1
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded chemical Imaging Identifies Amyloid Plaque Age Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617019. [PMID: 39416086 PMCID: PMC11482761 DOI: 10.1101/2024.10.08.617019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is of critical importance to our understanding of Alzheimer's disease (AD) pathology to determine how key pathological factors are interconnected and implicated in nerve cell death, clinical symptoms, and disease progression. The formation of extracellular beta-amyloid (Aβ) plaques is the major pathological hallmark of AD and Aβ has been suggested to be a critical inducer of AD, driving disease pathogenesis. Exactly how Aβ plaque formation begins and how ongoing plaque deposition proceeds and initiates subsequent neurotoxic mechanisms is not well understood. The primary aim of our research is to elucidate the biochemical processes underlying early Aβ plaque formation in brain tissue. We recently introduced a chemical imaging paradigm based on mass spectrometry imaging (MSI) and metabolic isotope labelling to follow stable isotope labelling kinetics (iSILK) in vivo to track the in vivo build-up and deposition of Aβ. Herein, knock-in Aβ mouse models (App NL-F ) that develop Aβ pathology gradually are metabolically labeled with stable isotopes. This chemical imaging approach timestamps amyloid plaques during the period of initial deposition allowing the fate of aggregating Aβ species from before and during the earliest events of plaque pathology through plaque maturation to be tracked. To identify the molecular and cellular response to plaque maturation, we integrated iSILK with single plaque transcriptomics performed on adjacent tissue sections. This enabled changes in gene expression to be tracked as a function of plaque age (as encoded in the Aβ peptide isotopologue pattern) distinct from changes due to the chronological age or pathological severity. This approach identified that plaque age correlates negatively with gene expression patterns associated with synaptic function as early as in 10-month-old animals but persists into 18 months. Finally, we integrated hyperspectral confocal microscopy into our multiomic approach to image amyloid structural isomers, revealing a positive correlation between plaque age and amyloid structural maturity. This analysis identified three categories of plaques, each with a distinct impact on the surrounding microenvironment. Here, we identified that older, more compact plaques were associated with the most significant synapse loss and toxicity. These data show how isotope-encoded MS imaging can be used to delineate Aβ toxicity dynamics in vivo. Moreover, we show for the first time a functional integration of dynamic MSI, structural plaque imaging and whole genome-wide spatial transcriptomics at the single plaque level. This multiomic approach offers an unprecedented combination of temporal and spatial resolution enabling a description of the earliest events of precipitating amyloid pathology and how Aβ modulates synaptotoxic mechanisms.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Chatterjee S, Salimi A, Lee JY. Unraveling the Histidine Tautomerism Effect on the Initial Stages of Prion Misfolding: New Insights from a Computational Perspective. ACS Chem Neurosci 2021; 12:3203-3213. [PMID: 34382391 DOI: 10.1021/acschemneuro.1c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aggregation and structural conversion of normal prion peptide (PrPC) into the pathogenic scrapie form (PrPSc), which can act as a seed to enhance prion amyloid fiber formation, is believed to be a crucial event in prionopathies. Previous research suggests that the prion monomer may play an important role in oligomer generation during disease pathogenesis. In the present study, extensive replica-exchange molecular dynamics (REMD) simulations were conducted to explore the conformational characteristics of the huPrP (125-160) monomer under the histidine tautomerism effect. Investigating the structural characteristics and fibrilization process is challenging because two histidine tautomers [Nε2-H (ε) and Nδ1-H (δ)] can occur in the open neutral state. Molecular dynamics (MD) simulation outcomes have shown that the toxic εδ and δδ isomer (containing several and broader local minima) had the highest α-helix structures, with contents of 21.11% and 21.01%, respectively, and may have a strong influence on the organizational behavior of a monomeric prion. The amino acids aspartate 20 (D20)-asparagine 29 (N29) and isoleucine 15 (I15)-histidine 16 (H16), D20-arginine 27 (R27) as well as N29 formed α-helix with the highest probabilities in the δδ and εδ isomer, accordingly. On the basis of our findings, we propose the histidine tautomerization hypothesis as a new prion accumulation mechanism, which may exist to induce the formation of prion accumulates. Overall, our tautomerism hypothesis constitutes a promising perspective for enhancing understanding of prion disease pathobiology and may help in the design of a good inhibitor.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
4
|
Prabhu MPT, Sarkar N. Quantum Dots as Promising Theranostic Tools Against Amyloidosis: A Review. Protein Pept Lett 2019; 26:555-563. [PMID: 30543158 DOI: 10.2174/0929866526666181212113855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023]
Abstract
Amyloids are highly ordered beta sheet rich stable protein aggregates, which have been found to play a significant role in the onset of several degenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, Type II diabetes mellitus and so on. Aggregation of proteins leading to amyloid fibril formation via intermediate(s), is thought to be a nucleated condensation polymerization process associated with many pathological conditions. There has been extensive research to identify inhibitors of these disease oriented aggregation processes. In recent times, quantum dots, with their unique physico-chemical properties have grabbed the attention of scientific community due to its applications in medical sciences. Quantum dots are nano-particles usually made of semiconductor materials which emit fluorescence upon radiation. The wavelength of fluorescence emission varies with changes in size of quantum dots. Several studies have reported significant inhibitory effects of these quantum dots towards amyloidogenesis, thereby presenting themselves as promising candidates against amyloidosis. Further, studies have also revealed amyloid detection capacity of quantum dots with sensitivity and specificity better than conventional probes. In the current review, we will discuss the various effects of quantum dots on protein aggregation pathways, their mechanism of actions and their potentials as effective therapeutics against amyloidosis.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
5
|
Mishra R, Elgland M, Begum A, Fyrner T, Konradsson P, Nyström S, Hammarström P. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:909-921. [PMID: 30935958 DOI: 10.1016/j.bbapap.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Misfolding and aggregation of the human prion protein (PrP) cause neurodegenerative transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease. Mature native PrP is composed of 209 residues and is folded into a C-terminal globular domain (residues 125-209) comprising a small two-stranded β-sheet and three α-helices. The N-terminal domain (residues 23-124) is intrinsically disordered. Expression of truncated PrP (residues 90-231) is sufficient to cause prion disease and residues 90/100-231 is comprising the amyloid-like fibril core of misfolded infectious PrP. During PrP fibril formation under native conditions in vitro, the disordered N-terminal domain slows down fibril formation likely due to a mechanism of initial aggregation forming morphologically disordered aggregates. The morphological disordered aggregate is a transient phase. Nucleation of fibrils occurs from this initial aggregate. The aggregate phase is largely circumvented by seeding with preformed PrP fibrils. In vivo PrP is N-glycosylated at positions Asn181 and Asn197. Little is known about the importance of these positions and their glycans for PrP stability, aggregation and fibril formation. We have in this study taken a step towards that goal by mutating residues 181 and 197 for cysteines to study the positional impact on these processes. We have further by organic synthetic chemistry and chemical modification generated synthetic glycosylations in these positions. Our data shows that residue 181 when mutated to a cysteine is a key residue for self-chaperoning, rendering a trap in the initial aggregate preventing conformational changes towards amyloid fibril formation. Position 197 is less involved in the aggregate trapping and is more geared towards β-sheet structure conversion within amyloid fibrils. As expected, synthetic glycosylated 197 is less affected towards fibril formation compared to glycosylated 181. Our data are rather compatible with the parallel in-register intermolecular β-sheet model structure of the PrP90-231 fibril and sheds light on the misfolding transitions of PrP in vitro. We hypothesize that glycosylation of position 181 is a key site for prion strain differentiation in vivo.
Collapse
Affiliation(s)
- Rajesh Mishra
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mathias Elgland
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Afshan Begum
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timmy Fyrner
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Konradsson
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
6
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
7
|
Sandberg A, Nyström S. Purification and Fibrillation of Recombinant Human Amyloid-β, Prion Protein, and Tau Under Native Conditions. Methods Mol Biol 2018; 1779:147-166. [PMID: 29886532 DOI: 10.1007/978-1-4939-7816-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein misfolding, aggregation, and amyloid formation is involved in a large number of diseases. Recombinantly expressed proteins to study the amyloid fibril formation process are important for mechanistic studies. We here report protocols for production, purification, and fibrillation of three different proteins commonly found in cerebral amyloid; Aβ and Tau found in Alzheimer's disease, Chronic traumatic brain injury, Corticobasal degeneration, and Progressive Supranuclear Palsy and human prion protein found in Creutzfeldt-Jakob's disease. The three protocols have in common that the protein is in a pH-neutral phosphate saline buffer during fibrillation to mimic their endogenous near physiological environment.
Collapse
Affiliation(s)
- Alexander Sandberg
- Chemistry, IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Chemistry, IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1832] [Impact Index Per Article: 229.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Abstract
Misfolding and aggregation of prion protein are related to several neurodegenerative diseases in humans such as Creutzfeldt-Jakob disease, fatal familial insomnia, and Gerstmann-Straussler-Scheinker disease. A growing number of applications in the prion field including assays for detection of PrPSc and methods for production of PrPSc de novo require recombinant prion protein (PrP) of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian prion protein. This protocol has been proved to yield PrP of extremely high purity that lacks PrP adducts, oxidative modifications, or truncation, which is typically generated as a result of spontaneous oxidation or degradation. We also describe methods for preparation of amyloid fibrils from recombinant PrP in vitro. Recombinant PrP fibrils can be used as a noninfectious synthetic surrogate of PrPSc for development of prion diagnostics including generation of PrPSc-specific antibody.
Collapse
|
10
|
Sulatskaya AI, Kuznetsova IM, Belousov MV, Bondarev SA, Zhouravleva GA, Turoverov KK. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS One 2016; 11:e0156314. [PMID: 27228180 PMCID: PMC4882037 DOI: 10.1371/journal.pone.0156314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in each mode were determined. The fluorescence quantum yield of the dye bound in each mode was determined via a spectrofluorimetric study of the same solutions in which the recorded fluorescence intensity was corrected for the primary inner filter effect. As previously predicted, the existence of one of the detected binding modes may be due to the incorporation of the dye into the grooves along the fiber axis perpendicular to the β-sheets of the fibrils. It was assumed that the second type of binding with higher affinity may be due to the existence of ThT binding sites that are localized to areas where amyloid fibrils are clustered.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Irina M. Kuznetsova
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin K. Turoverov
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, St. Petersburg, Polytechnicheskaya 29, 195251, Russia
- * E-mail:
| |
Collapse
|
11
|
Herrmann US, Schütz AK, Shirani H, Huang D, Saban D, Nuvolone M, Li B, Ballmer B, Åslund AKO, Mason JJ, Rushing E, Budka H, Nyström S, Hammarström P, Böckmann A, Caflisch A, Meier BH, Nilsson KPR, Hornemann S, Aguzzi A. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med 2015; 7:299ra123. [DOI: 10.1126/scitranslmed.aab1923] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions. Sci Rep 2015; 5:10101. [PMID: 25960067 PMCID: PMC4650755 DOI: 10.1038/srep10101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.
Collapse
|
13
|
Nyström S, Hammarström P. Is the prevalent human prion protein 129M/V mutation a living fossil from a Paleolithic panzootic superprion pandemic? Prion 2015; 8:2-10. [PMID: 24398570 PMCID: PMC7030913 DOI: 10.4161/pri.27601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prion diseases are consistently associated with prion protein (PrP(C)) misfolding rendering a cascade of auto-catalytic self-perpetuation of misfolded PrP in an afflicted individual. The molecular process is intriguingly similar to all known amyloid diseases both local and systemic. The prion disease is also infectious by the transfer of misfolded PrP from one individual to the next. Transmissibility is surprisingly efficient in prion diseases and given the rapid disease progression following initial symptoms the prionoses stand out from other amyloidoses, which all may be transmissible under certain circumstances. The nature of the infectious prion as well as the genotype of the host is important for transmissibility. For hitherto unexplained reasons the majority of Europeans carry a missense mutation on one or both alleles of the PrP gene (PRNP), and hence express a variant of PrP with a substitution for valine (V) instead of methionine (M) in position 129. In fact the 129M/V variant is very common in all populations except for the Japanese. Sporadic Creutzfeldt-Jakob disease is a disease rarely striking people below the age of 60, where homozygosity especially 129MM is a very strong risk factor. Paradoxically, the 129M/V polymorphism suggestive of heterozygote advantage is one of the most clear cut disease associated traits of the human population, yet prion disease is extraordinarily rare. The genetic basis for how this trait spread with such prevalence within human populations is still target to investigations and deserves attention. This short essay represents a somewhat provocative hypothetical notion of a possible ancient significance of this polymorphism.
Collapse
|
14
|
de Moraes MC, Santos JB, Dos Anjos DM, Rangel LP, Vieira TCRG, Moaddel R, da Silva JL. Prion protein-coated magnetic beads: synthesis, characterization and development of a new ligands screening method. J Chromatogr A 2014; 1379:1-8. [PMID: 25576041 DOI: 10.1016/j.chroma.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023]
Abstract
Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24210-141 Niterói, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil.
| | - Juliana Bosco Santos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Daniel Meira Dos Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Luciana Pereira Rangel
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Tuane Cristine Ramos Gonçalves Vieira
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jerson Lima da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Buttstedt A, Wostradowski T, Ihling C, Hause G, Sinz A, Schwarz E. Different morphology of amyloid fibrils originating from agitated and non-agitated conditions. Amyloid 2013; 20:86-92. [PMID: 23570235 DOI: 10.3109/13506129.2013.784962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro amyloid formation has been suggested to be a common property of any polypeptide chain depending on particular environmental conditions although in vivo amyloid fibril formation can be promoted by point mutations or triplet expansions. Here, we explored the influence of agitation on fibril formation of amyloidogenic alanine segments fused to Cold Shock Protein B (CspB) of Bacillus subtilis. While without agitation fibril formation was clearly dependent on the presence of an amyloidogenic alanine segment, fibril formation was independent of the amyloidogenic segment under agitation. Agitation even led to fibrillation of native CspB lacking the amyloidogenic segment. Furthermore, agitation not only influenced the kinetics of fibril formation, but also resulted in completely different fibril morphologies. These results indicate that experimental conditions can alter the region that undergoes a conformational change during in vitro fibrillation. Moreover, the data show that deductions from in vitro assays on in vivo fibril formation mechanisms are afflicted with a certain degree of uncertainty and therefore need to be cautiously discussed.
Collapse
Affiliation(s)
- Anja Buttstedt
- Facultatea de Zootehnie şi Biotehnologii, Universitatea de Ştiinţe Agricole şi Medicină Veterinară, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | | | | | | | | | | |
Collapse
|
16
|
Campbell L, Gill AC, McGovern G, Jalland CMO, Hopkins J, Tranulis MA, Hunter N, Goldmann W. The PrP(C) C1 fragment derived from the ovine A136R154R171PRNP allele is highly abundant in sheep brain and inhibits fibrillisation of full-length PrP(C) protein in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:826-36. [PMID: 23474307 DOI: 10.1016/j.bbadis.2013.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 01/09/2023]
Abstract
Expression of the cellular prion protein (PrP(C)) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrP(C) comprised of 25% more C1 fragment than PrP(C) from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrP(C) variants. We propose that the increased α-cleavage of ovine ARR PrP(C) contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrP(C) β-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility.
Collapse
Affiliation(s)
- Lauren Campbell
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A possible therapeutic strategy for amyloid diseases involves the use of small molecule compounds to inhibit protein assembly into insoluble aggregates. According to the recently proposed Crystallization-Like Model, the kinetics of amyloid fibrillization can be retarded by decreasing the frequency of new fibril formation or by decreasing the elongation rate of existing fibrils. To the compounds that affect the nucleation and/or the growth steps we call true inhibitors. An apparent inhibition mechanism may however result from the alteration of thermodynamic properties such as the solubility of the amyloidogenic protein. Apparent inhibitors markedly influence protein aggregation kinetics measured in vitro, yet they are likely to lead to disappointing results when tested in vivo. This is because cells and tissues media are in general much more buffered against small variations in composition than the solutions prepared in lab. Here we show how to discriminate between true and apparent inhibition mechanisms from experimental data on protein aggregation kinetics. The goal is to be able to identify false positives much earlier during the drug development process.
Collapse
Affiliation(s)
- Pedro M Martins
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Invernizzi G, Papaleo E, Sabate R, Ventura S. Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 2012; 44:1541-54. [PMID: 22713792 DOI: 10.1016/j.biocel.2012.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/27/2012] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying protein misfolding and aggregation has become a central issue in biology and medicine. Compelling evidence show that the formation of amyloid aggregates has a negative impact in cell function and is behind the most prevalent human degenerative disorders, including Alzheimer's Parkinson's and Huntington's diseases or type 2 diabetes. Surprisingly, the same type of macromolecular assembly is used for specialized functions by different organisms, from bacteria to human. Here we address the conformational properties of these aggregates, their formation pathways, their role in human diseases, their functional properties and how bioinformatics tools might be of help to study these protein assemblies.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
19
|
Nyström S, Mishra R, Hornemann S, Aguzzi A, Nilsson KPR, Hammarström P. Multiple substitutions of methionine 129 in human prion protein reveal its importance in the amyloid fibrillation pathway. J Biol Chem 2012; 287:25975-84. [PMID: 22669942 DOI: 10.1074/jbc.m112.372136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of the polymorphism Met or Val in position 129 in the human prion protein is well documented regarding disease susceptibility and clinical manifestations. However, little is known about the molecular background to this phenomenon. We investigated herein the conformational stability, amyloid fibrillation kinetics, and seeding propensity of different 129 mutants, located in β-strand 1 of PrP (Met(129) (WT), M129A, M129V, M129L, M129W, M129P, M129E, M129K, and M129C) in HuPrP(90-231). The mutations M129V, M129L, M129K, and M129C did not affect stability (midpoints of thermal denaturation, T(m) = 65-66 °C), whereas the mutants M129A and M129E and the largest side chain M129W were destabilized by 3-4 °C. The most destabilizing substitution was M129P, which lowered the T(m) by 7.2 °C. All mutants, except for M129C, formed amyloid-like fibrils within hours during fibril formation under near physiological conditions. Fibril-forming mutants showed a sigmoidal kinetic profile and showed shorter lag times during seeding with preformed amyloid fibrils implicating a nucleated polymerization reaction. In the spontaneous reactions, the lag time of fibril formation was rather uniform for the mutants M129A, M129V, and M129L resembling the wild type. When the substituted amino acid had a distinct feature discriminating it from the wild type, such as size (M129W), charge (M129E, M129K), or rotational constraint (M129P), the fibrillation was impeded. M129C did not form ThT/Congo red-positive fibrils, and non-reducing SDS-PAGE of M129C during fibrillation conditions at different time points revealed covalent dimer formation already 15 min after fibrillation reaction initiation. Position 129 appears to be a key site for dictating PrP receptiveness toward recruitment into the amyloid state.
Collapse
Affiliation(s)
- Sofie Nyström
- IFM-Department of Chemistry, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Margalith I, Suter C, Ballmer B, Schwarz P, Tiberi C, Sonati T, Falsig J, Nyström S, Hammarström P, Aslund A, Nilsson KPR, Yam A, Whitters E, Hornemann S, Aguzzi A. Polythiophenes inhibit prion propagation by stabilizing prion protein (PrP) aggregates. J Biol Chem 2012; 287:18872-87. [PMID: 22493452 DOI: 10.1074/jbc.m112.355958] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.
Collapse
Affiliation(s)
- Ilan Margalith
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
22
|
Abstract
Misfolding and aggregation of prion protein (PrP) is related to several neurodegenerative diseases in humans such as Creutzfeldt-Jacob disease, fatal familial insomnia, and Gerstmann-Straussler-Sheinker disease. Certain applications in prion area require recombinant PrP of high purity and quality. Here, we report an experimental procedure for expression and purification of full-length mammalian PrP. This protocol has been proved to yield PrP of extremely high purity that lacks PrP adducts, which are normally generated as a result of spontaneous oxidation or degradation. We also describe methods for the preparation of amyloid fibrils from recombinant PrP in vitro. Recombinant PrP fibrils can be used as a noninfectious synthetic surrogate of PrP(Sc) for development of prion diagnostics including the generation of PrP(Sc)-specific antibody.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Macchi F, Hoffmann SV, Carlsen M, Vad B, Imparato A, Rischel C, Otzen DE. Mechanical stress affects glucagon fibrillation kinetics and fibril structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12539-12549. [PMID: 21877745 DOI: 10.1021/la202125c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mechanical stress can strongly influence the capability of a protein to aggregate and the kinetics of aggregation, but there is little insight into the underlying mechanism. Here we study the effect of different mechanical stress conditions on the fibrillation of the peptide hormone glucagon, which forms different fibrils depending on temperature, pH, ionic strength, and concentration. A combination of spectroscopic and microscopic data shows that fibrillar polymorphism can also be induced by mechanical stress. We observed two classes of fibrils: a low-stress and a high-stress class, which differ in their kinetic profiles, secondary structure as well as morphology and that are able to self-propagate in a template-dependent fashion. The bending rigidity of the low-stress fibrils is sensitive to the degree of mechanical perturbation. We propose a fibrillation model, where interfaces play a fundamental role in the switch between the two fibrillar classes. Our work also raises the cautionary note that mechanical perturbation is a potential source of variability in the study of fibrillation mechanisms and fibril structures.
Collapse
Affiliation(s)
- Francesca Macchi
- iNANO, Center for Insoluble Protein Structures (inSPIN), Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
24
|
Mahajan V, Klingstedt T, Simon R, Nilsson KPR, Thueringer A, Kashofer K, Haybaeck J, Denk H, Abuja PM, Zatloukal K. Cross β-sheet conformation of keratin 8 is a specific feature of Mallory-Denk bodies compared with other hepatocyte inclusions. Gastroenterology 2011; 141:1080-1090.e1-7. [PMID: 21699779 DOI: 10.1053/j.gastro.2011.05.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 05/09/2011] [Accepted: 05/20/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Mallory-Denk bodies (MDBs) are cytoplasmic protein aggregates in hepatocytes in steatohepatitis and other liver diseases. We investigated the molecular structure of keratin 8 (K8) and 18 (K18), sequestosome 1/p62, and ubiquitin, which are the major constituents of MDBs, to investigate their formation and role in disease pathogenesis. METHODS Luminescent conjugated oligothiophenes (LCOs), h-HTAA, and p-FTAA are fluorescent amyloid ligands that specifically bind proteins with cross β-sheet conformation. We used LCOs to investigate conformational changes in MDBs in situ in human and murine livers as well as in transfection studies. RESULTS LCO analysis showed cross β-sheet conformation in human MDBs from patients with alcoholic and nonalcoholic steatohepatitis or hepatocellular carcinoma, but not in intracellular hyaline bodies, α₁-antitrypsin deficiency, or ground-glass inclusions. LCOs bound to MDBs induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine feeding of mice at all developmental stages. CHO-K1 cells transfected with various combinations of SQSTM1/p62, ubi, and Krt8/Krt18 showed that K8 was more likely to have cross β-sheet conformation than K18, whereas p62 never had cross β-sheet conformation. The different conformational properties of K8 and K18 were also shown by circular dichroism analysis. CONCLUSIONS K8 can undergo conformational changes from predominantly α-helical to cross β-sheet, which would allow it to form MDBs. These findings might account for the observation that krt8⁻/⁻ mice do not form MDBs, whereas its excess facilitates MDB formation. LCOs might be used in diagnosis of liver disorders; they can be applied to formalin-fixed, paraffin-embedded tissues to characterize protein aggregates in liver cells.
Collapse
Affiliation(s)
- Vineet Mahajan
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mishra R, Sjölander D, Hammarström P. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red. MOLECULAR BIOSYSTEMS 2011; 7:1232-40. [DOI: 10.1039/c0mb00236d] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zibaee S, Fraser G, Jakes R, Owen D, Serpell LC, Crowther RA, Goedert M. Human beta-synuclein rendered fibrillogenic by designed mutations. J Biol Chem 2010; 285:38555-67. [PMID: 20833719 PMCID: PMC2992288 DOI: 10.1074/jbc.m110.160721] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/16/2010] [Indexed: 12/16/2022] Open
Abstract
Filamentous inclusions made of α-synuclein are found in nerve cells and glial cells in a number of human neurodegenerative diseases, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. The assembly and spreading of these inclusions are likely to play an important role in the etiology of common dementias and movement disorders. Both α-synuclein and the homologous β-synuclein are abundantly expressed in the central nervous system; however, β-synuclein is not present in the pathological inclusions. Previously, we observed a poor correlation between filament formation and the presence of residues 73-83 of α-synuclein, which are absent in β-synuclein. Instead, filament formation correlated with the mean β-sheet propensity, charge, and hydrophilicity of the protein (global physicochemical properties) and β-strand contiguity calculated by a simple algorithm of sliding averages (local physicochemical property). In the present study, we rendered β-synuclein fibrillogenic via one set of point mutations engineered to enhance global properties and a second set engineered to enhance predominantly β-strand contiguity. Our findings show that the intrinsic physicochemical properties of synucleins influence their fibrillogenic propensity via two distinct but overlapping modalities. The implications for filament formation and the pathogenesis of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Shahin Zibaee
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| | - Graham Fraser
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| | - Ross Jakes
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| | - David Owen
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| | - Louise C. Serpell
- the School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - R. Anthony Crowther
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| | - Michel Goedert
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom and
| |
Collapse
|
27
|
Gabrielsson EO, Tybrandt K, Hammarström P, Berggren M, Nilsson KPR. Spatially controlled amyloid reactions using organic electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2153-2161. [PMID: 20814927 DOI: 10.1002/smll.201001157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.
Collapse
Affiliation(s)
- Erik O Gabrielsson
- Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | | | | | | |
Collapse
|
28
|
Fawzi NL, Ying J, Torchia DA, Clore GM. Kinetics of amyloid beta monomer-to-oligomer exchange by NMR relaxation. J Am Chem Soc 2010; 132:9948-51. [PMID: 20604554 PMCID: PMC2915839 DOI: 10.1021/ja1048253] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have implicated non-fibrillar oligomers of the amyloid beta (Abeta) peptide as the primary toxic species in Alzheimer's disease. Detailed structural and kinetic characterization of these states, however, has been difficult. Here we use NMR relaxation measurements to address the kinetics of exchange between monomeric and large, polymorphic oligomeric species of Abeta(1-40). (15)N and (1)H(N) R(2) data at multiple magnetic fields were recorded for several peptide concentrations subsequent to the establishment of a stable pseudo-equilibrium between monomeric and NMR-invisible soluble oligomeric species. The increase in (15)N and (1)H(N) R(2) rates as a function of protein concentration is independent of nucleus and magnetic field and shows only a small degree of variation along the peptide chain. This phenomenon is due to a lifetime broadening effect arising from the unidirectional conversion of monomer to the NMR-invisible oligomeric species ("dark" state). At a total Abeta(1-40) concentration of 300 microM, the apparent first-order rate constant for this process is approximately 3 s(-1). Fitting the McConnell equations for two dipolar-coupled spins in two-site exchange to transfer-of-saturation profiles at two radiofrequency field strengths gives an estimate for k(off) of 73 s(-1) and transiently bound monomer (1)H(N) R(2) rates of up to 42,000 s(-1) in the tightly bound central hydrophobic region and approximately 300 s(-1) in the disordered regions, such as the first nine residues. The fraction of peptide within the "dark" oligomeric state undergoing exchange with free monomer is calculated to be approximately 3%.
Collapse
Affiliation(s)
- Nicolas L. Fawzi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Dennis A. Torchia
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
29
|
Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KPR, Eisenberg D, Baskakov IV. Two amyloid States of the prion protein display significantly different folding patterns. J Mol Biol 2010; 400:908-21. [PMID: 20553730 PMCID: PMC2908243 DOI: 10.1016/j.jmb.2010.05.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/27/2010] [Accepted: 05/21/2010] [Indexed: 12/16/2022]
Abstract
It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-A meridional X-ray diffraction typical for amyloid cross-beta-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of beta-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-beta-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 degrees C, only local unfolding was revealed, while individual state-specific cross-beta features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-beta-structure. Both S- and R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.
Collapse
Affiliation(s)
- Valeriy G. Ostapchenko
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
| | - Michael R. Sawaya
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095-1570, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
| | | | - David Eisenberg
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095-1570, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
30
|
Hammarström P, Simon R, Nyström S, Konradsson P, Åslund A, Nilsson KPR. A Fluorescent Pentameric Thiophene Derivative Detects in Vitro-Formed Prefibrillar Protein Aggregates. Biochemistry 2010; 49:6838-45. [DOI: 10.1021/bi100922r] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Per Hammarström
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Rozalyn Simon
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Sofie Nyström
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Peter Konradsson
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Åslund
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|