1
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
2
|
Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p. PLoS One 2021; 16:e0247285. [PMID: 34019539 PMCID: PMC8139511 DOI: 10.1371/journal.pone.0247285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.
Collapse
|
3
|
Blodgett KN, Fischer JL, Lee J, Choi SH, Zwier TS. Conformation-Specific Spectroscopy of Asparagine-Containing Peptides: Influence of Single and Adjacent Asn Residues on Inherent Conformational Preferences. J Phys Chem A 2018; 122:8762-8775. [PMID: 30343572 DOI: 10.1021/acs.jpca.8b08418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Karl N. Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Joshua L. Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Jaeyeon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Soo Hyuk Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
4
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
5
|
Simpson-Lavy K, Xu T, Johnston M, Kupiec M. The Std1 Activator of the Snf1/AMPK Kinase Controls Glucose Response in Yeast by a Regulated Protein Aggregation. Mol Cell 2017; 68:1120-1133.e3. [PMID: 29249654 DOI: 10.1016/j.molcel.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The ability to respond to available nutrients is critical for all living cells. The AMP-activated protein kinase (SNF1 in yeast) is a central regulator of metabolism that is activated when energy is depleted. We found that SNF1 activity in the nucleus is regulated by controlled relocalization of the SNF1 activator Std1 into puncta. This process is regulated by glucose through the activity of the previously uncharacterized protein kinase Vhs1 and its substrate Sip5, a protein of hitherto unknown function. Phosphorylation of Sip5 prevents its association with Std1 and triggers Std1 accretion. Reversible Std1 puncta formation occurs under non-stressful, ambient conditions, creating non-amyloid inclusion bodies at the nuclear-vacuolar junction, and it utilizes cellular chaperones similarly to the aggregation of toxic or misfolded proteins such as those associated with Parkinson's, Alzheimer's, and CJD diseases. Our results reveal a controlled, non-pathological, physiological role of protein aggregation in the regulation of a major metabolic cellular pathway.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tianchang Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mark Johnston
- Dept of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Martin Kupiec
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
6
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
7
|
Analysis of Small Critical Regions of Swi1 Conferring Prion Formation, Maintenance, and Transmission. Mol Cell Biol 2017; 37:MCB.00206-17. [PMID: 28716950 DOI: 10.1128/mcb.00206-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae contains several prion elements, which are epigenetically transmitted as self-perpetuating protein conformations. One such prion is [SWI+ ], whose protein determinant is Swi1, a subunit of the SWI/SNF chromatin-remodeling complex. We previously reported that [SWI+ ] formation results in a partial loss-of-function phenotype of poor growth in nonglucose medium and abolishment of multicellular features. We also showed that the first 38 amino acids of Swi1 propagated [SWI+]. We show here that a region as small as the first 32 amino acids of Swi1 (Swi11-32) can decorate [SWI+] aggregation and stably maintain and transmit [SWI+] independently of full-length Swi1. Regions smaller than Swi11-32 are either incapable of aggregation or unstably propagate [SWI+]. When fused to Sup35MC, the [PSI+ ] determinant lacking its PrD, Swi11-31 and Swi11-32 can act as transferable prion domains (PrDs). The resulting fusions give rise to a novel chimeric prion, [SPS+], exhibiting [PSI+]-like nonsense suppression. Thus, an NH2-terminal region of ∼30 amino acids of Swi1 contains all the necessary information for in vivo prion formation, maintenance, and transmission. This PrD is unique in size and composition: glutamine free, asparagine rich, and the smallest defined to date. Our findings broaden our understanding of what features allow a protein region to serve as a PrD.
Collapse
|
8
|
Antonets KS, Nizhnikov AA. Amyloids and prions in plants: Facts and perspectives. Prion 2017; 11:300-312. [PMID: 28960135 PMCID: PMC5639834 DOI: 10.1080/19336896.2017.1377875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.
Collapse
Affiliation(s)
- K. S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| | - A. A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Antonets KS, Sargsyan HM, Nizhnikov AA. A Glutamine/Asparagine-Rich Fragment of Gln3, but not the Full-Length Protein, Aggregates in Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2017; 81:407-13. [PMID: 27293098 DOI: 10.1134/s0006297916040118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amino acid sequence of protein Gln3 in yeast Saccharomyces cerevisiae has a region enriched with Gln (Q) and Asn (N) residues. In this study, we analyzed the effects of overexpression of Gln3 and its Q/N-rich fragment fused with yellow fluorescent protein (YFP). Being overexpressed, full-length Gln3-YFP does not form aggregates, inhibits vegetative growth, and demonstrates nuclear localization, while the Q/N-rich fragment (Gln3QN) fused with YFP forms aggregates that do not colocalize with the nucleus and do not affect growth of the cells. Although detergent-resistant aggregates of Gln3QN are formed in the absence of yeast prions, the aggregation of Gln3QN significantly increases in the presence of [PIN(+)] prion, while in the presence of two prions, [PSI(+)] and [PIN(+)], the percentage of cells with Gln3QN aggregates is significantly lower than in the strain bearing only [PIN(+)]. Data on colocalization demonstrate that this effect is mediated by interaction between Gln3QN aggregates and [PSI(+)] and [PIN(+)] prions.
Collapse
Affiliation(s)
- K S Antonets
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|
10
|
Zhang Y, Man VH, Roland C, Sagui C. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins. ACS Chem Neurosci 2016; 7:576-87. [PMID: 26911543 DOI: 10.1021/acschemneuro.5b00337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sequences rich in glutamine (Q) and asparagine (N) are intrinsically disordered in monomeric form, but can aggregate into highly ordered amyloids, as seen in Q/N-rich prion domains (PrDs). Amyloids are fibrillar protein aggregates rich in β-sheet structures that can self-propagate through protein-conformational chain reactions. Here, we present a comprehensive theoretical study of N/Q-rich peptides, including sequences found in the yeast Sup35 PrD, in parallel and antiparallel β-sheet aggregates, and probe via fully atomistic molecular dynamics simulations all their possible steric-zipper interfaces in order to determine their protofibril structure and their relative stability. Our results show that polyglutamine aggregates are more stable than polyasparagine aggregates. Enthalpic contributions to the free energy favor the formation of polyQ protofibrils, while entropic contributions favor the formation of polyN protofibrils. The considerably larger phase space that disordered polyQ must sample on its way to aggregation probably is at the root of the associated slower kinetics observed experimentally. When other amino acids are present, such as in the Sup35 PrD, their shorter side chains favor steric-zipper formation for N but not Q, as they preclude the in-register association of the long Q side chains.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Physics, and
Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Viet Hoang Man
- Department of Physics, and
Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Christopher Roland
- Department of Physics, and
Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Celeste Sagui
- Department of Physics, and
Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Lu X, Murphy RM. Asparagine Repeat Peptides: Aggregation Kinetics and Comparison with Glutamine Repeats. Biochemistry 2015. [PMID: 26204228 DOI: 10.1021/acs.biochem.5b00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acid repeat runs are common occurrences in eukaryotic proteins, with glutamine (Q) and asparagine (N) as particularly frequent repeats. Abnormal expansion of Q-repeat domains causes at least nine neurodegenerative disorders, most likely because expansion leads to protein misfolding, aggregation, and toxicity. The linkage between Q-repeats and disease has motivated several investigations into the mechanism of aggregation and the role of Q-repeat length in aggregation. Curiously, glutamine repeats are common in vertebrates, whereas N-repeats are virtually absent in vertebrates, but common in invertebrates. One hypothesis for the lack of N-repeats in vertebrates is biophysical; that is, there is strong selective pressure in higher organisms against aggregation-prone proteins. If true, then asparagine and glutamine repeats must differ substantially in their aggregation properties despite their chemical similarities. In this work, aggregation of peptides with asparagine repeats of variable length (12-24) were characterized and compared to that of similar peptides with glutamine repeats. As with glutamine, aggregation of N-repeat peptides was strongly length-dependent. Replacement of glutamine with asparagine caused a subtle shift in the conformation of the monomer, which strongly affected the rate of aggregation. Specifically, N-repeat peptides adopted β-turn structural elements, leading to faster self-assembly into globular oligomers and much more rapid conversion into fibrillar aggregates, compared to Q-repeat peptides. These biophysical differences may account for the differing biological roles of N- versus Q-repeat domains.
Collapse
Affiliation(s)
- Xiaomeng Lu
- †Biophysics Program and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Regina M Murphy
- †Biophysics Program and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Abstract
A significant body of evidence shows that polyglutamine (polyQ) tracts are important for various biological functions. The characteristic polymorphism of polyQ length is thought to play an important role in the adaptation of organisms to their environment. However, proteins with expanded polyQ are prone to form amyloids, which cause diseases in humans and animals and toxicity in yeast. Saccharomyces cerevisiae contain at least 8 proteins which can form heritable amyloids, called prions, and most of them are proteins with glutamine- and asparagine-enriched domains. Yeast prion amyloids are susceptible to fragmentation by the protein disaggregase Hsp104, which allows them to propagate and be transmitted to daughter cells during cell divisions. We have previously shown that interspersion of polyQ domains with some non-glutamine residues stimulates fragmentation of polyQ amyloids in yeast and that yeast prion domains are often enriched in one of these residues. These findings indicate that yeast prion domains may have derived from polyQ tracts via accumulation and amplification of mutations. The same hypothesis may be applied to polyasparagine (polyN) tracts, since they display similar properties to polyQ, such as length polymorphism, amyloid formation and toxicity. We propose that mutations in polyQ/N may be favored by natural selection thus making prion domains likely by-products of the evolution of polyQ/N.
Collapse
|
13
|
Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 2013; 3:1310. [PMID: 23250440 PMCID: PMC3639100 DOI: 10.1038/ncomms2306] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/15/2012] [Indexed: 11/08/2022] Open
Abstract
One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. Here we report that a Plasmodium Asn repeat-containing protein (PFI1155w) formed aggregates in mammalian cells at febrile temperatures, as did a yeast Asn/Gln-rich protein (Sup35). Co-expression of the cytoplasmic P. falciparum heat shock protein 110 (PfHsp110c) prevented aggregation. Human or yeast orthologs were much less effective. All-Asn and all-Gln versions of Sup35 were protected from aggregation by PfHsp110c, suggesting that this chaperone is not limited to handling runs of asparagine. PfHsp110c gene-knockout parasites were not viable and conditional knockdown parasites died slowly in the absence of protein-stabilizing ligand. When exposed to brief heat shock, these knockdowns were unable to prevent aggregation of PFI1155w or Sup35 and died rapidly. We conclude that PfHsp110c protects the parasite from harmful effects of its asparagine repeat-rich proteome during febrile episodes.
Collapse
|
14
|
Jung C, Kim YK, Oh NI, Shim JS, Seo JS, Choi YD, Nahm BH, Cheong JJ. Quadruple 9-mer-based protein binding microarray analysis confirms AACnG as the consensus nucleotide sequence sufficient for the specific binding of AtMYB44. Mol Cells 2012; 34:531-7. [PMID: 23161171 PMCID: PMC3887824 DOI: 10.1007/s10059-012-0209-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
AtMYB44 is a member of the R2R3 MYB subgroup 22 transcription factors and regulates diverse cellular responses in Arabidopsis thaliana. We performed quadruple 9-merbased protein binding microarray (PBM) analysis, which revealed that full-size AtMYB44 recognized and bound to the consensus sequence AACnG, where n represents A, G, C or T. The consensus sequence was confirmed by electrophoretic mobility shift assay (EMSA) with a truncated AtMYB44 protein containing the N-terminal side R2R3 domain. This result indicates that the R2R3 domain alone is sufficient to exhibit AtMYB44 binding specificity. The sequence AACnG is the type I binding site for MYB transcription factors, including all members of the subgroup 22. EMSA showed that the R2R3 domain protein binds in vitro to promoters of randomly selected Arabidopsis genes that contain the consensus binding sequence. This implies that AtMYB44 binds to any promoter region that contains the consensus sequence, without determining their functional activity or specificity. The C-terminal side transcriptional activation domain of AtMYB44 contains an asparagine-rich fragment, NINNTTSSRHNHNN (aa 215-228), which, among the members of subgroup 22, is unique to AtMYB44. A transcriptional activation assay in yeast showed that this fragment is included in a region (aa 200-240) critical for the ability of AtMYB44 to function as a transcriptional activator. We hypothesize that the C-terminal side of the protein, but not the N-terminal side of the R2R3 domain, contributes to the functional activity and specificity of AtMYB44 through interactions with other regulators generated by each of a variety of stimuli.
Collapse
Affiliation(s)
- Choonkyun Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921,
Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene Biotech Inc., Yongin 449-728,
Korea
| | - Nam Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921,
Korea
| | - Jae Sung Shim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
| | - Jun Sung Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
| | - Yang Do Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921,
Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921,
Korea
| | - Baek Hie Nahm
- Genomics Genetics Institute, GreenGene Biotech Inc., Yongin 449-728,
Korea
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728,
Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|
15
|
Unterer B, Becker CM, Villmann C. The importance of TM3-4 loop subdomains for functional reconstitution of glycine receptors by independent domains. J Biol Chem 2012; 287:39205-15. [PMID: 22995908 DOI: 10.1074/jbc.m112.376053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357-418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357-418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357-418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening.
Collapse
Affiliation(s)
- Bea Unterer
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nuernberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | |
Collapse
|
16
|
Kochneva-Pervukhova NV, Alexandrov AI, Ter-Avanesyan MD. Amyloid-mediated sequestration of essential proteins contributes to mutant huntingtin toxicity in yeast. PLoS One 2012; 7:e29832. [PMID: 22253794 PMCID: PMC3256205 DOI: 10.1371/journal.pone.0029832] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
Background Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. Principal Findings Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. Conclusions The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.
Collapse
|
17
|
Abstract
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
18
|
Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452-9. [PMID: 21397710 PMCID: PMC3155609 DOI: 10.1016/j.semcdb.2011.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we summarize the characteristics of each prion element, and discuss their potential functional roles in yeast biology.
Collapse
Affiliation(s)
- Emily T. Crow
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Searle 5-474 MC S205, 320 East Superior Street, Chicago, IL 60611, USA
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Searle 5-474 MC S205, 320 East Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
19
|
A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 2011; 31:3436-44. [PMID: 21670156 DOI: 10.1128/mcb.05338-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast prions are self-propagating protein conformations that transmit heritable phenotypes in an epigenetic manner. The recently identified yeast prion [SWI(+)] is an alternative conformation of Swi1, a component of the evolutionarily conserved SWI/SNF chromatin-remodeling complex. Formation of the [SWI(+)] prion results in a partial loss-of-function phenotype for Swi1. The amino-terminal region of Swi1 is dispensable for its normal function but is required for [SWI(+)] formation and propagation; however, the precise prion domain (PrD) of Swi1 has not been elucidated. Here, we define the minimal Swi1 PrD as the first 37 amino acids of the protein. This region is extremely asparagine rich but, unexpectedly, contains no glutamine residues. This unusually small prion domain is sufficient for aggregation, propagation, and transmission of the [SWI(+)] prion. Because of its unusual size and composition, the Swi1 prion domain defined here has important implications for describing and identifying novel prions.
Collapse
|
20
|
Fushimi K, Long C, Jayaram N, Chen X, Li L, Wu JY. Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy. Protein Cell 2011; 2:141-9. [PMID: 21327870 PMCID: PMC3093303 DOI: 10.1007/s13238-011-1014-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.
Collapse
Affiliation(s)
- Kazuo Fushimi
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| | - Charles Long
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| | - Neha Jayaram
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| | - Jane Y. Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611 USA
| |
Collapse
|
21
|
Abstract
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations.
Collapse
|
22
|
Toombs JA, McCarty BR, Ross ED. Compositional determinants of prion formation in yeast. Mol Cell Biol 2010; 30:319-32. [PMID: 19884345 PMCID: PMC2798286 DOI: 10.1128/mcb.01140-09] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 11/20/2022] Open
Abstract
Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into beta-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains.
Collapse
Affiliation(s)
- James A. Toombs
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Blake R. McCarty
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|