1
|
Chen A, Wang W, Mao Z, He Y, Chen S, Liu G, Su J, Feng P, Shi Y, Yan C, Lu J. Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307686. [PMID: 37737521 DOI: 10.1002/adma.202307686] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications.
Collapse
Affiliation(s)
- Annan Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Wanying Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhengyi Mao
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Yunhu He
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Shiting Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Guo Liu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Pei Feng
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Jian Lu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research, Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Łopianiak I, Kawecka A, Civelek M, Wojasiński M, Cicha I, Ciach T, Butruk-Raszeja BA. Characterization of Blow-Spun Polyurethane Scaffolds-Influence of Fiber Alignment and Fiber Diameter on Pericyte Growth. ACS Biomater Sci Eng 2024; 10:4388-4399. [PMID: 38856968 PMCID: PMC11234331 DOI: 10.1021/acsbiomaterials.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
- Doctoral School of Warsaw University of Technology, Plac Politechniki 1, Warsaw 00-661, Poland
| | - Aleksandra Kawecka
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Mehtap Civelek
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Michał Wojasiński
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Iwona Cicha
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, GluckstraBe 10a, Erlangen 91054, Germany
| | - Tomasz Ciach
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Beata A Butruk-Raszeja
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| |
Collapse
|
3
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
4
|
Jyoti Mech D, Suhail Rizvi M. Micromechanics of fibrous scaffolds and their stiffness sensing by cells. Biomed Mater 2024; 19:025035. [PMID: 38290154 DOI: 10.1088/1748-605x/ad2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Mechanical properties of the tissue engineering scaffolds are known to play a crucial role in cell response. Therefore, an understanding of the cell-scaffold interactions is of high importance. Here, we have utilized discrete fiber network model to quantitatively study the micromechanics of fibrous scaffolds with different fiber arrangements and cross-linking densities. We observe that localized forces on the scaffold result in its anisotropic deformation even for isotropic fiber arrangements. We also see an exponential decay of the displacement field with distance from the location of applied force. This nature of the decay allows us to estimate the characteristic length for force transmission in fibrous scaffolds. Furthermore, we also looked at the stiffness sensing of fibrous scaffolds by individual cells and its dependence on the cellular sensing mechanism. For this, we considered two conditions- stress-controlled, and strain-controlled application of forces by a cell. With fixed strain, we find that the stiffness sensed by a cell is proportional to the scaffold's 'macroscopic' elastic modulus. However, under fixed stress application by the cell, the stiffness sensed by the cell also depends on the cell's own stiffness. In fact, the stiffness values for the same scaffold sensed by the stiff and soft cells can differ from each other by an order of magnitude. The insights from this work will help in designing tissue engineering scaffolds for applications where mechanical stimuli are a critical factor.
Collapse
Affiliation(s)
- Dhruba Jyoti Mech
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Computational Biology Research Lab, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
5
|
Darzi S, Alappadan J, Paul K, Mazdumder P, Rosamilia A, Truong YB, Gargett C, Werkmeister J, Mukherjee S. Immunobiology of foreign body response to composite PLACL/gelatin electrospun nanofiber meshes with mesenchymal stem/stromal cells in a mouse model: Implications in pelvic floor tissue engineering and regeneration. BIOMATERIALS ADVANCES 2023; 155:213669. [PMID: 37980818 DOI: 10.1016/j.bioadv.2023.213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
Pelvic Organ Prolapse (POP) is a common gynaecological disorder where pelvic organs protrude into the vagina. While transvaginal mesh surgery using non-degradable polymers was a commonly accepted treatment for POP, it has been associated with high rates of adverse events such as mesh erosion, exposure and inflammation due to serious foreign body response and therefore banned from clinical use after regulatory mandates. This study proposes a tissue engineering strategy using uterine endometrium-derived mesenchymal stem/stromal cells (eMSC) delivered with degradable poly L-lactic acid-co-poly ε-caprolactone (PLACL) and gelatin (G) in form of a composite electrospun nanofibrous mesh (P + G nanomesh) and evaluates the immunomodulatory mechanism at the material interfaces. The study highlights the critical acute and chronic inflammatory markers along with remodelling factors that determine the mesh surgery outcome. We hypothesise that such a bioengineered construct enhances mesh integration and mitigates the Foreign Body Response (FBR) at the host interface associated with mesh complications. Our results show that eMSC-based nanomesh significantly increased 7 genes associated with ECM synthesis and cell adhesion including, Itgb1, Itgb2, Vcam1, Cd44, Cdh2, Tgfb1, Tgfbr1, 6 genes related to angiogenesis including Ang1, Ang2, Vegfa, Pdgfa, Serpin1, Cxcl12, and 5 genes associated with collagen remodelling Col1a1, Col3a1, Col6a1, Col6a2, Col4a5 at six weeks post-implantation. Our findings suggest that cell-based tissue-engineered constructs potentially mitigate the FBR response elicited by biomaterial implants. From a clinical perspective, this construct provides an alternative to current inadequacies in surgical outcomes by modulating the immune response, inducing angiogenesis and ECM synthesis during the acute and chronic phases of the FBR.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Janet Alappadan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Permita Mazdumder
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | | | - Caroline Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Jerome Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
6
|
Hess S, Kendall TJ, Pena M, Yamane K, Soong D, Adams L, Truman R, Rambukkana A. In vivo partial reprogramming by bacteria promotes adult liver organ growth without fibrosis and tumorigenesis. Cell Rep Med 2022; 3:100820. [PMID: 36384103 PMCID: PMC9729881 DOI: 10.1016/j.xcrm.2022.100820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
Ideal therapies for regenerative medicine or healthy aging require healthy organ growth and rejuvenation, but no organ-level approach is currently available. Using Mycobacterium leprae (ML) with natural partial cellular reprogramming capacity and its animal host nine-banded armadillos, we present an evolutionarily refined model of adult liver growth and regeneration. In infected armadillos, ML reprogram the entire liver and significantly increase total liver/body weight ratio by increasing healthy liver lobules, including hepatocyte proliferation and proportionate expansion of vasculature, and biliary systems. ML-infected livers are microarchitecturally and functionally normal without damage, fibrosis, or tumorigenesis. Bacteria-induced reprogramming reactivates liver progenitor/developmental/fetal genes and upregulates growth-, metabolism-, and anti-aging-associated markers with minimal change in senescence and tumorigenic genes, suggesting bacterial hijacking of homeostatic, regeneration pathways to promote de novo organogenesis. This may facilitate the unraveling of endogenous pathways that effectively and safely re-engage liver organ growth, with broad therapeutic implications including organ regeneration and rejuvenation.
Collapse
Affiliation(s)
- Samuel Hess
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, The University of Edinburgh, Edinburgh, UK
| | - Maria Pena
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Keitaro Yamane
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Daniel Soong
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Linda Adams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Richard Truman
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Anura Rambukkana
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK; Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Łopianiak I, Wojasiński M, Kuźmińska A, Trzaskowska P, Butruk-Raszeja BA. The effect of surface morphology on endothelial and smooth muscle cells growth on blow-spun fibrous scaffolds. J Biol Eng 2021; 15:27. [PMID: 34924005 PMCID: PMC8684665 DOI: 10.1186/s13036-021-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the growth of two types of blood vessel building cells: endothelial cells (ECs) and smooth muscle cells (SMCs) on surfaces with different morphology. Two types of materials, differing in morphology, were produced by the solution blow spinning technique. One-layer materials consisted of one fibrous layer with two fibrous surfaces. Bi-layer materials consisted of one fibrous-solid layer and one fibrous layer, resulting in two different surfaces. Additionally, materials with different average fiber diameters (about 200, 500, and 900 nm) were produced for each group. It has been shown that it is possible to obtain structures with a given morphology by changing the selected process parameters (working distance and polymer solution concentration). Both morphology (solid versus fibrous) and average fiber diameter (submicron fibers versus microfibers) of scaffolds influenced the growth of ECs. However, this effect was only visible after an extended period of culture (6 days). In the case of SMCs, it was proved that the best growth of SMCs is obtained for micron fibers (with an average diameter close to 900 nm) compared to the submicron fibers (with an average diameter below 900 nm).
Collapse
Affiliation(s)
- Iwona Łopianiak
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Michał Wojasiński
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Aleksandra Kuźmińska
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Paulina Trzaskowska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Beata A Butruk-Raszeja
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
11
|
Qavi I, Tan GZ. Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure. Prog Biomater 2021; 10:223-233. [PMID: 34553343 DOI: 10.1007/s40204-021-00165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022] Open
Abstract
The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.
Collapse
Affiliation(s)
- Imtiaz Qavi
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA
| | - George Z Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA.
| |
Collapse
|
12
|
Mallis P, Oikonomidis C, Dimou Z, Stavropoulos-Giokas C, Michalopoulos E, Katsimpoulas M. Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds. Tissue Eng Regen Med 2021; 18:623-640. [PMID: 34014553 PMCID: PMC8325734 DOI: 10.1007/s13770-021-00339-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society to seek alternative strategies, utilizing mostly the tissue engineering approaches. Unlike to perfusion decellularization of kidneys, we proposed alternative decellularization strategies to obtain acellular kidney scaffolds. The aim of this study was the evaluation of two different decellularization approaches for producing kidney bioscaffolds. METHODS Rat kidneys from Wistar rats, were submitted to decellularization, followed two different strategies. The decellularization solutions used in both approaches were the same and involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate and sodium dodecyl sulfate buffers for 12 h each, followed by incubation in a serum medium. Both approaches involved 3 decellularization cycles. Histological analysis, biochemical and DNA quantification were performed. Cytotoxicity assay and repopulation of acellular kidneys were also applied. RESULTS Histological, biochemical and DNA quantification confirmed that the 2nd approach had the best outcome regarding the kidney composition and cell elimination. Acellular kidneys from both approaches were successfully recellularized. CONCLUSION Based on the above data, the production of kidney scaffolds with the proposed cost- effective decellularization approaches, was efficient.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece.
| | - Charalampos Oikonomidis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| |
Collapse
|
13
|
Klak M, Łojszczyk I, Berman A, Tymicki G, Adamiok-Ostrowska A, Sierakowski M, Olkowski R, Szczepankiewicz AA, Kamiński A, Dobrzyń A, Wszoła M. Impact of Porcine Pancreas Decellularization Conditions on the Quality of Obtained dECM. Int J Mol Sci 2021; 22:ijms22137005. [PMID: 34209772 PMCID: PMC8267664 DOI: 10.3390/ijms22137005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the limited number of organ donors, 3D printing of organs is a promising technique. Tissue engineering is increasingly using xenogeneic material for this purpose. This study was aimed at assessing the safety of decellularized porcine pancreas, together with the analysis of the risk of an undesirable immune response. We tested eight variants of the decellularization process. We determined the following impacts: rinsing agents (PBS/NH3·H2O), temperature conditions (4 °C/24 °C), and the grinding method of native material (ground/cut). To assess the quality of the extracellular matrix after the completed decellularization process, analyses of the following were performed: DNA concentration, fat content, microscopic evaluation, proteolysis, material cytotoxicity, and most importantly, the Triton X-100 content. Our analyses showed that we obtained a product with an extremely low detergent content with negligible residual DNA content. The obtained results confirmed the performed histological and immuno-fluorescence staining. Moreover, the TEM microscopic analysis proved that the correct collagen structure was preserved after the decellularization process. Based on the obtained results, we chose the most favorable variant in terms of quality and biology. The method we chose is an effective and safe method that gives a chance for the development of transplant and regenerative medicine.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Ilona Łojszczyk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
| | - Andrzej Berman
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
- Polbionica Ltd., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | - Grzegorz Tymicki
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
| | - Anna Adamiok-Ostrowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Maciej Sierakowski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Radosław Olkowski
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-004 Warsaw, Poland; (R.O.); (A.K.)
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-004 Warsaw, Poland; (R.O.); (A.K.)
| | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (I.Ł.); (A.B.); (G.T.); (A.A.-O.)
- Polbionica Ltd., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
- Correspondence:
| |
Collapse
|
14
|
Wang M, Chen G, Li G, Wang B, Lei C. Creating Cartilage in Tissue-Engineered Chamber Using Platelet-Rich Plasma Without Cell Culture. Tissue Eng Part C Methods 2020; 26:375-383. [PMID: 32539669 DOI: 10.1089/ten.tec.2020.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Clinically available cartilage, such as large-volume tissue-engineered cartilage, is urgently required for various clinical applications. Tissue engineering chamber (TEC) models are a promising organ-level strategy for efficient enlargement of cells or tissues within the chamber. The conventional TEC technology is not suitable for cartilage culture, because it lacks the necessary chondrogenic growth factor, which is present in platelet-rich plasma (PRP). In this study, we added autogenous auricular cartilage fragments mixed with PRP in a TEC to obtain a large amount of engineered cartilage. Experiment: To prove the efficacy of this method, 48 New Zealand white rabbits were randomly divided into 4 groups: PRP, vascularized (Ves), PRP, PRP+Ves, and control. Auricular cartilage was harvested from the rabbits, cut into fragments (2 mm), and then injected into TECs. Cartilage constructs were harvested at week 8, and construct volumes were measured. Histological morphology, immunochemical staining, and mechanical strength were evaluated. Results: At week 8, PRP+Ves constructs developed a white, cartilage-like appearance. The volume of cartilage increased by 600% the original volume from 0.30 to 1.8 ± 0.1789 mL. Histological staining showed proliferation of edge chondrocytes in the embedded cartilage in the PRP and PRP+Ves groups. Furthermore, the cartilage constructs in the PRP+Ves group show mechanical characteristics similar to those of normal cartilage. Conclusions: Auricular cartilage fragments mixed with PRP and vascularization of the TEC showed a significantly increased cartilage tissue volume after 8 weeks of incubation in rabbits. Impact Statement Repair of defects of ear cartilage tissue has always been a huge challenge to plastic surgeons. In this article, a new method is presented to produce within 8 weeks auricular cartilage in a tissue engineering chamber without cell culture. Having such a method is a valuable step toward creating a large volume of functional cartilage tissue, which may lead to successful construction of normal auricular structure with minimal donor-site morbidity.
Collapse
Affiliation(s)
- Meishui Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Guojie Chen
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Department of Burn and Plastic Surgery, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Guanmin Li
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
15
|
Celik SBG, Dominici SR, Filby BW, Das AAK, Madden LA, Paunov VN. Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions. Biomimetics (Basel) 2019; 4:E50. [PMID: 31336810 PMCID: PMC6784416 DOI: 10.3390/biomimetics4030050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Most current methods for the preparation of tissue spheroids require complex materials, involve tedious physical steps and are generally not scalable. We report a novel alternative, which is both inexpensive and up-scalable, to produce large quantities of viable human keratinocyte cell clusters (clusteroids). The method is based on a two-phase aqueous system of incompatible polymers forming a stable water-in-water (w/w) emulsion, which enabled us to rapidly fabricate cell clusteroids from HaCaT cells. We used w/w Pickering emulsion from aqueous solutions of the polymers dextran (DEX) and polyethylene oxide (PEO) and a particle stabilizer based on whey protein (WP). The HaCaT cells clearly preferred to distribute into the DEX-rich phase and this property was utilized to encapsulate them in the water-in-water (DEX-in-PEO) emulsion drops then osmotically shrank to compress them into clusters. Prepared formulations of HaCaT keratinocyte clusteroids in alginate hydrogel were grown where the cells percolated to mimic 3D tissue. The HaCaT cell clusteroids grew faster in the alginate film compared to the individual cells formulated in the same matrix. This methodology could potentially be utilised in biomedical applications.
Collapse
Affiliation(s)
- Sevde B G Celik
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | | | - Benjamin W Filby
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Anupam A K Das
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Leigh A Madden
- Department of Biomedical Science, University of Hull, Hull HU6 7RX, UK
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
16
|
Visscher DO, Gleadall A, Buskermolen JK, Burla F, Segal J, Koenderink GH, Helder MN, van Zuijlen PPM. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. J Biomed Mater Res B Appl Biomater 2019; 107:1711-1721. [PMID: 30383916 PMCID: PMC6587956 DOI: 10.1002/jbm.b.34264] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 11/11/2022]
Abstract
The aim of this study was to design and manufacture an easily assembled cartilage implant model for auricular reconstruction. First, the printing accuracy and mechanical properties of 3D-printed poly-ε-caprolactone (PCL) scaffolds with varying porosities were determined to assess overall material properties. Next, the applicability of alginate as cell carrier for the cartilage implant model was determined. Using the optimal outcomes of both experiments (in terms of (bio)mechanical properties, cell survival, neocartilage formation, and printing accuracy), a hybrid auricular implant model was developed. PCL scaffolds with 600 μm distances between strands exhibited the best mechanical properties and most optimal printing quality for further exploration. In alginate, chondrocytes displayed high cell survival (~83% after 21 days) and produced cartilage-like matrix in vitro. Alginate beads cultured in proliferation medium exhibited slightly higher compressive moduli (6 kPa) compared to beads cultured in chondrogenic medium (3.5 kPa, p > .05). The final auricular mold could be printed with 300 μm pores and high fidelity, and the injected chondrocytes survived the culture period of 21 days. The presented hybrid auricular mold appears to be an adequate model for cartilage tissue engineering and may provide a novel approach to auricular cartilage regeneration for facial reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1711-1721, 2019.
Collapse
Affiliation(s)
- D. O. Visscher
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam University Medical Center, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - A. Gleadall
- Manufacturing and Process TechnologiesFaculty of Engineering, University of NottinghamNottinghamEnglandUK
- Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLeicestershireLE11 3TUUK
| | - J. K. Buskermolen
- Department of DermatologyAmsterdam University Medical Center, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - F. Burla
- Department of Living Matter, AMOLFAmsterdamThe Netherlands
| | - J. Segal
- Manufacturing and Process TechnologiesFaculty of Engineering, University of NottinghamNottinghamEnglandUK
| | | | - M. N. Helder
- Department of Oral and Maxillofacial Surgery/Oral PathologyAmsterdam University Medical Center, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - P. P. M. van Zuijlen
- Department of Plastic, Reconstructive and Hand SurgeryAmsterdam University Medical Center, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Department of PlasticReconstructive and Hand Surgery, Red Cross HospitalBeverwijkThe Netherlands
- Association of Dutch Burn CentersBeverwijkThe Netherlands
| |
Collapse
|
17
|
Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R. ‘Human-on-a-chip’ Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man? Altern Lab Anim 2019; 40:235-57. [DOI: 10.1177/026119291204000504] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Uwe Marx
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | | | - Silke Hoffmann
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Gerd Lindner
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Reyk Horland
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Frank Sonntag
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | - Udo Klotzbach
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | | | | | - Roland Lauster
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| |
Collapse
|
18
|
The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) bioprinting promises to change future lifestyle and the way we think about aging, the field of medicine, and the way clinicians treat ailing patients. In this brief review, we attempt to give a glimpse into how recent developments in 3D bioprinting are going to impact vast research ranging from complex and functional organ transplant to future toxicology studies and printed organ-like 3D spheroids. The techniques were successfully applied to reconstructed complex 3D functional tissue for implantation, application-based high-throughput (HTP) platforms for absorption, distribution, metabolism, and excretion (ADME) profiling to understand the cellular basis of toxicity. We also provide an overview of merits/demerits of various bioprinting techniques and the physicochemical basis of bioink for tissue engineering. We briefly discuss the importance of universal bioink technology, and of time as the fourth dimension. Some examples of bioprinted tissue are shown, followed by a brief discussion on future biomedical applications.
Collapse
|
19
|
Bourdon L, Maurin JC, Gritsch K, Brioude A, Salles V. Improvements in Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques. ACS Biomater Sci Eng 2018; 4:3927-3938. [DOI: 10.1021/acsbiomaterials.8b00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laura Bourdon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Jean-Christophe Maurin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Kerstin Gritsch
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Arnaud Brioude
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| | - Vincent Salles
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, F-69622 Villeurbanne, France
| |
Collapse
|
20
|
Skwarczynska AL, Kuberski S, Maniukiewicz W, Modrzejewska Z. Thermosensitive chitosan gels containing calcium glycerophosphate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:24-33. [PMID: 29727793 DOI: 10.1016/j.saa.2018.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In this paper the properties of thermosensitive chitosan hydrogels, formulated with chitosan chloride with β-glycerophosphate disodium salt hydrate and chitosan chloride with β-glycerophosphate disodium salt hydrate enriched with calcium glycerophosphate, are presented. The study focused on the determination of the hydrogel structure after conditioning in water. The structure of the gels was investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The crystallinity of the gel structure was determined by X-ray diffraction analysis (XRD) and the thermal effects were determined based on DSC thermograms.
Collapse
Affiliation(s)
- Agata L Skwarczynska
- Department of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 6, 35-959 Rzeszow, Poland.
| | - Slawomir Kuberski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 175, 90-924 Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zofia Modrzejewska
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
| |
Collapse
|
21
|
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 2018; 12:1432-1447. [PMID: 29701314 DOI: 10.1002/term.2676] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/13/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
22
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
23
|
Stevens S. Synthetic Biology in Cell and Organ Transplantation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029561. [PMID: 28003184 DOI: 10.1101/cshperspect.a029561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation.
Collapse
Affiliation(s)
- Sean Stevens
- Mammalian Synthetic Biology, Synthetic Genomics, Inc., La Jolla, California 92037
| |
Collapse
|
24
|
Bajek A, Gurtowska N, Olkowska J, Maj M, Kaźmierski Ł, Bodnar M, Marszałek A, Dębski R, Drewa T. Does the Harvesting Technique Affect the Properties of Adipose-Derived Stem Cells?-The Comparative Biological Characterization. J Cell Biochem 2017; 118:1097-1107. [DOI: 10.1002/jcb.25724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Natalia Gurtowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Joanna Olkowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Małgorzata Maj
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Robert Dębski
- Department of Experimental Oncology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Tomasz Drewa
- Department of Urology; Nicolaus Copernicus Hospital; Batorego Str 17-19 87-100 Toruń Poland
- Department of Urology; Nicolaus Copernicus University; Sklodowskiej Str 9 85-090 Bydgoszcz Poland
| |
Collapse
|
25
|
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D Bioprinting for Organ Regeneration. Adv Healthc Mater 2017; 6:10.1002/adhm.201601118. [PMID: 27995751 PMCID: PMC5313259 DOI: 10.1002/adhm.201601118] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Margaret Nowicki
- Department of Biomedical Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - John P. Fisher
- Department of Bioengineering University of Maryland 3238 Jeong H. Kim Engineering Building College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Medicine, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
26
|
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering. Sci Rep 2016; 6:39806. [PMID: 28008983 PMCID: PMC5180231 DOI: 10.1038/srep39806] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Collapse
|
27
|
Kamińska M, Kuberski S, Maniukiewicz W, Owczarz P, Komorowski P, Modrzejewska Z, Walkowiak B. Thermosensitive chitosan gels containing calcium glycerophosphate for bone cell culture. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516671150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article, properties of thermosensitive chitosan hydrogels prepared with the use of chitosan chloride with β-glycerophosphate disodium salt pentahydrate enriched with calcium glycerophosphate are presented and compared with chitosan hydrogels with β-glycerophosphate disodium salt pentahydrate. The study is focused on the determination of hydrogel structure and biological testing of hydrogels with human osteoblasts line Saos-2. The structure of gels was visualized by scanning electron microscopy and was investigated by infrared spectroscopy. The crystallinity of gel structure was determined by X-ray diffraction analysis and thermal effects were determined using differential scanning calorimetry thermograms.
Collapse
Affiliation(s)
- Marta Kamińska
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Sławomir Kuberski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Piotr Owczarz
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz, Poland
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Bogdan Walkowiak
- Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Lodz, Poland
| |
Collapse
|
28
|
Green DW, Watson GS, Watson JA, Lee DJ, Lee JM, Jung HS. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution. Acta Biomater 2016; 42:33-45. [PMID: 27381524 DOI: 10.1016/j.actbio.2016.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/11/2016] [Accepted: 06/21/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. STATEMENT OF SIGNIFICANCE Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine.
Collapse
Affiliation(s)
- D W Green
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea; Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, 34, Hospital Road, Hong Kong SAR
| | - G S Watson
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - J A Watson
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - D-J Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - J-M Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - H-S Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea; Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, 34, Hospital Road, Hong Kong SAR.
| |
Collapse
|
29
|
Sugiura T, Tara S, Nakayama H, Kurobe H, Yi T, Lee YU, Lee AY, Breuer CK, Shinoka T. Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft. Ann Thorac Surg 2016; 102:720-727. [PMID: 27154152 DOI: 10.1016/j.athoracsur.2016.01.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Current commercialized small-diameter arterial grafts have not shown clinical effectiveness due to their poor patency rates. The present study evaluated the feasibility of an arterial bioresorbable vascular graft, which has a porous sponge-type scaffold, as a small-diameter arterial conduit. METHODS The grafts were constructed by a 50:50 poly (1-lactic-co-ε-caprolactone) copolymer (PLCL) scaffold reinforced by a poly (1-lactic acid) (PLA) nanofiber. The pore size of the PLCL scaffold was adjusted to a small size (12.8 ± 1.85 μm) or a large size (28.5 ± 5.25 μm). We compared the difference in cellular infiltration, followed by tissue remodeling, between the groups. The grafts were implanted in 8- to 10-week-old female mice (n = 15 in each group) as infrarenal aortic interposition conduits. Animals were monitored for 8 weeks and euthanized to evaluate neotissue formation. RESULTS No aneurysmal change or graft rupture was observed in either group. Histologic assessment demonstrated favorable cell infiltration into scaffolds, neointimal formation with endothelialization, smooth muscle cell proliferation, and elastin deposition in both groups. No significant difference was observed between the groups. Immunohistochemical characterization with anti-F4/80 antibody demonstrated that macrophage infiltration into the grafts occurred in both groups. Staining for M1 and M2, which are the two major macrophage phenotypes, showed no significant difference between groups. CONCLUSIONS Our novel bioresorbable vascular grafts showed well-organized neointimal formation in the high-pressure arterial circulation environment. The large-pore scaffold did not improve cellular infiltration and neotissue formation compared with the small-pore scaffold.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Shuhei Tara
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Hidetaka Nakayama
- QOL Research Center Laboratory, Gunze Limited, Ayabe-shi, Kyoto, Japan
| | - Hirotsugu Kurobe
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Tai Yi
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Yong-Ung Lee
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Avione Y Lee
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher K Breuer
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Toshiharu Shinoka
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
30
|
Abstract
There is a chronic shortage of donor hearts. The ability to fabricate complete bioartificial hearts (BAHs) may be an alternative solution. The current study describes a method to support the fabrication and culture of BAHs. Rat hearts were isolated and subjected to a detergent based decellularization protocol to remove all cellular components, leaving behind an intact extracellular matrix. Primary cardiac cells were isolated from neonatal rat hearts, and direct cell transplantation was used to populate the acellular scaffolds. Bioartificial hearts were maintained in a custom fabrication gravity fed perfusion culture system to support media delivery. The functional performance of BAHs was assessed based on left ventricle pressure and on electrocardiogram. Furthermore, BAHs were sectioned and stained for the whole heart cardiac tissue distribution and for cardiac molecules, such as α-actinin, cardiac troponin I, collagen type I, connexin 43, von Willebrand factor, and ki67. Bioartificial hearts replicated a partial subset of properties of natural rat hearts. The current study provided a method for fabrication of a BAH and revealed challenges toward BAH fabrication with functional performance metrics of natural mammalian hearts.
Collapse
|
31
|
Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:180-9. [DOI: 10.1016/j.msec.2015.12.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
32
|
Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HVR, Canali C, Dufva M, Emnéus J, Wolff A. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:569-78. [DOI: 10.1016/j.msec.2015.06.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
|
33
|
Vascularisation in regenerative therapeutics and surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:225-38. [DOI: 10.1016/j.msec.2015.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023]
|
34
|
Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells? Biosci Rep 2015; 35:BSR20150067. [PMID: 26182374 PMCID: PMC4613685 DOI: 10.1042/bsr20150067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Statistical analysis revealed significant differences in antigen expression of 58 markers of the 242 studied. The method of liposuction has no significant impact on antigens profile in cultured ASCs (adipose-derived stem cells). Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers.
Collapse
|
35
|
Parmar N, Day RM. Appropriately sized bioengineered human external anal sphincter constructs. Surgery 2015; 157:177-8. [DOI: 10.1016/j.surg.2014.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
36
|
G N, Tan A, Gundogan B, Farhatnia Y, Nayyer L, Mahdibeiraghdar S, Rajadas J, De Coppi P, Davies AH, Seifalian AM. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 2014; 15:231-44. [PMID: 25427995 DOI: 10.1517/14712598.2015.980234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS COVERED There are four main techniques to produce tissue-engineered vascular grafts (TEVGs): i) biodegradable synthetic scaffolds; ii) gel-based scaffolds; iii) decellularised scaffolds and iv) self-assembled cell-sheet-based techniques. The first three techniques can be grouped together as scaffold-guided approach as it involves the use of a construct to function as a supportive framework for the vascular graft. The most significant advantages of TEVGs are that it possesses the ability to grow, remodel and respond to environmental factors. Cell sources for TEVGs include mature somatic cells, stem cells, adult progenitor cells and pluripotent stem cells. EXPERT OPINION TEVG holds great promise with advances in nanotechnology, coupled with important refinements in tissue engineering and decellularisation techniques. This will undoubtedly be an important milestone for cardiovascular medicine when it is eventually translated to clinical use.
Collapse
Affiliation(s)
- Natasha G
- University College London (UCL), Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, Research Department of Nanotechnology , London NW3 2QG , UK +44 207 830 2901 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hamilton N, Bullock AJ, Macneil S, Janes SM, Birchall M. Tissue engineering airway mucosa: a systematic review. Laryngoscope 2014; 124:961-8. [PMID: 24129819 DOI: 10.1002/lary.24469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVES/HYPOTHESIS Effective treatments for hollow organ stenosis, scarring, or agenesis are suboptimal or lacking. Tissue-engineered implants may provide a solution, but those performed to date are limited by poor mucosalization after transplantation. We aimed to perform a systematic review of the literature on tissue-engineered airway mucosa. Our objectives were to assess the success of this technology and its potential application to airway regenerative medicine and to determine the direction of future research to maximize its therapeutic and commercial potential. DATA SOURCES AND REVIEW METHODS A systematic review of the literature was performed searching Medline (January 1996) and Embase (January 1980) using search terms "tissue engineering" or "tissue" and "engineering" or "tissue engineered" and "mucous membrane" or "mucous" and "membrane" or "mucosa." Original studies utilizing tissue engineering to regenerate airway mucosa within the trachea or the main bronchi in animal models or human studies were included. RESULTS A total of 719 papers matched the search criteria, with 17 fulfilling the entry criteria. Of these 17, four investigated mucosal engineering in humans, with the remaining 13 studies investigating mucosal engineering in animal models. The review demonstrated how an intact mucosal layer protects against infection and suggests a role for fibroblasts in facilitating epithelial regeneration in vitro. A range of scaffold materials were used, but no single material was clearly superior to the others. CONCLUSION The review highlights gaps in the literature and recommends key directions for future research such as epithelial tracking and the role of the extracellular environment.
Collapse
|
38
|
Pereira RF, Bártolo PJ. Photocrosslinkable Materials for the Fabrication of Tissue-Engineered Constructs by Stereolithography. TISSUE ENGINEERING 2014. [DOI: 10.1007/978-94-007-7073-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Abstract
With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter) vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.
Collapse
|
40
|
Abstract
The development of vascular bioengineering has led to a variety of novel treatment strategies for patients with cardiovascular disease. Notably, combining biodegradable scaffolds with autologous cell seeding to create tissue-engineered vascular grafts (TEVG) allows for in situ formation of organized neovascular tissue and we have demonstrated the clinical viability of this technique in patients with congenital heart defects. The role of the scaffold is to provide a temporary 3-dimensional structure for cells, but applying TEVG strategy to the arterial system requires scaffolds that can also endure arterial pressure. Both biodegradable synthetic polymers and extracellular matrix-based natural materials can be used to generate arterial scaffolds that satisfy these requirements. Furthermore, the role of specific cell types in tissue remodeling is crucial and as a result many different cell sources, from matured somatic cells to stem cells, are now used in a variety of arterial TEVG techniques. However, despite great progress in the field over the past decade, clinical effectiveness of small-diameter arterial TEVG (<6mm) has remained elusive. To achieve successful translation of this complex multidisciplinary technology to the clinic, active participation of biologists, engineers, and clinicians is required.
Collapse
|
41
|
Ricci JL. Why we cannot grow a human arm. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2639-2643. [PMID: 24113888 DOI: 10.1007/s10856-013-5046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
There are several significant issues that prevent us from growing a human arm now, or within the next 10-20 years. From a tissue engineering perspective, while we can grow many of the components necessary for construction of a human arm, we can only grow them in relatively small volumes, and when scaled up to large volumes we lack the ability to develop adequate blood/nerve supply. From a genetic engineering perspective, we will probably never be able to turn on the specific genes necessary to "grow an arm" unless it is attached to a fetus and this presents enormous ethical issues related to farming of human organs and structures. Perhaps the most daunting problem facing the transplantation of a tissue engineered or transplanted arm is that of re-innervation of the structure. Since the sensory and motor nerve cells of the arm are located outside of the structure, re-innervation requires those nerves to regenerate over relatively large distances to repopulate the nervous system of the arm. This is something with which we have had little success. We can grow repair parts, but "growing an arm" presents too many insurmountable problems. The best we could possibly do with tissue engineering or genetic engineering would be the equivalent of a fetal arm and the technical problems, costs, and ethical hurdles are enormous. A more likely solution is a functional, permanent, neuroelectronically-controlled prosthesis. These are nearly a reality today.
Collapse
Affiliation(s)
- John L Ricci
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 E. 24th Street, New York, NY, USA,
| |
Collapse
|
42
|
Miklas JW, Dallabrida SM, Reis LA, Ismail N, Rupnick M, Radisic M. QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels. PLoS One 2013; 8:e72956. [PMID: 24013716 PMCID: PMC3754933 DOI: 10.1371/journal.pone.0072956] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 07/22/2013] [Indexed: 12/29/2022] Open
Abstract
Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1 were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction.
Collapse
Affiliation(s)
- Jason W. Miklas
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Susan M. Dallabrida
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lewis A. Reis
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nesreen Ismail
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Maria Rupnick
- Brigham and Women’s Hospital, Cardiovascular Division, Boston, Massachusetts, United States of America (Affiliates of Harvard Medical School, Boston, Massachusetts, United States of America)
| | - Milica Radisic
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Wang X, Ye K, Li Z, Yan C, Ding J. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 2013; 9:280-6. [PMID: 23959169 DOI: 10.4161/org.26080] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present report is an extension of our preceding publication in Biomaterials (2013) entitled "Effect of RGD nanospacing on differentiation of stem cells." Cell-adhesive peptide arginine-glycine-aspartate (RGD) was nanopatterned on a non-fouling poly(ethylene glycol) (PEG) hydrogel, and mesenchymal stem cells (MSCs) derived from rat bone marrow were cultured on the patterned surfaces at nanospacings from 37 to 124 nm. Cell adhesion parameters such as spreading areas varied with RGD nanospacings significantly. The differences were well observed at both the first and eighth days, which confirmed the persistence of this nanospacing effect on our nanopatterns. The proliferation rate also varied with the nanospacings. Osteogenic and adipogenic inductions were undertaken, and a significant influence of RGD nanospacing on stem cell differentiation was found. The effect on differentiation cannot be simply interpreted by differences in cell adhesion and proliferation. We further calculated the fractions of single, coupled, and multiple cells on those nanopatterns, and ruled out the possibility that the extent of cell-cell contact determined the different differentiation fractions. Accordingly, we reinforced the idea that RGD nanospacing might directly influence stem cell differentiation.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai, PR China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai, PR China
| | - Zhenhua Li
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai, PR China
| | - Ce Yan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai, PR China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai, PR China
| |
Collapse
|
44
|
|
45
|
Bye FJ, Bissoli J, Black L, Bullock AJ, Puwanun S, Moharamzadeh K, Reilly GC, Ryan AJ, MacNeil S. Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine. Biomater Sci 2013; 1:942-951. [DOI: 10.1039/c3bm60074b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Ofenbauer A, Sebinger DDR, Prewitz M, Gruber P, Werner C. Dewaxed ECM: A simple method for analyzing cell behaviour on decellularized extracellular matrices. J Tissue Eng Regen Med 2012; 9:1046-55. [PMID: 23172824 DOI: 10.1002/term.1658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/11/2012] [Accepted: 10/21/2012] [Indexed: 01/20/2023]
Abstract
Decellularization techniques have been used on a wide variety of tissues to create cell-seedable scaffolds for tissue engineering. Finding a suitable decellularization protocol for a certain type of tissue can be laborious, especially when organ perfusion devices are needed. In this study, we report a quick and simple method for comparing decellularization protocols combining the use of paraffin slices and two-dimensional cell cultures. We developed three decellularization protocols for adult murine kidney that yielded decellularized extracellular matrices (ECMs) with varying histological properties. The resulting paraffin-embedded ECM slices were deparaffinized and reseeded with murine embryonic stem cells (mESCs). We analyzed cell attachment four days post seeding via determination of cell numbers, and used quantitative Real-Time PCR 13 days post seeding to measure gene expression levels of two genes associated with renal development, Pax2 and Pou3f3. The three decellularization protocols produced kidney-matrices that showed clearly distinguishable results. We demonstrated that formerly paraffin-embedded decellularized ECMs can effectively influence differentiation of stem cells. This method can be used to identify optimal decellularization protocols for recellularization of three-dimensional tissue-scaffolds with embryonic stem cells and other tissue-specific cell types.
Collapse
Affiliation(s)
- Andreas Ofenbauer
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - David Daniel Raphael Sebinger
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Marina Prewitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | | | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
47
|
Lee JY, Piao S, Kim IG, Byun SS, Hwang JH, Hong SH, Kim SW, Hwang TK, Lee JY. Effect of human muscle-derived stem cells on cryoinjured mouse bladder contractility. Urology 2012; 80:224.e7-11. [PMID: 22748891 DOI: 10.1016/j.urology.2012.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/29/2012] [Accepted: 03/29/2012] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the effect of human muscle-derived stem cells (hMDSCs) on ameliorating impaired detrusor contractility in a cryoinjured bladder murine model. METHODS The hMDSCs were isolated and cultured by modified preplate technique, and only CD34-positive hMDSCs were extracted by Mini-MACS kits. Isolated hMDSCs were prelabeled with PKH26 and injected into the cryoinjured bladder to observe the pattern and characteristics. The nude mice were subdivided into three groups: normal group (N), cryoinjury bladder group with saline injection (C), and hMDSCs injection group after cryoinjury (M). At 2 weeks after injecting hMDSCs, we compared the contractility of bladder muscle strip stimulated by electrical field stimulation (EFS), acetylcholine (Ach.), and adenosine triphosphate (ATP), and the bladder smooth muscle tissue was examined by immunohistochemistry. RESULTS The contractile powers of bladder muscle strip in the C group were more decreased than the N group after EFS, Ach, and ATP treatment (P < .05). The bladder contractility of the M group was more increased than in the C group (P < .05), but was lower than the N group after EFS and Ach treatment. However, there was no significant difference of contractile power between the C and M groups after ATP stimulation. In immunohistochemical staining, the thickness of the bladder smooth muscle layer in the M group was significantly increased compared with the C group, and PKH26-labeled implanted cells were positive for smooth muscle cell differentiation marker (α-SMA) in the injected region. CONCLUSION hMDSCs injection increased cholinergic bladder contractile power but not the purinergic component of bladder contraction after cryoinjury.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Urology, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
de Mel A, Seifalian AM, Birchall MA. Orchestrating cell/material interactions for tissue engineering of surgical implants. Macromol Biosci 2012; 12:1010-21. [PMID: 22777725 DOI: 10.1002/mabi.201200039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/25/2012] [Indexed: 12/28/2022]
Abstract
Research groups are currently recognising a critical clinical need for innovative approaches to organ failure and agenesis. Allografting, autologous reconstruction and prosthetics are hampered with severe limitations. Pertinently, readily available 'laboratory-grown' organs and implants are becoming a reality. Tissue engineering constructs vary in their design complexity depending on the specific structural and functional demands. Expeditious methods on integrating autologous stem cells onto nanoarchitectured 3D nanocomposites, are being transferred from lab to patients with a number of successful first-in-man experiences. Despite the need for a complete understanding of cell/material interactions tissue engineering is offering a plethora of exciting possibilities in regenerative medicine.
Collapse
Affiliation(s)
- Achala de Mel
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | | | | |
Collapse
|
50
|
Abstract
Stem cell research plays an important role in orthopedic regenerative medicine today. Current literature provides us with promising results from animal research in the fields of bone, tendon, and cartilage repair. While early clinical results are already published for bone and cartilage repair, the data about tendon repair is limited to animal studies. The success of these techniques remains inconsistent in all three mentioned areas. This may be due to different application techniques varying from simple mesenchymal stem cell injection up to complex tissue engineering. However, the ideal carrier for the stem cells still remains controversial. This paper aims to provide a better understanding of current basic research and clinical data concerning stem cell research in bone, tendon, and cartilage repair. Furthermore, a focus is set on different stem cell application techniques in tendon reconstruction, cartilage repair, and filling of bone defects.
Collapse
|