SFI), University of Galway, Galway, Ireland
| | | | - Duaa Jabrah
- Department of Physiology, University of Galway, Galway, Ireland
| | - Smita Patil
- Department of Physiology, University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM)- Science Foundation Ireland (SFI), University of Galway, Galway, Ireland
| | | | | | - Jean Darcourt
- Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Federico Sacchetti
- Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Anne-Christine Januel
- Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Guillaume Bellanger
- Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jorge Pagola
- Department of Neurology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Jesus Juega
- Department of Neurology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Hirotoshi Imamura
- Department of Neurosurgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tsuyoshi Ohta
- Department of Neurosurgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Laurent Spelle
- Department of Interventional Neuroradiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Vanessa Chalumeau
- Department of Interventional Neuroradiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Uros Mircic
- Department of Neuroradiology, Centre for Radiology and Magnetic Resonance Imaging (MRI), University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Ivan Vukašinović
- Department of Neuroradiology, Centre for Radiology and Magnetic Resonance Imaging (MRI), University Clinical Center of Serbia, Belgrade, Serbia
| | - Marc Ribo
- Department of Neurology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Nobuyuki Sakai
- Department of Neurosurgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Christophe Cognard
- Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Karen Doyle
- Department of Physiology, University of Galway, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM)- Science Foundation Ireland (SFI), University of Galway, Galway, Ireland
| |
Collapse
|
9
|
Mamaghaniyeh R, Zandieh A, Goliaei B, Nezamtaheri MS, Shariatpanahi SP. Effects of exposure to alternating low-intensity, intermediate-frequency electric fields on the differentiation of human leukemic cell line U937. Bioelectromagnetics 2024; 45:48-57. [PMID: 37870254 DOI: 10.1002/bem.22487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Studying the bioeffects of electric fields have been the subject of ongoing research which led to promising therapeutic effect, particularly in cancer treatment. Here, we investigated the impact of low-intensity, intermediate-frequency alternating electric fields on the differentiation of human myeloid leukemia cell line U937. The results showed a near twofold increase in differentiation of U937 cells treated for 24 h by alternating 600 kHz, 150 V/m electric fields, in comparison to their control groups. This measure was evaluated by latex bead phagocytosis assay, nitro blue tetrazolium test, and cell cycle analysis which revealed a significant shift in the number of cells from G2 +M to G0 +G1 phases. The simulation result for the intracellular field intensity showed around 50% attenuation with respect to the applied external field for our setup which ruled out masking of the applied field by the internal electric noise of the cell. Based on previous studies we postulate a possible calcium-related effect for the observed differentiation, yet the exact underlying mechanism requires further investigation. Finally, our results may offer a potential therapeutic method for leukemia in the future.
Collapse
Affiliation(s)
- Rayehe Mamaghaniyeh
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Amirali Zandieh
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam S Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed P Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Quantum control of optoelectronic and thermodynamic properties of dopamine molecule in external electric field : A DFT and TD-DFT study. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
12
|
Le HT, Staelens M, Lazzari D, Chan G, Tuszyński JA. Real-Time Monitoring of the Effect of Tumour-Treating Fields on Cell Division Using Live-Cell Imaging. Cells 2022; 11:2712. [PMID: 36078119 PMCID: PMC9454843 DOI: 10.3390/cells11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of electric fields (EFs) on various cell types have been thoroughly studied, and exhibit a well-known regulatory effect on cell processes, implicating their usage in several medical applications. While the specific effect exerted on cells is highly parameter-dependent, the majority of past research has focused primarily on low-frequency alternating fields (<1 kHz) and high-frequency fields (in the order of MHz). However, in recent years, low-intensity (1-3 V/cm) alternating EFs with intermediate frequencies (100-500 kHz) have been of topical interest as clinical treatments for cancerous tumours through their disruption of cell division and the mitotic spindle, which can lead to cell death. These aptly named tumour-treating fields (TTFields) have been approved by the FDA as a treatment modality for several cancers, such as malignant pleural mesothelioma and glioblastoma multiforme, demonstrating remarkable efficacy and a high safety profile. In this work, we report the results of in vitro experiments with HeLa and MCF-10A cells exposed to TTFields for 18 h, imaged in real time using live-cell imaging. Both studied cell lines were exposed to 100 kHz TTFields with a 1-1 duty cycle, which resulted in significant mitotic and cytokinetic arrest. In the experiments with HeLa cells, the effects of the TTFields' frequency (100 kHz vs. 200 kHz) and duty cycle (1-1 vs. 1-0) were also investigated. Notably, the anti-mitotic effect was stronger in the HeLa cells treated with 100 kHz TTFields. Additionally, it was found that single and two-directional TTFields (oriented orthogonally) exhibit a similar inhibitory effect on HeLa cell division. These results provide real-time evidence of the profound ability of TTFields to hinder the process of cell division by significantly delaying both the mitosis and cytokinesis phases of the cell cycle.
Collapse
Affiliation(s)
- Hoa T. Le
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Davide Lazzari
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gordon Chan
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
13
|
Shawki MM, El Sadieque A, Elabd S, Moustafa ME. Synergetic Effect of Tumor Treating Fields and Zinc Oxide Nanoparticles on Cell Apoptosis and Genotoxicity of Three Different Human Cancer Cell Lines. Molecules 2022; 27:4384. [PMID: 35889257 PMCID: PMC9322763 DOI: 10.3390/molecules27144384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite extraordinary progress. So, new cancer treatment modalities are needed. Tumor-treating fields (TTFs) use low-intensity, intermediate-frequency alternating electric fields with reported cancer anti-mitotic properties. Moreover, nanomedicine is a promising therapy option for cancer. Numerous cancer types have been treated with nanoparticles, but zinc oxide nanoparticles (ZnO NPs) exhibit biocompatibility. Here, we investigate the activity of TTFs, a sub-lethal dose of ZnO NPs, and their combination on hepatocellular carcinoma (HepG2), the colorectal cancer cell line (HT-29), and breast cancer cell lines (MCF-7). The lethal effect of different ZnO NPs concentrations was assessed by sulforhodamine B sodium salt assay (SRB). The cell death percent was determined by flow cytometer, the genotoxicity was evaluated by comet assay, and the total antioxidant capacity was chemically measured. Our results show that TTFs alone cause cell death of 14, 8, and 17% of HepG2, HT-29, and MCF-7, respectively; 10 µg/mL ZnO NPs was the sub-lethal dose according to SRB results. The combination between TTFs and sub-lethal ZnO NPs increased the cell death to 29, 20, and 33% for HepG2, HT-29, and MCF-7, respectively, without reactive oxygen species increase. Increasing NPs potency using TTFs can be a novel technique in many biomedical applications.
Collapse
Affiliation(s)
- Mamdouh M. Shawki
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.E.S.); (M.E.M.)
| | - Alaa El Sadieque
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.E.S.); (M.E.M.)
- Alexandria University Cancer Research Cluster, Alexandria 21561, Egypt
| | - Seham Elabd
- Physiology Department, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt;
| | - Maisa E. Moustafa
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.E.S.); (M.E.M.)
| |
Collapse
|
14
|
Deivasigamani R, Abdul Nasir NS, Mohamed MA, Buyong MR. In vitro dielectrophoresis of HEK cell migration for stimulating chronic wound epithelialization. Electrophoresis 2021; 43:609-620. [PMID: 34859896 DOI: 10.1002/elps.202100207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP ) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 μm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN), Bangi, Selangor, Malaysia
| | - Mohd Ambri Mohamed
- Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN), Bangi, Selangor, Malaysia
| |
Collapse
|
15
|
Effects of an electric field on sleep quality and life span mediated by ultraviolet (UV)-A/blue light photoreceptor CRYPTOCHROME in Drosophila. Sci Rep 2021; 11:20543. [PMID: 34654874 PMCID: PMC8519966 DOI: 10.1038/s41598-021-99753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Although electric fields (EF) exert beneficial effects on animal wound healing, differentiation, cancers and rheumatoid arthritis, the molecular mechanisms of these effects have remained unclear about a half century. Therefore, we aimed to elucidate the molecular mechanisms underlying EF effects in Drosophila melanogaster as a genetic animal model. Here we show that the sleep quality of wild type (WT) flies was improved by exposure to a 50-Hz (35 kV/m) constant electric field during the day time, but not during the night time. The effect was undetectable in cryptochrome mutant (cryb) flies. Exposure to a 50-Hz electric field under low nutrient conditions elongated the lifespan of male and female WT flies by ~ 18%, but not of several cry mutants and cry RNAi strains. Metabolome analysis indicated that the adenosine triphosphate (ATP) content was higher in intact WT than cry gene mutant strains exposed to an electric field. A putative magnetoreceptor protein and UV-A/blue light photoreceptor, CRYPTOCHROME (CRY) is involved in electric field (EF) receptors in animals. The present findings constitute hitherto unknown genetic evidence of a CRY-based system that is electric field sensitive in animals.
Collapse
|
16
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
17
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
18
|
Advancing Regenerative Medicine Through the Development of Scaffold, Cell Biology, Biomaterials and Strategies of Smart Material. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Karanam NK, Story MD. An overview of potential novel mechanisms of action underlying Tumor Treating Fields-induced cancer cell death and their clinical implications. Int J Radiat Biol 2020; 97:1044-1054. [PMID: 33086019 DOI: 10.1080/09553002.2020.1837984] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023]
Abstract
Traditional cancer therapy choices for clinicians are surgery, chemotherapy, radiation and immune therapy which are used either standalone therapies or in various combinations. Other physical modalities beyond ionizing radiation include photodynamic therapy and heating and the more recent approach referred to as Tumor Treating Fields (TTFields). TTFields are intermediate frequency, low-intensity, alternating electric fields that are applied to tumor regions and cells using noninvasive arrays. TTFields have revolutionized the treatment of newly diagnosed and recurrent glioblastoma (GBM) and unresectable and locally advanced malignant pleural mesothelioma (MPM). TTFields are thought to kill tumor cells predominantly by disrupting mitosis; however it has been shown that TTFields increase efficacy of different classes of drugs, which directly target mitosis, replication stress and DNA damage pathways. Hence, a detailed understanding of TTFields' mechanisms of action is needed to use this therapy effectively in the clinic. Recent findings implicate TTFields' role in different important pathways such as DNA damage response and replication stress, ER stress, membrane permeability, autophagy, and immune response. This review focuses on potentially novel mechanisms of TTFields anti-tumor action and their implications in completed and ongoing clinical trials and pre-clinical studies. Moreover, the review discusses advantages and strategies using chemotherapy agents and radiation therapy in combination with TTFields for future clinical use.
Collapse
Affiliation(s)
- Narasimha Kumar Karanam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Wang Z, Liu M, Yang X. A four-way coupled CFD-DEM modeling framework for charged particles under electrical field with applications to gas insulated switchgears. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Han SJ, Moon D, Park MY, Kwon S, Noh M, Jang J, Lee JB, Kim KS. Electric field-induced changes in biomechanical properties in human dermal fibroblasts and a human skin equivalent. Skin Res Technol 2020; 26:914-922. [PMID: 32594564 DOI: 10.1111/srt.12894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE An electric field (EF) can be used to change the mechanical properties of cells and skin tissues. We demonstrate EF-induced elasticity changes in human dermal fibroblasts (HDFs) and a human skin equivalent and identify the underlying principles related to the changes. METHODS HDFs and human skin equivalent were stimulated with electric fields of 1.0 V/cm. Change in cellular elasticity was determined by using atomic force microscopy. Effects of EF on the biomechanical and chemical properties of a human skin equivalent were analyzed. In cells and tissues, the effects of EF on biomarkers of cellular elasticity were investigated at the gene and protein levels. RESULTS In HDFs, the cellular elasticity was increased and the expression of biomarkers of cellular elasticity was regulated by the EF. Expression of the collagen protein in the human skin equivalent was changed by EF stimulation; however, changes in density and microstructure of the collagen fibrils were not significant. The viscoelasticity of the human skin equivalent increased in response to EF stimulation, but molecular changes were not observed in collagen. CONCLUSIONS Elasticity of cells and human skin equivalent can be regulated by electrical stimulation. Especially, the change in cellular elasticity was dependent on cell age.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate school, Kyung Hee University, Seoul, South Korea.,Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Donggerami Moon
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Moon Young Park
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Minjoo Noh
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Jihui Jang
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Jun Bae Lee
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
23
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Stratford JP, Edwards CLA, Ghanshyam MJ, Malyshev D, Delise MA, Hayashi Y, Asally M. Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity. Proc Natl Acad Sci U S A 2019; 116:9552-9557. [PMID: 31000597 PMCID: PMC6511025 DOI: 10.1073/pnas.1901788116] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Membrane-potential dynamics mediate bacterial electrical signaling at both intra- and intercellular levels. Membrane potential is also central to cellular proliferation. It is unclear whether the cellular response to external electrical stimuli is influenced by the cellular proliferative capacity. A new strategy enabling electrical stimulation of bacteria with simultaneous monitoring of single-cell membrane-potential dynamics would allow bridging this knowledge gap and further extend electrophysiological studies into the field of microbiology. Here we report that an identical electrical stimulus can cause opposite polarization dynamics depending on cellular proliferation capacity. This was demonstrated using two model organisms, namely Bacillus subtilis and Escherichia coli, and by developing an apparatus enabling exogenous electrical stimulation and single-cell time-lapse microscopy. Using this bespoke apparatus, we show that a 2.5-second electrical stimulation causes hyperpolarization in unperturbed cells. Measurements of intracellular K+ and the deletion of the K+ channel suggested that the hyperpolarization response is caused by the K+ efflux through the channel. When cells are preexposed to 400 ± 8 nm wavelength light, the same electrical stimulation depolarizes cells instead of causing hyperpolarization. A mathematical model extended from the FitzHugh-Nagumo neuron model suggested that the opposite response dynamics are due to the shift in resting membrane potential. As predicted by the model, electrical stimulation only induced depolarization when cells are treated with antibiotics, protonophore, or alcohol. Therefore, electrically induced membrane-potential dynamics offer a reliable approach for rapid detection of proliferative bacteria and determination of their sensitivity to antimicrobial agents at the single-cell level.
Collapse
Affiliation(s)
- James P Stratford
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, West Midlands, CV4 7AL,United Kingdom
| | - Conor L A Edwards
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Manjari J Ghanshyam
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Dmitry Malyshev
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Marco A Delise
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom;
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, West Midlands, CV4 7AL,United Kingdom
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Yasukawa T, Morishima A, Suzuki M, Yoshioka J, Yoshimoto K, Mizutani F. Rapid Formation of Aggregates with Uniform Numbers of Cells Based on Three-dimensional Dielectrophoresis. ANAL SCI 2019; 35:895-901. [PMID: 31006719 DOI: 10.2116/analsci.19p074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We applied a fabrication method for the formation of island organization of cells based on a three-dimensional (3D) device for negative dielectrophoresis (n-DEP) to produce cell aggregates with uniform numbers of cells rapidly and simply. The intersections formed by rotating the interdigitated array (IDA) with two combs of band electrodes on the upper substrate by 90° relative to the IDA with two combs on the lower substrate were prepared in the device. The AC voltage was applied to a comb on the upper substrate and a comb on the lower substrate, while AC voltage with opposite phase was applied to another comb on the upper substrate and another comb on the lower substrate. Cells dispersed randomly were directed toward the intersections with relatively lower electric fields due to n-DEP, which formed by AC voltage applied bands with the identical phase, resulting in the formation of island patterns of cells. The cells accumulated at intersections were promoted to form the cell aggregates due to the close contact together. The production of cell aggregations adhered together was easily found by the dispersion behavior after switching the applied frequency to convert the cellular pattern. When cells were accumulated at the intersections by n-DEP for 45 min, almost accumulations of cells were adhered together, and hence a formations of cell aggregations. By using the present method, we can rapidly and simply fabricate cell aggregations with a uniform number of cells.
Collapse
Affiliation(s)
| | - Asa Morishima
- Graduate School of Material Science, University of Hyogo
| | - Masato Suzuki
- Graduate School of Material Science, University of Hyogo
| | - Junya Yoshioka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Fumio Mizutani
- Graduate School of Material Science, University of Hyogo
| |
Collapse
|
26
|
Abstract
Freeze casting under external fields (magnetic, electric, or acoustic) produces porous materials having local, regional, and global microstructural order in specific directions. In freeze casting, porosity is typically formed by the directional solidification of a liquid colloidal suspension. Adding external fields to the process allows for structured nucleation of ice and manipulation of particles during solidification. External control over the distribution of particles is governed by a competition of forces between constitutional supercooling and electromagnetism or acoustic radiation. Here, we review studies that apply external fields to create porous ceramics with different microstructural patterns, gradients, and anisotropic alignments. The resulting materials possess distinct gradient, core–shell, ring, helical, or long-range alignment and enhanced anisotropic mechanical properties.
Collapse
|
27
|
Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 2018; 6:31. [PMID: 30374416 PMCID: PMC6196224 DOI: 10.1038/s41413-018-0032-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals. Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material's responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianling Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD USA
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Mark A. Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
28
|
Chouhan D, Mehrotra S, Majumder O, Mandal BB. Magnetic Actuator Device Assisted Modulation of Cellular Behavior and Tuning of Drug Release on Silk Platform. ACS Biomater Sci Eng 2018; 5:92-105. [DOI: 10.1021/acsbiomaterials.8b00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Omkar Majumder
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
29
|
Wenger C, Miranda PC, Salvador R, Thielscher A, Bomzon Z, Giladi M, Mrugala MM, Korshoej AR. A Review on Tumor-Treating Fields (TTFields): Clinical Implications Inferred From Computational Modeling. IEEE Rev Biomed Eng 2018; 11:195-207. [DOI: 10.1109/rbme.2017.2765282] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Amini M, Hisdal J, Kalvøy H. Applications of Bioimpedance Measurement Techniques in Tissue Engineering. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2018; 9:142-158. [PMID: 33584930 PMCID: PMC7852004 DOI: 10.2478/joeb-2018-0019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 05/19/2023]
Abstract
Rapid development in the field of tissue engineering necessitates implementation of monitoring methods for evaluation of the viability and characteristics of the cell cultures in a real-time, non-invasive and non-destructive manner. Current monitoring techniques are mainly histological and require labeling and involve destructive tests to characterize cell cultures. Bioimpedance measurement technique which benefits from measurement of electrical properties of the biological tissues, offers a non-invasive, label-free and real-time solution for monitoring tissue engineered constructs. This review outlines the fundamentals of bioimpedance, as well as electrical properties of the biological tissues, different types of cell culture constructs and possible electrode configuration set ups for performing bioimpedance measurements on these cell cultures. In addition, various bioimpedance measurement techniques and their applications in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- M. Amini
- Department of Physics, University of Oslo, Oslo, Norway
| | - J. Hisdal
- Vascular Investigations and Circulation lab, Aker Hospital, Oslo University Hospital, Oslo, Norway
| | - H. Kalvøy
- Department of Clinical and Biomedical Engineering, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Samantaray K, Bhol P, Sahoo B, Barik SK, Jathavedan K, Sahu BR, Suar M, Bhat SK, Mohanty PS. Template-Free Assembly in Living Bacterial Suspension under an External Electric Field. ACS OMEGA 2017; 2:1019-1024. [PMID: 30023626 PMCID: PMC6044750 DOI: 10.1021/acsomega.6b00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/06/2017] [Indexed: 05/04/2023]
Abstract
Although template-assisted self-assembly methods are very popular in materials and biological systems, they have certain limitations such as lack of tunability and switchable functionality because of the irreversible association of cells and their matrix components. With an aim to achieve more tunability, we have made an attempt to investigate the self-assembly behavior of rod-shaped living bacteria subjected to an external alternating electric field using confocal microscopy. We demonstrate that rod-shaped living bacteria dispersed in a low salinity aqueous medium form different types of reversible freely suspended structures when subjected to an external alternating electric field. At low field strength, an oriented phase is observed where individual bacterium orients with its major axis aligned along the field direction. At intermediate field strength, bacteria align in the form of one-dimensional (1D) chains that lie along the field direction. Further, at high field strength, more bacteria associate with these 1D chains laterally to form a two-dimensional (2D) array. At higher bacterial concentration, these field-induced 2D arrays extend to form three-dimensional columnar structures. These results are discussed in the context of previously reported studies on bacterial self-assembly.
Collapse
Affiliation(s)
- Kunal Samantaray
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - Prachi Bhol
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - Bhabani Sahoo
- Institute
of Life Science, Bhubaneswar 751023, India
| | - Subrat Kumar Barik
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - Kiran Jathavedan
- Polymer
Science & Engineering Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Bikash Ranjan Sahu
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | - Suresh K. Bhat
- Polymer
Science & Engineering Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Priti Sundar Mohanty
- School
of Biotechnology and School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| |
Collapse
|
32
|
Xu J, Kawano H, Liu W, Hanada Y, Lu P, Miyawaki A, Midorikawa K, Sugioka K. Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. MICROSYSTEMS & NANOENGINEERING 2017; 3:16078. [PMID: 31057849 PMCID: PMC6444996 DOI: 10.1038/micronano.2016.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 05/08/2023]
Abstract
This paper presents a simple technique to fabricate new electrofluidic devices for the three-dimensional (3D) manipulation of microorganisms by hybrid subtractive and additive femtosecond (fs) laser microfabrication (fs laser-assisted wet etching of glass followed by water-assisted fs laser modification combined with electroless metal plating). The technique enables the formation of patterned metal electrodes in arbitrary regions in closed glass microfluidic channels, which can spatially and temporally control the direction of electric fields in 3D microfluidic environments. The fabricated electrofluidic devices were applied to nanoaquariums to demonstrate the 3D electro-orientation of Euglena gracilis (an elongated unicellular microorganism) in microfluidics with high controllability and reliability. In particular, swimming Euglena cells can be oriented along the z-direction (perpendicular to the device surface) using electrodes with square outlines formed at the top and bottom of the channel, which is quite useful for observing the motions of cells parallel to their swimming directions. Specifically, z-directional electric field control ensured efficient observation of manipulated cells on the front side (45 cells were captured in a minute in an imaging area of ~160×120 μm), resulting in a reduction of the average time required to capture the images of five Euglena cells swimming continuously along the z-direction by a factor of ~43 compared with the case of no electric field. In addition, the combination of the electrofluidic devices and dynamic imaging enabled observation of the flagella of Euglena cells, revealing that the swimming direction of each Euglena cell under the electric field application was determined by the initial body angle.
Collapse
Affiliation(s)
- Jian Xu
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ()
| | - Hiroyuki Kawano
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Weiwei Liu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yasutaka Hanada
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Optical Information and Technology, School of Science, Wuhan Institute of Technology, Wuhan 430073, China
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumi Midorikawa
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Sugioka
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ()
| |
Collapse
|
33
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
34
|
Sayyar S, Bjorninen M, Haimi S, Miettinen S, Gilmore K, Grijpma D, Wallace G. UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31916-31925. [PMID: 27782383 DOI: 10.1021/acsami.6b09962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical conductivity by orders of magnitude without altering the processability of the host material. The addition of graphene also enhanced mesenchymal stem cell (MSC) attachment and proliferation. When electrical stimulation via the composite material was applied, MSC viability was not compromised, and osteogenic markers were upregulated. Using additive fabrication techniques, the material was processed into multilayer 3D scaffolds which supported MSC attachment. These conducting composites with excellent processability and compatibility with MSCs are promising biomaterials to be used as versatile platforms for biomedical applications.
Collapse
Affiliation(s)
- Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Miina Bjorninen
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Suvi Haimi
- Department of Oral and Maxillofacial Sciences, Clinicum, University of Helsinki , 00100 Helsinki, Finland
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, University of Tampere , 33100 Tampere, Finland
| | - Kerry Gilmore
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Dirk Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, University of Groningen , 9600 AD Groningen, The Netherlands
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| |
Collapse
|
35
|
Tuszynski JA, Wenger C, Friesen DE, Preto J. An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1128. [PMID: 27845746 PMCID: PMC5129338 DOI: 10.3390/ijerph13111128] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Long-standing research on electric and electromagnetic field interactions with biological cells and their subcellular structures has mainly focused on the low- and high-frequency regimes. Biological effects at intermediate frequencies between 100 and 300 kHz have been recently discovered and applied to cancer cells as a therapeutic modality called Tumor Treating Fields (TTFields). TTFields are clinically applied to disrupt cell division, primarily for the treatment of glioblastoma multiforme (GBM). In this review, we provide an assessment of possible physical interactions between 100 kHz range alternating electric fields and biological cells in general and their nano-scale subcellular structures in particular. This is intended to mechanistically elucidate the observed strong disruptive effects in cancer cells. Computational models of isolated cells subject to TTFields predict that for intermediate frequencies the intracellular electric field strength significantly increases and that peak dielectrophoretic forces develop in dividing cells. These findings are in agreement with in vitro observations of TTFields' disruptive effects on cellular function. We conclude that the most likely candidates to provide a quantitative explanation of these effects are ionic condensation waves around microtubules as well as dielectrophoretic effects on the dipole moments of microtubules. A less likely possibility is the involvement of actin filaments or ion channels.
Collapse
Affiliation(s)
- Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Cornelia Wenger
- The Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal.
| | - Douglas E Friesen
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Jordane Preto
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
36
|
Wenger C, Giladi M, Bomzon Z, Salvador R, Basser PJ, Miranda PC. Modeling Tumor Treating Fields (TTFields) application in single cells during metaphase and telophase. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6892-5. [PMID: 26737877 DOI: 10.1109/embc.2015.7319977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Effects of electric fields on biological cells have been extensively studied but primarily in the low and high frequency regimes. Low frequency AC fields have been investigated for applications to nerve and muscle stimulation or to examine possible environmental effects of 60 Hz excitation. High frequency fields have been studied to understand tissue heating and tumor ablation. Biological effects at intermediate frequencies (in the 100-500 kHz regime) have only recently been discovered and are now being used clinically to disrupt cell division, primarily for the treatment of recurrent glioblastoma multiforme. In this study, we develop a computational framework to investigate the mechanisms of action of these Tumor Treating Fields (TTFields) and to understand in vitro findings observed in cell culture. Using Finite Element Method models of isolated cells we show that the intermediate frequency range is unique because it constitutes a transition region in which the intracellular electric field, shielded at low frequencies, increases significantly. We also show that the threshold at which this increase occurs depends on the dielectric properties of the cell membrane. Furthermore, our models of different stages of the cell cycle and of the morphological changes associated with cytokinesis show that peak dielectrophoretic forces develop within dividing cells exposed to TTFields. These findings are in agreement with in vitro observations, and enhance our understanding of how TTFields disrupt cellular function.
Collapse
|
37
|
Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, Sherbo S, Bomzon Z, Urman N, Itzhaki A, Cahal S, Shteingauz A, Chaudhry A, Kirson ED, Weinberg U, Palti Y. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells. Sci Rep 2015; 5:18046. [PMID: 26658786 PMCID: PMC4676010 DOI: 10.1038/srep18046] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.
Collapse
Affiliation(s)
- Moshe Giladi
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | | | - Tali Voloshin
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yaara Porat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Mijal Munster
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Roni Blat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Sherbo
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Zeev Bomzon
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Noa Urman
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aviran Itzhaki
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Cahal
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Anna Shteingauz
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aafia Chaudhry
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Eilon D Kirson
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Uri Weinberg
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yoram Palti
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| |
Collapse
|
38
|
Jaatinen L, Vörös J, Hyttinen J. Controlling cell migration and adhesion into a scaffold by external electric currents. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:3549-3552. [PMID: 26737059 DOI: 10.1109/embc.2015.7319159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fabrication of more complex tissue-engineered structures, resembling the tissues and organs in vivo requires combining more than one cell type within the same construct. This can be achieved by designing and fabricating complex scaffolds with asymmetric properties but controlled arrangement of cells within the scaffold could also be realized by using electric current. External electric currents are able to modify cell adhesion, orientation and migration and this can be used for influencing cell location within a scaffold. In this paper we studied the effect of an electric current on cell migration and adhesion into a three-dimensional scaffold through a conductive mesh.
Collapse
|
39
|
Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater 2015; 10:034006. [PMID: 26065674 PMCID: PMC4489846 DOI: 10.1088/1748-6041/10/3/034006] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heart is one of the most vital organs in the human body, which actively pumps the blood through the vascular network to supply nutrients to as well as to extract wastes from all other organs, maintaining the homeostasis of the biological system. Over the past few decades, tremendous efforts have been exerted in engineering functional cardiac tissues for heart regeneration via biomimetic approaches. More recently, progress has been made toward the transformation of knowledge obtained from cardiac tissue engineering to building physiologically relevant microfluidic human heart models (i.e. heart-on-chips) for applications in drug discovery. The advancement in stem cell technologies further provides the opportunity to create personalized in vitro models from cells derived from patients. Here, starting from heart biology, we review recent advances in engineering cardiac tissues and heart-on-a-chip platforms for their use in heart regeneration and cardiotoxic/cardiotherapeutic drug screening, and then briefly conclude with characterization techniques and personalization potential of the cardiac models.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Simone Bersini
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
40
|
Handschin C, Mortezavi A, Plock J, Eberli D. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev 2015; 82-83:168-175. [PMID: 25453267 PMCID: PMC4444527 DOI: 10.1016/j.addr.2014.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cell based muscle tissue engineering carries the potential to revert the functional loss of muscle tissue caused by disease and trauma. Although muscle tissue can be bioengineered using various precursor cells, major limitations still remain. RECENT FINDINGS In the last decades several cellular pathways playing a crucial role in muscle tissue regeneration have been described. These pathways can be influenced by external stimuli and they not only orchestrate the regenerative process after physiologic wear and muscle trauma, but also play an important part in aging and maintaining the stem cell niche, which is required to maintain long-term muscle function. SUMMARY In this review article we will highlight possible new avenues using external physical and biochemical stimulation in order to optimize muscle bioengineering.
Collapse
Affiliation(s)
| | | | | | - Daniel Eberli
- corresponding author: Daniel Eberli MD PhD, Division of Urology, University Hospital Zürich, University of Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland, Phone: +41 44 255 11 11, Fax: +41 44 255 96 20,
| |
Collapse
|
41
|
Chu HK, Huan Z, Mills JK, Yang J, Sun D. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. LAB ON A CHIP 2015; 15:920-930. [PMID: 25501324 DOI: 10.1039/c4lc01247j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.
Collapse
Affiliation(s)
- H K Chu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
42
|
Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD, Singh S, Singh AK. A droplet-to-digital (D2D) microfluidic device for single cell assays. LAB ON A CHIP 2015; 15:225-36. [PMID: 25354549 DOI: 10.1039/c4lc00794h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have developed a new hybrid droplet-to-digital microfluidic platform (D2D) that integrates droplet-in-channel microfluidics with digital microfluidics (DMF) for performing multi-step assays. This D2D platform combines the strengths of the two formats-droplets-in-channel for facile generation of droplets containing single cells, and DMF for on-demand manipulation of droplets including control of different droplet volumes (pL-μL), creation of a dilution series of ionic liquid (IL), and parallel single cell culturing and analysis for IL toxicity screening. This D2D device also allows for automated analysis that includes a feedback-controlled system for merging and splitting of droplets to add reagents, an integrated Peltier element for parallel cell culture at optimum temperature, and an impedance sensing mechanism to control the flow rate for droplet generation and preventing droplet evaporation. Droplet-in-channel is well-suited for encapsulation of single cells as it allows the careful manipulation of flow rates of aqueous phase containing cells and oil to optimize encapsulation. Once single cell containing droplets are generated, they are transferred to a DMF chip via a capillary where they are merged with droplets containing IL and cultured at 30 °C. The DMF chip, in addition to permitting cell culture and reagent (ionic liquid/salt) addition, also allows recovery of individual droplets for off-chip analysis such as further culturing and measurement of ethanol production. The D2D chip was used to evaluate the effect of IL/salt type (four types: NaOAc, NaCl, [C2mim] [OAc], [C2mim] [Cl]) and concentration (four concentrations: 0, 37.5, 75, 150 mM) on the growth kinetics and ethanol production of yeast and as expected, increasing IL concentration led to lower biomass and ethanol production. Specifically, [C2mim] [OAc] had inhibitory effects on yeast growth at concentrations 75 and 150 mM and significantly reduced their ethanol production compared to cells grown in other ILs/salts. The growth curve trends obtained by D2D matched conventional yeast culturing in microtiter wells, validating the D2D platform. We believe that our approach represents a generic platform for multi-step biochemical assays such as drug screening, digital PCR, enzyme assays, immunoassays and cell-based assays.
Collapse
Affiliation(s)
- Steve C C Shih
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ahadian S, Ostrovidov S, Hosseini V, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis 2013; 9:87-92. [PMID: 23823664 DOI: 10.4161/org.25121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.
Collapse
Affiliation(s)
- Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Martinez-Duarte R. Microfabrication technologies in dielectrophoresis applications--a review. Electrophoresis 2012; 33:3110-32. [PMID: 22941778 DOI: 10.1002/elps.201200242] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 11/12/2022]
Abstract
DEP is an established technique for particle manipulation. Although first demonstrated in the 1950s, it was not until the development of miniaturization techniques in the 1990s that DEP became a popular research field. The 1990s saw an explosion of DEP publications using microfabricated metal electrode arrays to sort a wide variety of cells. The concurrent development of microfluidics enabled devices for flow management and better understanding of the interaction between hydrodynamic and electrokinetic forces. Starting in the 2000s, alternative techniques have arisen to overcome common problems in metal-electrode DEP, such as electrode fouling, and to increase the throughput of the system. Insulator-based DEP and light-induced DEP are the most significant examples. Most recently, new 3D techniques such as carbon-electrode DEP, contactless DEP, and the use of doped PDMS have further simplified the fabrication process. The constant desire of the community to develop practical solutions has led to devices which are more user friendly, less expensive, and are capable of higher throughput. The state-of-the-art of fabricating DEP devices is critically reviewed in this work. The focus is on how different fabrication techniques can boost the development of practical DEP devices to be used in different settings such as clinical cell sorting and infection diagnosis, industrial food safety, and enrichment of particle populations for drug development.
Collapse
|
45
|
Agarwal S, Sebastian A, Forrester LM, Markx GH. Formation of embryoid bodies using dielectrophoresis. BIOMICROFLUIDICS 2012; 6:24101-2410111. [PMID: 22655013 PMCID: PMC3360717 DOI: 10.1063/1.3699969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/29/2012] [Indexed: 05/26/2023]
Abstract
Embryoid body (EB) formation forms an important step in embryonic stem cell differentiation invivo. In murine embryonic stem cell (mESC) cultures EB formation is inhibited by the inclusion of leukaemic inhibitory factor (LIF) in the medium. Assembly of mESCs into aggregates by positive dielectrophoresis (DEP) in high field regions between interdigitated oppositely castellated electrodes was found to initiate EB formation. Embryoid body formation in aggregates formed with DEP occurred at a more rapid rate-in fact faster compared to conventional methods-in medium without LIF. However, EB formation also occurred in medium in which LIF was present when the cells were aggregated with DEP. The optimum characteristic size for the electrodes for EB formation with DEP was found to be 75-100 microns; aggregates smaller than this tended to merge, whilst aggregates larger than this tended to split to form multiple EBs. Experiments with ESCs in which green fluorescent protein (GFP) production was targeted to the mesodermal gene brachyury indicated that differentiation within embryoid bodies of this size may preferentially occur along the mesoderm lineage. As hematopoietic lineages during normal development derive from mesoderm, the finding points to a possible application of DEP formed EBs in the production of blood-based products from ESCs.
Collapse
|
46
|
Matsuoka M, Akasaka T, Totsuka Y, Watari F. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Hronik-Tupaj M, Kaplan DL. A review of the responses of two- and three-dimensional engineered tissues to electric fields. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:167-80. [PMID: 22046979 DOI: 10.1089/ten.teb.2011.0244] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
48
|
Martinez-Duarte R, Renaud P, Madou MJ. A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis 2011; 32:2385-92. [DOI: 10.1002/elps.201100059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
|
49
|
Yusvana R, Headon DJ, Markx GH. Creation of arrays of cell aggregates in defined patterns for developmental biology studies using dielectrophoresis. Biotechnol Bioeng 2010; 105:945-54. [PMID: 19953679 DOI: 10.1002/bit.22615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is shown that dielectrophoresis--the movement of particles in non-uniform electric fields--can be used to create engineered skin with artificial placodes of different sizes and shapes, in different spatial patterns. Modeling of the electric field distribution and image analysis of the cell aggregates produced showed that the aggregation is highly predictable. The cells in the aggregates remain viable, and reorganization and compaction of the cells in the aggregates occurs when the artificial skin is subsequently cultured. The system developed could be of considerable use for the in vitro study of developmental processes where local variations in cell density and direct cell-cell contacts are important.
Collapse
Affiliation(s)
- Rama Yusvana
- Microstructures and Microenvironments Research Group, Department of Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK
| | | | | |
Collapse
|
50
|
Titushkin IA, Cho MR. Controlling cellular biomechanics of human mesenchymal stem cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:2090-3. [PMID: 19964578 DOI: 10.1109/iembs.2009.5333949] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The therapeutic efficacy of human mesenchymal stem cells (hMSCs) depends on proper characterization and control of their unique biological, mechanical and physicochemical properties. For example, cellular biomechanics and environmental mechanical cues have been shown to critically influence cell commitment to a particular lineage. We characterized biomechanical properties of hMSCs including cytoskeleton elasticity and plasma membrane/cytoskeleton coupling. As expected, during osteogenic differentiation of hMSCs, the cellular biomechanics is remodeled, and such remodeling precedes up-regulation of the osteogenic markers. Further, application of an electrical stimulation modulates the cellular biomechanics and therefore may be used to facilitate stem cell differentiation for stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Igor A Titushkin
- Bioengineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|