1
|
Tang G, Cheng X, Fan B, Jia Z, Liu K, Zhang S. ERD15 promotes peach and tomato ripening by activating polyamine catabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112515. [PMID: 40239842 DOI: 10.1016/j.plantsci.2025.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Polyamine oxidase (PAO) is a key enzyme in polyamine (PA) catabolism and plays a vital role during fruit ripening. However, regulatory mechanisms that control PAO expression during maturation remain unclear. This study identifies the transcription factor PpeERD15 through yeast one-hybrid (Y1H) screening with the PpePAO1 promoter. ERD15 (early response to dehydration 15), a member of the early response to dehydration protein family, is known for its role in abiotic stress responses, but its function in fruit ripening remains largely unexplored. Subcellular localization analysis demonstrated that PpeERD15 was localized in both the nucleus and cytoplasm. Y1H and LUC assays confirmed that PpeERD15 directly binds the PpePAO1 promoter. Transient silencing of PpEDR15 in peach fruit downregulated PpePAO1 expression, promoted PA accumulation, inhibited ethylene production, increased fruit firmness, and delayed fruit ripening. Conversely, overexpression of PpeEDR15 upregulated PpePAO1, decreased PA content, promoted ethylene production, reduced fruit firmness, and accelerated fruit ripening. The role of homologous gene of ERD15 was also validated in tomato. This study discovered that PpeEDR15 regulates fruit ripening by promoting PA catabolism via PpePAO1 expression.
Collapse
Affiliation(s)
- Guangcai Tang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xin Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Bingli Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Keke Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shiwen Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Zhu K, Chen S, Gao M, Wu Y, Liu X. Asparagine-rich protein (NRP) mediates stress response by regulating biosynthesis of plant secondary metabolites in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2241165. [PMID: 37515751 PMCID: PMC10388829 DOI: 10.1080/15592324.2023.2241165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
The plant-specific stress response protein NRP (asparagine-rich protein) is characterized by an asparagine-rich domain at its N-terminus and a conserved development and cell death (DCD) domain at its C-terminus. Previous transcriptional studies and phenotypic analyses have demonstrated the involvement of NRP in response to severe stress conditions, such as high salt and ER Endoplasmic reticulum-stress. We have recently identified distinct roles for NRP in biotic- and abiotic-stress signaling pathways, in which NRP interacts with different signaling proteins to change their subcellular localizations and stability. Here, to further explore the function of NRP, a transcriptome analysis was carried out on nrp1nrp2 knock-out lines at different life stages or under different growing conditions. The most significant changes in the transcriptome at both stages and conditions turned out to be the induction of the synthesis of secondary metabolites (SMs). Such an observation implicates that NRP is a general stress-responsive protein involved in various challenges faced by plants during their life cycle, which might involve a broad alteration in the distribution of SMs.
Collapse
Affiliation(s)
- Kaikai Zhu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Si Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ming Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanying Wu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Quadros IPS, Madeira NN, Loriato VAP, Saia TFF, Silva JC, Soares FAF, Carvalho JR, Reis PAB, Fontes EPB, Clarindo WR, Fontes RLF. Cadmium-mediated toxicity in plant cells is associated with the DCD/NRP-mediated cell death response. PLANT, CELL & ENVIRONMENT 2022; 45:556-571. [PMID: 34719793 DOI: 10.1111/pce.14218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd2+ ) is highly harmful to plant growth. Although Cd2+ induces programmed cell death (PCD) in plant cells, Cd2+ stress in whole plants during later developmental stages and the mechanism underlying Cd2+ -mediated toxicity are poorly understood. Here, we showed that Cd2+ limits plant growth, causes intense redness in leaf vein, leaf yellowing, and chlorosis during the R1 reproductive stage of soybean (Glycine max). These symptoms were associated with Cd2+ -induced PCD, as Cd2+ -stressed soybean leaves displayed decreased number of nuclei, enhanced cell death, DNA damage, and caspase 1 activity compared to unstressed leaves. Accordingly, Cd2+ -induced NRPs, GmNAC81, GmNAC30 and VPE, the DCD/NRP-mediated cell death signalling components, which execute PCD via caspase 1-like VPE activity. Furthermore, overexpression of the positive regulator of this cell death signalling GmNAC81 enhanced sensitivity to Cd2+ stress and intensified the hallmarks of Cd2+ -mediated PCD. GmNAC81 overexpression enhanced Cd2+ -induced H2 O2 production, cell death, DNA damage, and caspase-1-like VPE expression. Conversely, BiP overexpression negatively regulated the NRPs/GmNACs/VPE signalling module, conferred tolerance to Cd2+ stress and reduced Cd2+ -mediated cell death. Collectively, our data indicate that Cd2+ induces PCD in plants via activation of the NRP/GmNAC/VPE regulatory circuit that links developmentally and stress-induced cell death.
Collapse
Affiliation(s)
- Iana Pedro Silva Quadros
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Virgílio Adriano Pereira Loriato
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Thaina Fernanda Fillietaz Saia
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Coutinho Silva
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Pedro Augusto Braga Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wellington Ronildo Clarindo
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
4
|
Yang Y, Liu X, Zhang W, Qian Q, Zhou L, Liu S, Li Y, Hou X. Stress response proteins NRP1 and NRP2 are pro-survival factors that inhibit cell death during ER stress. PLANT PHYSIOLOGY 2021; 187:1414-1427. [PMID: 34618053 PMCID: PMC8566283 DOI: 10.1093/plphys/kiab335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 05/12/2023]
Abstract
Environmental stresses cause an increased number of unfolded or misfolded proteins to accumulate in the endoplasmic reticulum (ER), resulting in ER stress. To restore ER homeostasis and survive, plants initiate an orchestrated signaling pathway known as the unfolded protein response (UPR). Asparagine-rich protein (NRP) 1 and NRP2, two homologous proteins harboring a Development and Cell Death domain, are associated with various stress responses in Arabidopsis (Arabidopsis thaliana), but the relevant molecular mechanism remains obscure. Here, we show that NRP1 and NRP2 act as key pro-survival factors during the ER stress response and that they inhibit cell death. Loss-of-function of NRP1 and NRP2 results in decreased tolerance to the ER stress inducer tunicamycin (TM), accelerating cell death. NRP2 is constitutively expressed while NRP1 is induced in plants under ER stress. In Arabidopsis, basic leucine zipper protein (bZIP) 28 and bZIP60 are important transcription factors in the UPR that activates the expression of many ER stress-related genes. Notably, under ER stress, bZIP60 activates NRP1 by directly binding to the UPRE-I element in the NRP1 promoter. These findings reveal a pro-survival strategy in plants wherein the bZIP60-NRPs cascade suppresses cell death signal transmission, improving survival under adverse conditions.
Collapse
Affiliation(s)
- Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Limeng Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kaur N, Kaitheri Kandoth P. Tomato bZIP60 mRNA undergoes splicing in endoplasmic reticulum stress and in response to environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:397-403. [PMID: 33556755 DOI: 10.1016/j.plaphy.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Environmental stresses activate endoplasmic reticulum (ER) stress response pathways, collectively known as the unfolded protein response (UPR). IRE1/bZIP60 pathway is the most conserved of all UPR pathways from yeast to plants. Transcription factor bZIP60 is activated by the cytoplasmic splicing of its mRNA by Inositol Requiring Enzyme1 (IRE1) protein. bZIP60 mRNA has a typical stem-loop structure that is required for its splicing by IRE1 ribonuclease. We identified the tomato bZIP60 (SlbZIP60) and secondary structure prediction showed that it has the conserved stem-loop structure. Further, we demonstrate that SlbZIP60 is spliced upon treatment with an ER stress-inducing agent, tunicamycin. Tunicamycin also upregulated the expression of SlbZIP60. Finally, we show that SlbZIP60 undergo physiologically activated splicing in certain tissues of the plant and respond to environmental stresses, heat, and virus infection. This study will help for a deeper understanding of ER stress pathways and how they contribute to the stress tolerance of tomato, one of the important vegetable crops, cultivated under varied environmental conditions.
Collapse
Affiliation(s)
- Navpreet Kaur
- National Agri-food Biotechnology Institute, Mohali, Punjab, India
| | | |
Collapse
|
6
|
Ferreira DO, Fraga OT, Pimenta MR, Caetano HDN, Machado JPB, Carpinetti PA, Brustolini OJB, Quadros IPS, Reis PAB, Fontes EPB. GmNAC81 Inversely Modulates Leaf Senescence and Drought Tolerance. Front Genet 2020; 11:601876. [PMID: 33329747 PMCID: PMC7732657 DOI: 10.3389/fgene.2020.601876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
Glycine max NAC81 (GmNAC81) is a downstream effector of the DCD/NRP-mediated cell death signaling, which interacts with GmNAC30 to fully induce the caspase 1-like vacuolar processing enzyme (VPE) expression, the executioner of the cell death program. GmNAC81 has been previously shown to positively modulate leaf senescence via the NRP/GmNAC81/VPE signaling module. Here, we examined the transcriptome induced by GmNAC81 overexpression and leaf senescence and showed that GmNAC81 further modulates leaf senescence by regulating an extensive repertoire of functionally characterized senescence-associated genes (SAGs). Because the NRP/GmNAC81/VPE signaling circuit also relays stress-induced cell death signals, we examined the effect of GmNAC81 overexpression in drought responses. Enhanced GmNAC81 expression in the transgenic lines increased sensitivity to water deprivation. Under progressive drought, the GmNAC81-overexpressing lines displayed severe leaf wilting, a larger and faster decline in leaf Ψw, relative water content (RWC), photosynthesis rate, stomatal conductance, and transpiration rate, in addition to higher Ci/Ca and lower Fm/Fv ratios compared to the BR16 control line. Collectively, these results indicate that the photosynthetic activity and apparatus were more affected by drought in the transgenic lines. Consistent with hypersensitivity to drought, chlorophyll loss, and lipid peroxidation were higher in the GmNAC81-overexpressing lines than in BR16 under dehydration. In addition to inducing VPE expression, GmNAC81 overexpression uncovered the regulation of typical drought-responsive genes. In particular, key regulators and effectors of ABA signaling were suppressed by GmNAC81 overexpression. These results suggest that GmNAC81 may negatively control drought tolerance not only via VPE activation but also via suppression of ABA signaling.
Collapse
Affiliation(s)
- Dalton O Ferreira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Otto T Fraga
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil.,Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maiana R Pimenta
- Núcleo de Graduação de Agronomia, Universidade Federal de Sergipe, Nossa Senhora da Glória, Brazil
| | - Hanna D N Caetano
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil.,Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Paola A Carpinetti
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Iana P S Quadros
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pedro A B Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil.,Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil.,Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
7
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
8
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 PMCID: PMC7347581 DOI: 10.1038/s41598-020-68407-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.,Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA. .,Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
9
|
Herath V, Gayral M, Adhikari N, Miller R, Verchot J. Genome-wide identification and characterization of Solanum tuberosum BiP genes reveal the role of the promoter architecture in BiP gene diversity. Sci Rep 2020; 10:11327. [PMID: 32647371 DOI: 10.1101/2020.05.16.098244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/18/2020] [Indexed: 05/24/2023] Open
Abstract
The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.
Collapse
Affiliation(s)
- Venura Herath
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA
| | - Nirakar Adhikari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Rita Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 77845, USA
| | - Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, Dallas, TX, 77953, USA.
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
10
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Havaux M. Endoplasmic reticulum-mediated unfolded protein response is an integral part of singlet oxygen signalling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1266-1280. [PMID: 31975462 DOI: 10.1111/tpj.14700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | | | - Brigitte Ksas
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
11
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F. OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. PLANT PHYSIOLOGY 2019; 180:1691-1708. [PMID: 31123095 PMCID: PMC6752932 DOI: 10.1104/pp.19.00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Stefano D'Alessandro
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michel Havaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Fabien Monnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
- Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| |
Collapse
|
12
|
Coutinho FS, dos Santos DS, Lima LL, Vital CE, Santos LA, Pimenta MR, da Silva JC, Ramos JRLS, Mehta A, Fontes EPB, de Oliveira Ramos HJ. Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:457-472. [PMID: 30956428 PMCID: PMC6419710 DOI: 10.1007/s12298-019-00643-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.
Collapse
Affiliation(s)
- Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Danilo Silva dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Lucas Leal Lima
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Camilo Elber Vital
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Lázaro Aleixo Santos
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maiana Reis Pimenta
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - João Carlos da Silva
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Humberto Josué de Oliveira Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
13
|
Reis PAB, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, Silva JCF, Carvalho HH, Dal-Bianco M, Soares-Ramos JR, Fontes EPB. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC PLANT BIOLOGY 2016; 16:156. [PMID: 27405371 PMCID: PMC4943007 DOI: 10.1186/s12870-016-0843-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.
Collapse
Affiliation(s)
- Pedro A. B. Reis
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paola A. Carpinetti
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paula P.J. Freitas
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Eulálio G.D. Santos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Luiz F. Camargos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Igor H.T. Oliveira
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - José Cleydson F. Silva
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Humberto H. Carvalho
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maximiller Dal-Bianco
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Juliana R.L. Soares-Ramos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Elizabeth P. B. Fontes
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
14
|
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 2016; 7:11685. [PMID: 27256489 PMCID: PMC4895818 DOI: 10.1038/ncomms11685] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yongli Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| |
Collapse
|
15
|
Wan S, Jiang L. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. PROTOPLASMA 2016; 253:753-764. [PMID: 26060134 DOI: 10.1007/s00709-015-0842-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 05/03/2023]
Abstract
Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants.
Collapse
Affiliation(s)
- Shucen Wan
- Molecular Biotechnology Program, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
16
|
Wan S, Jiang L. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. PROTOPLASMA 2016; 253:765. [PMID: 26060134 DOI: 10.1007/s00709-015-0852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants.
Collapse
Affiliation(s)
- Shucen Wan
- Molecular Biotechnology Program, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
17
|
Guan C, Jin C, Ji J, Wang G, Li X. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotechnol Prog 2015; 31:358-68. [PMID: 25589446 DOI: 10.1002/btpr.2046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/25/2014] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) accumulation is very toxic to plants. The presence of Cd may lead to excessive production of reactive oxygen species (ROS), and then cause inhibition of plant growth. The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which has been shown to function as a sensor of alterations in the ER environment. BiP overexpression in plants was shown to increase drought tolerance through inhibition of ROS accumulation. Due to the above relationships, it is likely that there may be a link between Cd stress tolerance, ROS accumulation and the BiP transcript expression in plants. In this study, a BiP gene, LcBiP, from L. chinense was isolated and characterized. Overexpression of LcBiP in tobacco conferred Cd tolerance. Under Cd stress conditions, the transgenic tobacco lines exhibited better chlorophyll retention, less accumulation of ROS, longer root length, more glutathione (GSH) content, and less antioxidant enzyme activity than the wild type. These data demonstrated that LcBiP act as a positive regulator in Cd stress tolerance. It is hypothesized that the improved Cd tolerance of the transgenic tobacco plants may be due to the enhanced ROS scavenging capacity. The enhancement of GSH content might contribute to this ROS scavenging capacity in the transgenic plants. However, the underlying mechanism for BiP-mediated increase in Cd stress tolerance need to be further clarified.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Williams B, Verchot J, Dickman MB. When supply does not meet demand-ER stress and plant programmed cell death. FRONTIERS IN PLANT SCIENCE 2014; 5:211. [PMID: 24926295 DOI: 10.3389/fpls.2014.00211/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Collapse
Affiliation(s)
- Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology Brisbane, QLD, Australia
| | - Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University College Station, TX, USA
| |
Collapse
|
19
|
Griffiths CA, Gaff DF, Neale AD. Drying without senescence in resurrection plants. FRONTIERS IN PLANT SCIENCE 2014; 5:36. [PMID: 24575108 PMCID: PMC3922084 DOI: 10.3389/fpls.2014.00036] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/27/2014] [Indexed: 05/16/2023]
Abstract
Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.
Collapse
Affiliation(s)
| | | | - Alan D. Neale
- School of Biological Sciences, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
20
|
Carvalho HH, Silva PA, Mendes GC, Brustolini OJ, Pimenta MR, Gouveia BC, Valente MAS, Ramos HJ, Soares-Ramos JR, Fontes EP. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. PLANT PHYSIOLOGY 2014; 164:654-70. [PMID: 24319082 PMCID: PMC3912096 DOI: 10.1104/pp.113.231928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.
Collapse
Affiliation(s)
- Humberto H. Carvalho
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Priscila A. Silva
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Giselle C. Mendes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Otávio J.B. Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maiana R. Pimenta
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Bianca C. Gouveia
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maria Anete S. Valente
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Humberto J.O. Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Juliana R.L. Soares-Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Elizabeth P.B. Fontes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
21
|
Carvalho HH, Brustolini OJB, Pimenta MR, Mendes GC, Gouveia BC, Silva PA, Silva JCF, Mota CS, Soares-Ramos JRL, Fontes EPB. The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption. PLoS One 2014; 9:e86661. [PMID: 24489761 PMCID: PMC3906070 DOI: 10.1371/journal.pone.0086661] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
BiP overexpression improves leaf water relations during droughts and delays drought-induced leaf senescence. However, whether BiP controls cellular homeostasis under drought conditions or simply delays dehydration-induced leaf senescence as the primary cause for water stress tolerance remains to be determined. To address this issue, we examined the drought-induced transcriptomes of BiP-overexpressing lines and wild-type (WT) lines under similar leaf water potential (ψw) values. In the WT leaves, a ψw reduction of -1.0 resulted in 1339 up-regulated and 2710 down-regulated genes; in the BiP-overexpressing line 35S::BiP-4, only 334 and 420 genes were induced and repressed, respectively, at a similar leaf ψw = -1.0 MPa. This level of leaf dehydration was low enough to induce a repertory of typical drought-responsive genes in WT leaves but not in 35S::BiP-4 dehydrated leaves. The responders included hormone-related genes, functional and regulatory genes involved in drought protection and senescence-associated genes. The number of differentially expressed genes in the 35S::BiP-4 line approached the wild type number at a leaf ψw = -1.6 MPa. However, N-rich protein (NRP)- mediated cell death signaling genes and unfolded protein response (UPR) genes were induced to a much lower extent in the 35S::BiP-4 line than in the WT even at ψw = -1.6 MPa. The heatmaps for UPR, ERAD (ER-associated degradation protein system), drought-responsive and cell death-associated genes revealed that the leaf transcriptome of 35S::BiP-4 at ψw = -1.0 MPa clustered together with the transcriptome of well-watered leaves and they diverged considerably from the drought-induced transcriptome of the WT (ψw = -1.0, -1.7 and -2.0 MPa) and 35S::BiP-4 leaves at ψw = -1.6 MPa. Taken together, our data revealed that BiP-overexpressing lines requires a much higher level of stress (ψw = -1.6 MPa) to respond to drought than that of WT (ψw = -1.0). Therefore, BiP overexpression maintains cellular homeostasis under water stress conditions and thus ameliorates endogenous osmotic stress.
Collapse
Affiliation(s)
- Humberto H. Carvalho
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Otávio J. B. Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maiana R. Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Giselle C. Mendes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Bianca C. Gouveia
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Priscila A. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Clenilso S. Mota
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana R. L. Soares-Ramos
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
22
|
Williams B, Verchot J, Dickman MB. When supply does not meet demand-ER stress and plant programmed cell death. FRONTIERS IN PLANT SCIENCE 2014; 5:211. [PMID: 24926295 PMCID: PMC4045240 DOI: 10.3389/fpls.2014.00211] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/29/2014] [Indexed: 05/10/2023]
Abstract
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Collapse
Affiliation(s)
- Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State UniversityStillwater, OK, USA
| | - Martin B. Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, USA
- *Correspondence: Martin B. Dickman, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA e-mail:
| |
Collapse
|
23
|
Mendes GC, Reis PAB, Calil IP, Carvalho HH, Aragão FJL, Fontes EPB. GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci U S A 2013; 110:19627-32. [PMID: 24145438 PMCID: PMC3845183 DOI: 10.1073/pnas.1311729110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1-like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1-like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.
Collapse
Affiliation(s)
- Giselle C. Mendes
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Instituto Nacional de Ciência e Tecnologia em interacoes planta-praga, Universidade Federal de Viçosa, 36570-000 Viçosa MG, Brazil; and
| | - Pedro A. B. Reis
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Instituto Nacional de Ciência e Tecnologia em interacoes planta-praga, Universidade Federal de Viçosa, 36570-000 Viçosa MG, Brazil; and
| | - Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Instituto Nacional de Ciência e Tecnologia em interacoes planta-praga, Universidade Federal de Viçosa, 36570-000 Viçosa MG, Brazil; and
| | - Humberto H. Carvalho
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Instituto Nacional de Ciência e Tecnologia em interacoes planta-praga, Universidade Federal de Viçosa, 36570-000 Viçosa MG, Brazil; and
| | | | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Instituto Nacional de Ciência e Tecnologia em interacoes planta-praga, Universidade Federal de Viçosa, 36570-000 Viçosa MG, Brazil; and
| |
Collapse
|