1
|
Kong W, Duan P, Wang Y, Zhang T, Huang M, Kang J, Wang L, Wei B, Chang Y. Silencing CaPIP5K4-1 leads to decreased male fertility in Capsicum annuum L. PLANTA 2024; 261:7. [PMID: 39630306 DOI: 10.1007/s00425-024-04584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Phosphatidylinositol 4-phosphate 5-kinase gene CaPIP5K4-1 is highly expressed in the pepper anthers. Virus-induced gene silencing of CaPIP5K4-1 leads to reduced male fertility in pepper. The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a pivotal enzyme in the phosphatidylinositol signaling pathway, and its crucial involvement in both plant development and stress response has been established. Here, we found that the expression of CaPIP5K4-1 in pepper was significantly higher in the fertile flower buds compared to sterile flower buds. Furthermore, its expression was validated in anthers and pollens by qRT-PCR and RNA-ISH assays, respectively. Its GFP fusion protein was mainly located on the plasma membrane. Silencing CaPIP5K4-1 in fertile pepper accessions resulted in wrinkled pollen grain cell walls, decreased pollen germination efficiency, and inhibited pollen tube growth. The transcription levels of multiple genes in the phosphatidylinositol signaling pathway were also assessed. Five phospholipase C (PLC) genes were downregulated in silenced plants. On the contrary, inositol phosphatase SAC and phosphatase and tensin homolog (PTEN) were upregulated. This study reported the role of CaPIP5K4-1 in pepper male fertility and provided insights into the regulatory mechanisms of PI signaling in pepper.
Collapse
Affiliation(s)
- Weifu Kong
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Panpan Duan
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Tao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Mianzhu Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Jingtao Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Lina Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730030, China.
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China.
| |
Collapse
|
2
|
Wang H, Yu J, Zhang X, Zeng Q, Zeng T, Gu L, Zhu B, Yu F, Du X. Genome-Wide Identification and Analysis of Phospholipase C Gene Family Reveals Orthologs, Co-Expression Networks, and Expression Profiling Under Abiotic Stress in Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2024; 13:2976. [PMID: 39519895 PMCID: PMC11547881 DOI: 10.3390/plants13212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Phospholipase C (PLC) is an essential enzyme involved in lipid signaling pathways crucial for regulating plant growth and responding to environmental stress. In sorghum, 11 PLC genes have been identified, comprising 6 PI-PLCs and 5 NPCs. Through phylogenetic and interspecies collinearity analyses, structural similarities between SbPLCs and ZmPLCs proteins have been observed, with a particularly strong collinearity between SbPLCs and OsPLCs. Promoter function analysis has shown that SbPLCs are significantly enriched under abiotic stress and hormonal stimuli, like ABA, jasmonic acid, drought, high temperature, and salt. Gene co-expression networks, constructed using a weighted gene co-expression network analysis (WGCNA), highlight distinct expression patterns of SbPLC1, SbPLC3a, and SbPLC4 in response to abiotic stress, providing further insights into the expression patterns and interactions of SbPLCs under various environmental stimuli. qRT-PCR results reveal variations in expression levels among most SbPLCs members under different stress conditions (drought, NaCl, NaHCO3), hormone treatments (ABA), and developmental stages, indicating both specific and overlapping expression patterns. This comprehensive analysis offers valuable insights into the roles of SbPLCs in sorghum, shedding light on their specific expression patterns, regulatory elements, and protein interactions across different environmental stimuli and developmental stages.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xingyu Zhang
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China;
| | - Qian Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Feng Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (Q.Z.); (T.Z.); (L.G.); (B.Z.)
| |
Collapse
|
3
|
Wang W, Wang Y, Luo L, Kou J, Zhang L, Yang C, Yang N. Development and drought escape response in Arabidopsis thaliana are regulated by AtPLC1 in response to abscisic acid. PLANTA 2024; 260:121. [PMID: 39436424 DOI: 10.1007/s00425-024-04554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
MAIN CONCLUSION AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yue Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Liping Luo
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Jiaying Kou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Lulu Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chen Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Djalovic I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, Prasad PVV, Varshney RK. Maize and heat stress: Physiological, genetic, and molecular insights. THE PLANT GENOME 2024; 17:e20378. [PMID: 37587553 DOI: 10.1002/tpg2.20378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.
Collapse
Affiliation(s)
- Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Sayanta Kundu
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, USA
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Montazerinezhad S, Solouki M, Emamjomeh A, Kavousi K, Taheri A, Shiri Y. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Gene 2024; 896:148030. [PMID: 38008270 DOI: 10.1016/j.gene.2023.148030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Sistan Yaghooti grape variety, despite characteristics such as early ripening, is vulnerable to cluster rot due to small berries and dense clusters. In this regard, AS may serve as a regulatory mechanism during developmental processes and in response to environmental signals. RNA-Seq analysis was performed to measure gene expression and the extent of AS events in the cluster growth and development stages of Sistan Yaghooti grape. The number of AS events increased during stages, suggesting that it contributes to the grapevine's adaptability to various stresses. In addition, DEG and DAS genes showed little overlap in cluster growth stages. Functional analysis of 19,194 DAS -gene sets showed that VIT_06s0004g06670 gene is involved in the activation of calcium channels (Ca2+) through the activation of 5 PLC biosynthetic pathways. Among the 27,229 DEG -sets, VIT_07s0005g05320 gene showed higher expression. Interestingly, this gene is involved in the synthesis of an EF -hand domain-containing protein capable of binding to Ca2+ by activating 4 biochemical pathways. These genes increase cytosolic Ca2+ concentration, enhancing plant stress tolerance and resistance to cracking. These results show that AS can respond independently to different types of stress. Among the other DAS genes, the GA2ox gene (VvGA2ox) showed an increase in AS events during cluster development. This gene is critical for initiating the degradation process of GA and plays a crucial role in different stages of seed development. Therefore, it is very likely that this gene is one of the main factors responsible for the density and seedlessness of Sistan Yaghooti grape.
Collapse
Affiliation(s)
- Somayeh Montazerinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tenn, United States
| | - Yasoub Shiri
- Agronomy and Plant Breeding Department, Agriculture Research Center, Zabol Research Institute, Zabol, Iran; Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
| |
Collapse
|
6
|
Fang C, Hamilton JP, Vaillancourt B, Wang YW, Wood JC, Deans NC, Scroggs T, Carlton L, Mailloux K, Douches DS, Nadakuduti SS, Jiang J, Buell CR. Cold stress induces differential gene expression of retained homeologs in Camelina sativa cv Suneson. FRONTIERS IN PLANT SCIENCE 2023; 14:1271625. [PMID: 38034564 PMCID: PMC10687638 DOI: 10.3389/fpls.2023.1271625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Camelina sativa (L.) Crantz, a member of the Brassicaceae, has potential as a biofuel feedstock which is attributable to the production of fatty acids in its seeds, its fast growth cycle, and low input requirements. While a genome assembly is available for camelina, it was generated from short sequence reads and is thus highly fragmented in nature. Using long read sequences, we generated a chromosome-scale, highly contiguous genome assembly (644,491,969 bp) for the spring biotype cultivar 'Suneson' with an N50 contig length of 12,031,512 bp and a scaffold N50 length of 32,184,682 bp. Annotation of protein-coding genes revealed 91,877 genes that encode 133,355 gene models. We identified a total of 4,467 genes that were significantly up-regulated under cold stress which were enriched in gene ontology terms associated with "response to cold" and "response to abiotic stress". Coexpression analyses revealed multiple coexpression modules that were enriched in genes differentially expressed following cold stress that had putative functions involved in stress adaptation, specifically within the plastid. With access to a highly contiguous genome assembly, comparative analyses with Arabidopsis thaliana revealed 23,625 A. thaliana genes syntenic with 45,453 Suneson genes. Of these, 24,960 Suneson genes were syntenic to 8,320 A. thaliana genes reflecting a 3 camelina homeolog to 1 Arabidopsis gene relationship and retention of all three homeologs. Some of the retained triplicated homeologs showed conserved gene expression patterns under control and cold-stressed conditions whereas other triplicated homeologs displayed diverged expression patterns revealing sub- and neo-functionalization of the homeologs at the transcription level. Access to the chromosome-scale assembly of Suneson will enable both basic and applied research efforts in the improvement of camelina as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Yi-Wen Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Joshua C. Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Natalie C. Deans
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Taylor Scroggs
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lemor Carlton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Kathrine Mailloux
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - David S. Douches
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
9
|
Luo P, Jiang A, Zhou Y, Yang M, Zhou X, Yang Y, Yu J, Tang X. Phospholipase C is a novel regulator at the early stages of microspore embryogenesis in Nicotiana tabacum. PLANT SIGNALING & BEHAVIOR 2022; 17:2094618. [PMID: 35786356 PMCID: PMC9254995 DOI: 10.1080/15592324.2022.2094618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Microspore transfers the developmental fate into embryogenesis in vitro regulated by determinant factors of stress-induced. However, the key regulators of microspore embryogenesis (ME) are still largely undiscovered to reveal the mechanism of cell fate transition. Here, we report that Phospholipase C (PLC) is involved at the early stages of ME in Nicotiana tabacum. NtPLC2/3/4 are expressed at the initial stages of ME. The expression levels of NtPLC2/3 are transient activated after 3 days in culture, while the expression level of NtPLC4 maintains relatively stable. Inhibition of PLCs induces the decrease in NtPLC2/3/4 expression level and decline of ME yield. We confirm that lipids in microspore are degraded and then re-accumulate at first embryonic division stage. Inhibition of PLCs suppresses the lipids metabolism at the early stages of ME. Thus, we propose that PLCs-mediated lipid metabolism is a novel regulator at the early stages of ME.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Aixi Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Yi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Mingchun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Xiaotong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| | - Jun Yu
- Tobacco Research Institute of Hubei ProvinceWuhan, Hubei, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan,HubeiChina
| |
Collapse
|
10
|
Zhao A, Cui C, Li F, Li C, Naveed S, Dong J, Gao X, Rustgi S, Wen S, Yang M. Heterologous expression of the TaPI-PLC1-2B gene enhanced drought and salt tolerance in transgenic rice seedlings. Heredity (Edinb) 2022; 129:336-345. [PMID: 36253558 PMCID: PMC9709057 DOI: 10.1038/s41437-022-00566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023] Open
Abstract
Drought and salt stress are important factors that affect plant growth and development and cause crop yield reductions worldwide. Phospholipase C is a class of enzymes that can hydrolyze phospholipids, and it has been shown to play an important role in plant growth regulation and stress response. We used rice as a model to investigate the function of the wheat TaPI-PLC1-2B gene in salt and drought tolerance. For this purpose, we heterologously expressed the TaPI-PLC1-2B gene in rice and studied the transcriptional differences in transgenic and wide-type rice plants in the presence and absence of drought and salt stress. Our results showed that 2130 and 1759 genes expressed differentially in the TaPI-PLC1-2B overexpression rice line under salt and drought stress, respectively. Gene ontology enrichment results showed that differentially expressed genes (DEGs) were significantly enriched in cellular process, metabolic process, stimulus-response, cell, organelle, catalytic activity, and other functional processes under salt and drought stress. In addition, the Kyoto Encyclopedia of Genes and Genomes pathway analysis showed DEG enrichment in plant-pathogen interaction, phosphoinositol, plant hormones, and other signaling pathways under the two stress treatments. Furthermore, the chromosomal localization of salt and drought stress-responsive DEGs showed a clear distribution pattern on specific rice chromosomes. For instance, the greatest number of drought stress-responsive genes mapped to rice chromosomes 1 and 6. The current analysis has built the basis for future explorations to decipher the TaPI-PLC1-2B-mediated plant stress response mechanism in the relatively challenging wheat system.
Collapse
Affiliation(s)
- Ahui Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chao Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Fang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chenyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, USA
| | - Jian Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiang Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, USA.
| | - Shanshan Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Mingming Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| |
Collapse
|
11
|
El-Sappah AH, Rather SA, Wani SH, Elrys AS, Bilal M, Huang Q, Dar ZA, Elashtokhy MMA, Soaud N, Koul M, Mir RR, Yan K, Li J, El-Tarabily KA, Abbas M. Heat Stress-Mediated Constraints in Maize ( Zea mays) Production: Challenges and Solutions. FRONTIERS IN PLANT SCIENCE 2022; 13:879366. [PMID: 35615131 PMCID: PMC9125997 DOI: 10.3389/fpls.2022.879366] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 05/05/2023]
Abstract
An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Shabir A. Rather
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops Khudwani Anantnag, SKUAST–Kashmir, Srinagar, India
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muhammad Bilal
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Qiulan Huang
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | - Zahoor Ahmad Dar
- Dryland Agriculture Research Station, SKUAST–Kashmir, Srinagar, India
| | | | - Nourhan Soaud
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
12
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
13
|
Liu L, Gao H, Li S, Han Z, Li B. Calcium signaling networks mediate nitrate sensing and responses in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1938441. [PMID: 34180337 PMCID: PMC8330996 DOI: 10.1080/15592324.2021.1938441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 05/31/2023]
Abstract
Nitrate signaling integrates and coordinates the expression of a wide range of genes, metabolic pathways and ultimately, plant growth and development. Calcium signaling is proved to be involved in the primary nitrate response pathway. However, it is much less understood how calcium signaling mediates nitrate sensing and responses from the extracellular space to cytoplasm, then to the nucleus. In this review, we describe how transceptor-channel complex (cyclic nucleotide-gated channel protein 15 interacting with nitrate transceptor, CNGC15-NRT1.1), calcineurin B-like proteins (CBLs, CBL1, CBL9), CBL-interacting protein kinases (CIPKs), phospholipase C (PLC) and calcium-dependent protein kinases (CDPKs, also CPKs), acting as key players, complete a potential backbone of the nitrate-signaling pathway, from the plasma membrane to the nucleus. NRT1.1 together with CBL1/9-CIPK23 and CBL-CIPK8 links the NO3- signaling to cytoplasmic and nuclear regulators and triggers downstream NO3- responses. PLCs and inositol 1, 4, 5-triphosphate (IP3) connect NO3- signaling and cytoplasmic Ca2+ signature. CPK10/30/32 fill the gap between NRT1.1 and NIN-like protein (NLP) transcription factors. The arabidopsis nitrate regulated1 (ANR1) is induced from the endosome by the Ca2+-CPKs-NLPs signaling pathway activated by the unphosphorylated form of NRT1.1 (NRT1.1 T101A) at high nitrate condition. Understanding how calcium signaling interconnects the upstream nitrate sensor complex with downstream multiple sensors of the nitrate-signaling pathway is key to completing the nutrient-growth regulatory networks.
Collapse
Affiliation(s)
- Li Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Huanhuan Gao
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Shaoxuan Li
- Fruit & Tea Research Institute, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Zhen Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| |
Collapse
|
14
|
Phosphoinositide-specific phospholipase C gene involved in heat and drought tolerance in wheat (Triticum aestivum L.). Genes Genomics 2021; 43:1167-1177. [PMID: 34138415 DOI: 10.1007/s13258-021-01123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Phosphoinositide-specific phospholipase C proteins mediate environmental stress responses in many plants. However, the potential of PI-PLC genes involved with abiotic stress tolerance in wheat remains un-explored. OBJECTIVE To study TaPLC1 genetic relation with wheat drought and heat resistance. METHODS The seedlings were treated with PI-PLC inhibitor U73122 at the single leaf stage. The seedlings were treated with drought and heat stress at the two leaf stage, and some physiological indexes and the expression profile of TaPLC1 gene were determined. And the TaPLC1 overexpression vector was transferred to Arabidopsis and selected to T3 generation for drought and heat stress treatment. RESULTS After 4 h of drought and heat stress, the SOD activity, MDA and soluble sugar content of the two cultivars with inhibitor were higher than those without inhibitor, the chlorophyll content decreased. CS seedlings showed significant wilting phenomenon, and TAM107 showed slight wilting. After the elimination of drought and heat stress, all seedling wilting gradually recovered, while the leaf tips of the two varieties treated with inhibitors began to wilt and turn yellow, which was more significant 5 days after the drought and heat stress, while the degree of spring wilting and yellow in CS was earlier than that in TAM107. The expression patterns of TaPLC1 gene were different in the two cultivars, but the expression levels reached the maximum at 30 min of heat stress. The change of TaPLC1 expression in TAM107 without inhibitor treatment was significantly greater than that in CS. The expression level of TaPLC1 in the two cultivars under stress was significantly different between the two cultivars treated with inhibitor and untreated, and was lower than that of the normal plants under normal conditions. These results indicated that inhibition of TaPLC1 gene expression could enhance the sensitivity of seedlings to stress. In Arabidopsis, the root lengths of transgenic and wild-type seedlings were shortened after drought stress treatment, but the root lengths of transgenic plants decreased slightly. And the expression of TaPLC1 gene was significantly increased after drought and heat stress. This indicated that overexpression of TaPLC1 improved drought resistance of Arabidopsis. CONCLUSIONS The results of this study suggest that TaPLC1 may be involved in the regulation mechanism of drought and heat stress in wheat.
Collapse
|
15
|
Wang X, Liu Y, Li Z, Gao X, Dong J, Yang M. Expression and evolution of the phospholipase C gene family in Brachypodium distachyon. Genes Genomics 2020; 42:1041-1053. [PMID: 32712839 DOI: 10.1007/s13258-020-00973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that hydrolyzes phospholipids and plays an important role in plant growth and development. The Brachypodium distachyon is a model plant of Gramineae, but the research on PLC gene family of Brachypodium has not been reported. OBJECTIVE This study was performed to identify the PLC family gene in Brachypodium and to determine the expression profiles of PLCs under the abiotic stress. METHODS Complete genome sequences and transcriptomes of Brachypodium were downloaded from the PLAZA. The hidden Markov model-based profile of the conserved PLC domain was submitted as a query to identify all potential PLC domain sequences with HMMER software. Expression profiles of BdPLCs were obtained based on the qRT-PCR analysis. RESULTS There were 8 PLC genes in Brachypodium (BdPI-PLCs 1-4 and BdNPCs 1-4). All members of BdPI-PLC had three conserved domains of X, Y, and C2, and no EF-hand was found. All BdNPCs contained a phosphatase domain. BdPI-PLC genes were distributed on Chr1, Chr2 and Chr4, with different types and numbers of cis-regulatory elements in their respective gene promoters. Phylogenetic analysis showed that the genetic relationship between Brachypodium and rice was closer than Arabidopsis. The expression patterns of BdPI-PLC gene under abiotic stresses (drought, low temperature, high temperature and salt stress) were up-regulated, indicated their important roles in response to low temperature, high temperature, drought and salt stresses. CONCLUSIONS This study provides comprehensive information for the study of Brachypodium PLC gene family and lays a foundation for further research on the molecular mechanism of Brachypodium stress adaptation.
Collapse
Affiliation(s)
- Xianguo Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat ( Triticum aestivum L.). PLANTS 2020; 9:plants9070885. [PMID: 32668812 PMCID: PMC7412115 DOI: 10.3390/plants9070885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Phospholipid-hydrolyzing enzymes include members of the phospholipase C (PLC) family that play important roles in regulating plant growth and responding to stress. In the present study, a systematic in silico analysis of the wheat PLC gene family revealed a total of 26 wheat PLC genes (TaPLCs). Phylogenetic and sequence alignment analyses divided the wheat PLC genes into 2 subfamilies, TaPI-PLC (containing the typical X, Y, and C2 domains) and TaNPC (containing a phosphatase domain). TaPLC expression patterns differed among tissues, organs, and under abiotic stress conditions. The transcript levels of 8 TaPLC genes were validated through qPCR analyses. Most of the TaPLC genes were sensitive to salt stress and were up-regulated rapidly, and some were sensitive to low temperatures and drought. Overexpression of TaPI-PLC1-2B significantly improved resistance to salt and drought stress in Arabidopsis, and the primary root of P1-OE was significantly longer than that of the wild type under stress conditions. Our results not only provide comprehensive information for understanding the PLC gene family in wheat, but can also provide a solid foundation for functional characterization of the wheat PLC gene family.
Collapse
|
17
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
18
|
Shuai L, Li L, Sun J, Liao L, Duan Z, Li C, He X. Role of phospholipase C in banana in response to anthracnose infection. Food Sci Nutr 2020; 8:1038-1045. [PMID: 32148812 PMCID: PMC7020292 DOI: 10.1002/fsn3.1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipase C (PLC) plays an important role in plant immunity, and anthracnose caused by the Colletotrichum species is a common postharvest disease of the banana fruit. This study aims to evaluate the role of PLC in anthrax resistance in banana. The experimental group of banana samples was treated with a banana anthracnose conidia suspension, and the control group was treated with distilled water. After inoculation, the groups were sprayed with ethephon, and indicators, such as hardness and conductivity changes; PLC activity, 1,2-diacylglycerol (DAG) and phosphatidic acid (PA)content; and MaPLC-1and MaPLC-2 expression levels, were assessed at 0, 3, 6, 9, 12, and 15 days. Moreover, the expression levels of MaPLC-1 and MaPLC-2 were detected in various tissues. The hardness of banana fruits in the experimental group decreased faster than that in the control group. Furthermore, the conductivity was higher in the experimental group than in the control group. Regarding PLC activity, DAG, and PA content, bananas in the experimental group showed higher activities than those in the control group. Moreover, relatively higher expression of PLC mRNA was detected in anthracnose-inoculated tissues. The evaluation of MaPLC-1 and MaPLC-2 expression levels showed that the mature peel had the highest MaPLC-1 expression level. However, the MaPLC-2 gene was expressed at relatively low levels in the fruit and at relatively high levels in the flower organs. PLC might play a role in fruit ripening in response to anthracnose resistance.
Collapse
Affiliation(s)
- Liang Shuai
- Guangxi Crop Genetic Improvement and Biotechnology Key LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
| | - Li Li
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jian Sun
- Guangxi Crop Genetic Improvement and Biotechnology Key LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
| | - Zhenhua Duan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouGuangxiChina
| | - Changbao Li
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyGuangxi Academy of Agricultural SciencesNanningChina
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
19
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
20
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor (HIF) from the coralloid roots of Cycas revoluta (Cycadaceae). Sci Rep 2019; 9:4751. [PMID: 30894551 PMCID: PMC6426835 DOI: 10.1038/s41598-019-39647-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/29/2019] [Indexed: 11/27/2022] Open
Abstract
Coralloid roots are specialized tissues of cycads (Cycas revoluta) that are involved in symbioses with nitrogen-fixing Nostoc cyanobacteria. We found that a crude methanolic extract of coralloid roots induced differentiation of the filamentous cell aggregates of Nostoc species into motile hormogonia. Hence, the hormogonium-inducing factor (HIF) was chased using bioassay-based isolation, and the active principle was characterized as a mixture of diacylglycerols (DAGs), mainly composed of 1-palmitoyl-2-linoleoyl-sn-glycerol (1), 1-palmitoyl-2-oleoyl-sn-glycerol (2), 1-stearoyl-2-linolenoyl-sn-glycerol (3), and 1-stearoyl-2-linoleoyl-sn-glycerol (4). Enantioselectively synthesised compound 1 showed a clear HIF activity at 1 nmol (0.6 µg) disc−1 for the filamentous cells, whereas synthesised 2-linoleoyl-3-palmitoyl-sn-glycerol (1′) and 1-palmitoyl-2-linoleoyl-rac-glycerol (1/1′) were less active than 1. Conversely, synthesised 1-linoleoyl-2-palmitoyl-rac-glycerol (8/8′) which is an acyl positional isomer of compound 1 was inactive. In addition, neither 1-monoacylglycerols nor phospholipids structurally related to 1 showed HIF-like activities. As DAGs are protein kinase C (PKC) activators, 12-O-tetradecanoylphorbol-13-acetate (12), urushiol C15:3-Δ10,13,16 (13), and a skin irritant anacardic acid C15:1-Δ8 (14) were also examined for HIF-like activities toward the Nostoc cells. Neither 12 nor 13 showed HIF-like activities, whereas 14 showed an HIF-like activity at 1 nmol/disc. These findings appear to indicate that some DAGs act as hormogonium-inducing signal molecules for filamentous Nostoc cyanobacteria.
Collapse
|
22
|
Lee HJ, Park OK. Lipases associated with plant defense against pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:51-58. [PMID: 30709493 DOI: 10.1016/j.plantsci.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
When facing microbe invaders, plants activate genetic and metabolic defense mechanisms and undergo extracellular and intracellular changes to obtain a certain level of host resistance. Dynamic adjustment and adaptation occur in structures containing lipophilic compounds and cellular metabolites. Lipids encompassing fatty acids, fatty acid-based polymers, and fatty acid derivatives are part of the fundamental architecture of cells and tissues and are essential compounds in numerous biological processes. Lipid-associated plant defense responses are mostly facilitated by the activation of lipases (lipid hydrolyzing proteins), which cleave or transform lipid substrates in various subcellular compartments. In this review, several types of plant defense-associated lipases are described, including their molecular aspects, enzymatic actions, cellular functions, and possible functional relevance in plant defense. Defensive roles are discussed considering enzyme properties, lipid metabolism, downstream regulation, and phenotypic traits in loss-of-function mutants.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Ohkmae K Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|
24
|
Undurraga SF, Ibarra-Henríquez C, Fredes I, Álvarez JM, Gutiérrez RA. Nitrate signaling and early responses in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2541-2551. [PMID: 28369507 PMCID: PMC5854014 DOI: 10.1093/jxb/erx041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient that impacts many aspects of plant physiology, growth, and development. Besides its nutritional role, N nutrient and metabolites act as signaling molecules that regulate the expression of a wide range of genes and biological processes. In this review, we describe recent advances in the understanding of components of the nitrate signaling pathway. Recent evidence posits that in one nitrate signaling pathway, nitrate sensed by NRT1.1 activates a phospholipase C activity that is necessary for increased cytosolic calcium levels. The nitrate-elicited calcium increase presumably activates calcium sensors, kinases, or phosphatases, resulting in changes in expression of primary nitrate response genes. Consistent with this model, nitrate treatments elicit proteome-wide changes in phosphorylation patterns in a wide range of proteins, including transporters, metabolic enzymes, kinases, phosphatases, and other regulatory proteins. Identifying and characterizing the function of the different players involved in this and other nitrate signaling pathways and their functional relationships is the next step to understand N responses in plants.
Collapse
Affiliation(s)
- Soledad F Undurraga
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Catalina Ibarra-Henríquez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Isabel Fredes
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - José Miguel Álvarez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation. Millennium Nucleus Center for Plant Systems and Synthetic Biology. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
25
|
Steffens T, Duda K, Lindner B, Vorhölter FJ, Bednarz H, Niehaus K, Holst O. The lipopolysaccharide of the crop pathogen Xanthomonas translucens pv. translucens: chemical characterization and determination of signaling events in plant cells. Glycobiology 2017; 27:264-274. [PMID: 28177490 DOI: 10.1093/glycob/cww093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022] Open
Abstract
Xanthomonas translucens pv. translucens (Xtt) is a Gram-negative pathogen of crops from the plant family Poaceae. The lipopolysaccharide (LPS) of Xtt was isolated and chemically characterized. The analyses revealed the presence of rhamnose, xylose, mannose, glucose, galacturonic acid, phosphates, 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo) and fatty acids (10:0, 11:0, 11:0(3-OH) i/a, 11:0(3-OH), 12:0(3-OH) i/a, 12:0(3-OH), 12:0, 13:0(3-OH) i, 13:0(3-OH) a, 13:0(3-OH), 14:0(3-OH) i/a, 14:0(3-OH) and 16:0). The rough type of LPS (lipooligosaccharides; LOS) was isolated and its composition determined utilizing mass spectrometry. The structure of core-lipid A backbone was revealed by nuclear magnetic resonance (NMR) spectroscopy performed on O-deacylated LOS sample, and was shown to be: α-D-Manp-(1→3)-α-D-Manp-(1→3)-β-D-Glcp-(1→4)-α-D-Manp-(1→5)-α-Kdo-(2→6)-β-D-GlcpN-(1→6)-α-D-GlcpN. 4-α-Man and Kdo were further substituted via phosphodiester groups by two galactopyranuronic acids. Xtt LPS elicited a stress response in Nicotiana tabacum suspension cell cultures, namely a transient calcium signal and the generation of H2O2 was observed. Pharmacological studies indicated the involvement of plasma membrane calcium channels, kinases and phospholipase C as key factors in Xtt LPS induced pathogen signaling.
Collapse
Affiliation(s)
- Tim Steffens
- Abteilung 27, Proteom- und Metabolomforschung, Fakultät für Biologie & Centre for Biotechnology (CeBiTec) Universität Bielefeld, 33615 Bielefeld, Germany
| | - Katarzyna Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, 23845 Borstel, Germany
| | - Buko Lindner
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Frank-Jörg Vorhölter
- Abteilung 27, Proteom- und Metabolomforschung, Fakultät für Biologie & Centre for Biotechnology (CeBiTec) Universität Bielefeld, 33615 Bielefeld, Germany
| | - Hanna Bednarz
- Abteilung 27, Proteom- und Metabolomforschung, Fakultät für Biologie & Centre for Biotechnology (CeBiTec) Universität Bielefeld, 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Abteilung 27, Proteom- und Metabolomforschung, Fakultät für Biologie & Centre for Biotechnology (CeBiTec) Universität Bielefeld, 33615 Bielefeld, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, 23845 Borstel, Germany
| |
Collapse
|
26
|
Staudt E, Ramasamy P, Plattner H, Simon M. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3157-3168. [PMID: 27693913 DOI: 10.1016/j.bbamem.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.
Collapse
Affiliation(s)
- Emanuel Staudt
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany; University of Kaiserslautern, Department of Biology, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Pathmanaban Ramasamy
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| | - Helmut Plattner
- University of Konstanz, Senior Research Group for Cell Biology and Ultrastructure Research, Department of Biology, 78457 Konstanz, Germany
| | - Martin Simon
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany.
| |
Collapse
|
27
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
28
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
29
|
Liu ZQ, Qiu AL, Shi LP, Cai JS, Huang XY, Yang S, Wang B, Shen L, Huang MK, Mou SL, Ma XL, Liu YY, Lin L, Wen JY, Tang Q, Shi W, Guan DY, Lai Y, He SL. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3683-98. [PMID: 25922484 DOI: 10.1093/jxb/erv161] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.
Collapse
Affiliation(s)
- Zhi-qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-lian Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lan-ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jin-sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xue-ying Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bo Wang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lei Shen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mu-kun Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shao-liang Mou
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiao-Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan-yan Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lin Lin
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jia-yu Wen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Qian Tang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wei Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - De-yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan Lai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shui-lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
30
|
Zhang X, Shen Z, Sun J, Yu Y, Deng S, Li Z, Sun C, Zhang J, Zhao R, Shen X, Chen S. NaCl-elicited, vacuolar Ca(2+) release facilitates prolonged cytosolic Ca(2+) signaling in the salt response of Populus euphratica cells. Cell Calcium 2015; 57:348-65. [PMID: 25840638 DOI: 10.1016/j.ceca.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
High environmental salt elicits an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) in plants, which is generated by extracellular Ca(2+) influx and Ca(2+) release from intracellular stores, such as vacuole and endoplasmic reticulum. This study aimed to determine the physiological mechanisms underlying Ca(2+) release from vacuoles and its role in ionic homeostasis in Populus euphratica. In vivo Ca(2+) imaging showed that NaCl treatment induced a rapid elevation in [Ca(2+)]cyt, which was accompanied by a subsequent release of vacuolar Ca(2+). In cell cultures, NaCl-altered intracellular Ca(2+) mobilization was abolished by antagonists of inositol (1, 4, 5) trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPR) signaling pathways, but not by slow vacuolar (SV) channel blockers. Furthermore, the NaCl-induced vacuolar Ca(2+) release was dependent on extracellular ATP, extracellular Ca(2+) influx, H2O2, and NO. In vitro Ca(2+) flux recordings confirmed that IP3, cADPR, and Ca(2+) induced substantial Ca(2+) efflux from intact vacuoles, but this vacuolar Ca(2+) flux did not directly respond to ATP, H2O2, or NO. Moreover, the IP3/cADPR-mediated vacuolar Ca(2+) release enhanced the expression of salt-responsive genes that regulated a wide range of cellular processes required for ion homeostasis, including cytosolic K(+) maintenance, Na(+) and Cl(-) exclusion across the plasma membrane, and Na(+)/H(+) and Cl(-)/H(+) exchanges across the vacuolar membrane.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Zedan Shen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Yicheng Yu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Cunhua Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Jian Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China.
| |
Collapse
|
31
|
Berrabah F, Bourcy M, Cayrel A, Eschstruth A, Mondy S, Ratet P, Gourion B. Growth conditions determine the DNF2 requirement for symbiosis. PLoS One 2014; 9:e91866. [PMID: 24632747 PMCID: PMC3954807 DOI: 10.1371/journal.pone.0091866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Marie Bourcy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Anne Cayrel
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Alexis Eschstruth
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Samuel Mondy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
- * E-mail:
| | - Benjamin Gourion
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| |
Collapse
|