1
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
3
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
4
|
Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2641-52. [PMID: 26435412 DOI: 10.1016/j.ajpath.2015.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury.
Collapse
|
5
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
6
|
Harbi D, Harrison PM. Interaction networks of prion, prionogenic and prion-like proteins in budding yeast, and their role in gene regulation. PLoS One 2014; 9:e100615. [PMID: 24972093 PMCID: PMC4074094 DOI: 10.1371/journal.pone.0100615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are transmissible, propagating alternative states of proteins. Prions in budding yeast propagate heritable phenotypes and can function in large-scale gene regulation, or in some cases occur as diseases of yeast. Other ‘prionogenic’ proteins are likely prions that have been determined experimentally to form amyloid in vivo, and to have prion-like domains that are able to propagate heritable states. Furthermore, there are over 300 additional ‘prion-like’ yeast proteins that have similar amino-acid composition to prions (primarily a bias for asparagines and glutamines). Here, we examine the protein functional and interaction networks that involve prion, prionogenic and prion-like proteins. Set against a marked overall preference for N/Q-rich prion-like proteins not to interact with each other, we observe a significant tendency of prion/prionogenic proteins to interact with other, N/Q-rich prion-like proteins. This tendency is mostly due to a small number of networks involving the proteins NUP100p, LSM4p and PUB1p. In general, different data analyses of functional and interaction networks converge to indicate a strong linkage of prionogenic and prion-like proteins, to stress-granule assembly and related biological processes. These results further elucidate how prions may impact gene regulation, and reveal a broader horizon for the functional relevance of N/Q-rich prion-like domains.
Collapse
Affiliation(s)
- Djamel Harbi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Paul M. Harrison
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|