1
|
Wang Q. Study on the expression regulation of the CTR1 gene in the ethylene signaling pathway. Biochem Biophys Res Commun 2024; 739:150590. [PMID: 39181071 DOI: 10.1016/j.bbrc.2024.150590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The CONSTITUTIVE TRIPLERESPONSE1 (CTR1) is a crucial component in the ethylene signaling pathway. CTR1 transmits signals perceived by ethylene receptors to downstream EIN2 proteins through phosphorylation/dephosphorylation. Although some studies have explored the functions and mechanisms of CTR1, research on its expression and regulation remains relatively limited. This study investigates the tissue-specific expression of the Arabidopsis CTR1 gene and its expression and regulatory mechanisms under ethylene induction. Arabidopsis was treated with ethylene, and changes in CTR1 gene expression were detected using real-time quantitative PCR. The experimental results show that in rosette leaves of 28-day-old Arabidopsis, CTR1 expression is induced by ethylene. To investigate its molecular mechanism, the promoter sequence of the CTR1 was cloned and vectors were constructed by linking the promoter sequence with luciferase and GUS genes. Stable transgenic Arabidopsis lines were obtained, and promoter activity in these materials was analyzed. Promoter activity analysis confirmed that CTR1 promoter activity is ethylene-inducible and that this induction is dependent on the functions of proteins such as EIN2, EIN3, and EILs. Additionally, the study found that CTR1 expression is higher during seed germination and maintained at lower levels in mature leaves and plants. This study provides a detailed observation of CTR1 gene expression and, for the first time, identifies that the CTR1 promoter is regulated by ethylene induction, offering new options for designing ethylene signaling pathway reporter systems.
Collapse
Affiliation(s)
- Qin Wang
- College of Life Sciences, Shanghai Normal University, China.
| |
Collapse
|
2
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
3
|
Identification of Quantitative Trait Loci Controlling Ethylene Production in Germinating Seeds in Maize (Zea mays L.). Sci Rep 2020; 10:1677. [PMID: 32015470 PMCID: PMC6997408 DOI: 10.1038/s41598-020-58607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/17/2020] [Indexed: 11/15/2022] Open
Abstract
Plant seed germination is a crucial developmental event that has significant effects on seedling establishment and yield production. This process is controlled by multiple intrinsic signals, particularly phytohormones. The gaseous hormone ethylene stimulates seed germination; however, the genetic basis of ethylene production in maize during seed germination remains poorly understood. In this study, we quantified the diversity of germination among 14 inbred lines representing the parental materials corresponding to multiple recombinant inbred line (RIL) mapping populations. Quantitative trait loci (QTLs) controlling ethylene production were then identified in germinating seeds from an RIL population constructed from two parental lines showing differences in both germination speed and ethylene production during germination. To explore the possible genetic correlations of ethylene production with other traits, seed germination and seed weight were evaluated using the same batch of samples. On the basis of high-density single nucleotide polymorphism-based genetic linkage maps, we detected three QTLs for ethylene production in germinating seeds, three QTLs for seed germination, and four QTLs for seed weight, with each QTL explaining 5.8%–13.2% of the phenotypic variation of the trait. No QTLs were observed to be co-localized, suggesting that the genetic bases underlying the three traits are largely different. Our findings reveal three chromosomal regions responsible for ethylene production during seed germination, and provide a valuable reference for the future investigation of the genetic mechanism underlying the role of the stress hormone ethylene in maize germination control under unfavourable external conditions.
Collapse
|
4
|
Chen Y, Hu G, Rodriguez C, Liu M, Binder BM, Chervin C. Roles of SlETR7, a newly discovered ethylene receptor, in tomato plant and fruit development. HORTICULTURE RESEARCH 2020; 7:17. [PMID: 32025320 PMCID: PMC6994538 DOI: 10.1038/s41438-020-0239-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 05/30/2023]
Abstract
Ethylene regulates many aspects of plant growth and development. It is perceived by a family of ethylene receptors (ETRs) that have been well described. However, a full understanding of ETR function is complicated by functional redundancy between the receptor isoforms. Here, we characterize a new ETR, SlETR7, that was revealed by tomato genome sequencing. SlETR7 expression in tomato fruit pericarp increases when the fruit ripens and its expression is synchronized with the expression of SlETR1, SlETR2, and SlETR5 which occurs later in the ripening phase than the increase observed for SlETR3, SlETR4, and SlETR6. We uncovered an error in the SlETR7 sequence as documented in the ITAG 3 versions of the tomato genome which has now been corrected in ITAG 4, and we showed that it belongs to sub-family II. We also showed that SlETR7 specifically binds ethylene. Overexpression (OE) of SlETR7 resulted in earlier flowering, shorter plants, and smaller fruit than wild type. Knock-out (KO) mutants of SlETR7 produced more ethylene at breaker (Br) and Br + 2 days stages compared to wild type (WT), but there were no other obvious changes in the plant and fruit in these mutant lines. We observed that expression of the other SlETRs is upregulated in fruit of SlETR7 KO mutants, which may explain the absence of obvious ripening phenotypes. Globally, these results show that SlETR7 is a functional ethylene receptor. More work is needed to better understand its specific roles related to the six other tomato ETRs.
Collapse
Affiliation(s)
- Yi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Genomics and Biotechnology of Fruits, University of Toulouse, INRA, ENSAT, 31326 Castanet-Tolosan, France
| | - Guojian Hu
- Genomics and Biotechnology of Fruits, University of Toulouse, INRA, ENSAT, 31326 Castanet-Tolosan, France
| | - Celeste Rodriguez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN USA
| | - Meiying Liu
- Genomics and Biotechnology of Fruits, University of Toulouse, INRA, ENSAT, 31326 Castanet-Tolosan, France
- Weifang University, Weifang, 261041 Shandong China
| | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN USA
| | - Christian Chervin
- Genomics and Biotechnology of Fruits, University of Toulouse, INRA, ENSAT, 31326 Castanet-Tolosan, France
| |
Collapse
|
5
|
Berleth M, Berleth N, Minges A, Hänsch S, Burkart RC, Stork B, Stahl Y, Weidtkamp-Peters S, Simon R, Groth G. Molecular Analysis of Protein-Protein Interactions in the Ethylene Pathway in the Different Ethylene Receptor Subfamilies. FRONTIERS IN PLANT SCIENCE 2019; 10:726. [PMID: 31231408 PMCID: PMC6566107 DOI: 10.3389/fpls.2019.00726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Signal perception and transmission of the plant hormone ethylene are mediated by a family of receptor histidine kinases located at the Golgi-ER network. Similar to bacterial and other plant receptor kinases, these receptors work as dimers or higher molecular weight oligomers at the membrane. Sequence analysis and functional studies of different isoforms suggest that the ethylene receptor family is classified into two subfamilies. In Arabidopsis, the type-I subfamily has two members (ETR1 and ERS1) and the type-II subfamily has three members (ETR2, ERS2, and EIN4). Whereas subfamily-I of the Arabidopsis receptors and their interactions with downstream elements in the ethylene pathway has been extensively studied in the past; related information on subfamily-II is sparse. In order to dissect the role of type-II receptors in the ethylene pathway and to decode processes associated with this receptor subfamily on a quantitative molecular level, we have applied biochemical and spectroscopic studies on purified recombinant receptors and downstream elements of the ethylene pathway. To this end, we have expressed purified ETR2 as a prototype of the type-II subfamily, ETR1 for the type-I subfamily and downstream ethylene pathway proteins CTR1 and EIN2. Functional folding of the purified receptors was demonstrated by CD spectroscopy and autokinase assays. Quantitative analysis of protein-protein interactions (PPIs) by microscale thermophoresis (MST) revealed that ETR2 has similar affinities for CTR1 and EIN2 as previously reported for the subfamily-I prototype ETR1 suggesting similar roles in PPI-mediated signal transfer for both subfamilies. We also used in planta fluorescence studies on transiently expressed proteins in Nicotiana benthamiana leaf cells to analyze homo- and heteromer formation of receptors. These studies show that type-II receptors as well as the type-I receptors form homo- and heteromeric complexes at these conditions. Notably, type-II receptor homomers and type-II:type-I heteromers are more stable than type-I homomers as indicated by their lower dissociation constants obtained in microscale thermophoresis studies. The enhanced stability of type-II complexes emphasizes the important role of type-II receptors in the ethylene pathway.
Collapse
Affiliation(s)
- Mareike Berleth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University, Düsseldorf, Germany
| | | | - Björn Stork
- Institute of Molecular Medicine I, Heinrich Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Georg Groth, ;
| |
Collapse
|
6
|
Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan CKK, Sablok G, Ralph PJ, Edwards D. Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1489-98. [PMID: 25563969 PMCID: PMC4339605 DOI: 10.1093/jxb/eru510] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered. Genome sequence data for the widespread Australian seagrass species Zostera muelleri were generated and the unassembled data were compared with the annotated genes of five sequenced plant species (Arabidopsis thaliana, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Genes which are conserved between Z. muelleri and the five plant species were identified, together with genes that have been lost in Z. muelleri. The effect of gene loss on biological processes was assessed on the gene ontology classification level. Gene loss in Z. muelleri appears to influence some core biological processes such as ethylene biosynthesis. This study provides a foundation for further studies of seagrass evolution as well as the hormonal regulation of plant growth and development.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Martin Schliep
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huey Tyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Anthony W D Larkum
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rudy Dolferus
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra ACT 2601, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia School of Plant Biology, University of Western Australia, WA, 6009, Australia
| | - Chon-Kit Kenneth Chan
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia School of Plant Biology, University of Western Australia, WA, 6009, Australia
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia Australian Centre for Plant Functional Genomics, School of Land, Crop and Food Sciences, University of Queensland, Brisbane, QLD 4067, Australia School of Plant Biology, University of Western Australia, WA, 6009, Australia
| |
Collapse
|
7
|
Wang Q, Zhang W, Yin Z, Wen CK. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4863-75. [PMID: 24006427 PMCID: PMC3830475 DOI: 10.1093/jxb/ert272] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the ethylene-receptor signal output occurs at the endoplasmic reticulum and is mediated by the Raf-like protein CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) but is prevented by overexpression of the CTR1 N terminus. A phylogenic analysis suggested that rice OsCTR2 is closely related to CTR1, and ectopic expression of CTR1p:OsCTR2 complemented Arabidopsis ctr1-1. Arabidopsis ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE SENSOR1 physically interacted with OsCTR2 on yeast two-hybrid assay, and green fluorescence protein-tagged OsCTR2 was localized at the endoplasmic reticulum. The osctr2 loss-of-function mutation and expression of the 35S:OsCTR2 (1-513) transgene that encodes the OsCTR2 N terminus (residues 1-513) revealed several and many aspects, respectively, of ethylene-induced growth alteration in rice. Because the osctr2 allele did not produce all aspects of ethylene-induced growth alteration, the ethylene-receptor signal output might be mediated in part by OsCTR2 and by other components in rice. Yield-related agronomic traits, including flowering time and effective tiller number, were altered in osctr2 and 35S:OsCTR2 (1-513) transgenic lines. Applying prolonged ethylene treatment to evaluate ethylene effects on rice without compromising rice growth is technically challenging. Our understanding of roles of ethylene in various aspects of growth and development in japonica rice varieties could be advanced with the use of the osctr2 and 35S:OsCTR2 (1-513) transgenic lines.
Collapse
Affiliation(s)
- Qin Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Zhongming Yin
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| |
Collapse
|
8
|
Yu J, Wen CK. Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:921-33. [PMID: 23293348 PMCID: PMC3580809 DOI: 10.1093/jxb/ers371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multilevel interactions of the plant hormones ethylene and auxin coordinately and synergistically regulate many aspects of plant growth and development. This study isolated the AUXIN RESISTANT1 (AUX1) allele aux1(rcr1) (RCR1 for REVERSING CTR1-10 ROOT1) that suppressed the root growth inhibition conferred by the constitutive ethylene-response constitutive triple response1-10 (ctr1-10) allele. The aux1(rcr1) mutation resulted from an L126F substitution at loop 2 of the plasma membrane-associated auxin influx carrier protein AUX1. aux1(rcr1) and the T-DNA insertion mutant aux1-T were both defective in auxin transport and many aspects of the auxin response. Unexpectedly, expression of the auxin-response reporter DR5:GUS in the root apex was substantially prevented by the aux1(rcr1) but not the aux1-T mutation, even in the presence of the wild-type AUX1 allele. Following treatment with the synthetic auxin 1-naphthaleneacetic acid (NAA), DR5:GUS expression in aux1(rcr1) and aux1-T occurred mainly in the root apex and mature zone. NAA-induced DR5:GUS expression in the root apex was markedly prevented by ethylene in genotypes with aux1(rcr1) but not in aux1-T genotypes and the wild type. The effect of aux1(rcr1) on DR5:GUS expression seemed to be associated with AUX1-expressing domains. Green fluorescence protein-fused aux1(rcr1) was localized in the cytoplasm and probably not to the plasma membrane, indicating important roles of the Lys(126) residue at loop 2 in AUX1 targeting. The possible effects of aux1(rcr1) on DR5:GUS expression are discussed.
Collapse
Affiliation(s)
- Jing Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|