1
|
Thapa A, Hasan MR, Kabir AH. Trichoderma afroharzianum T22 Induces Rhizobia and Flavonoid-Driven Symbiosis to Promote Tolerance to Alkaline Stress in Garden Pea. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298200 DOI: 10.1111/pce.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Soil alkalinity is a limiting factor for crops, yet the role of beneficial fungi in mitigating this abiotic stress in garden pea is understudied. In this study, Trichoderma afroharzianum T22 colonised the roots of garden pea cultivars exposed to soil alkalinity in a host-specific manner. In alkaline-exposed Sugar Snap, T22 improved growth parameters, consistent with increased tissue mineral content, particularly Fe and Mn, as well as enhanced rhizosphere siderophore levels. The split-root assay demonstrated that the beneficial effects of T22 on alkaline stress mitigation are the result of a whole-plant association rather than localised root-specific effects. RNA-seq analysis showed 575 and 818 differentially expressed genes upregulated and downregulated in the roots inoculated with T22 under alkaline conditions. The upregulated genes were mostly involved in the flavonoid biosynthetic pathway (monooxygenase activity, ammonia-lyase activity, 4-coumarate-CoA ligase), along with genes related to mineral transport and redox homoeostasis. Further, a flavonoid precursor restored plant health even in the absence of T22, confirming the role of microbial symbiosis in mitigating alkaline stress. Interestingly, T22 restored the abundance of rhizobia, particularly Rhizobium leguminosarum and Rhizobium indicum, along with the induction of NifA, NifD, and NifH in nodules, suggesting a connection between T22 and rhizobia under soil alkalinity. Further, the elevated rhizosphere siderophore, root flavonoid, expression of PsCoA (4-coumarate-CoA ligase) as well as the relative abundance of TaAOX1 and R. leguminosarum diminished when T22 was substituted with exogenous Fe. This suggests that exogenous Fe eliminates the need for microbiome-driven mineral mobilisation, while T22-mediated alkaline stress mitigation depends on flavonoid-driven symbiosis and R. leguminosarum abundance. It was further supported by the positive interaction of T22 on R. leguminosarum growth in alkaline media. Thus, the beneficial effect of T22 on rhizobia likely stems from their interactions, not solely from the improved mineral status, particularly Fe, in plants. This study provides the first mechanistic insights into T22 interactions with host and rhizobia, advancing microbiome strategies to alleviate soil alkalinity in peas and other legumes.
Collapse
Affiliation(s)
- Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| |
Collapse
|
2
|
Aleksza D, Spiridon A, Tarkka M, Hauser MT, Hann S, Causon T, Kratena N, Stanetty C, George TS, Russell J, Oburger E. Phytosiderophore pathway response in barley exposed to iron, zinc or copper starvation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111919. [PMID: 37992897 DOI: 10.1016/j.plantsci.2023.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.
Collapse
Affiliation(s)
- David Aleksza
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria; University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Andreea Spiridon
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Marie-Theres Hauser
- University of Natural Resources and Life Sciences, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Tim Causon
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Nicolas Kratena
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian Stanetty
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | | | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria.
| |
Collapse
|
3
|
Entomopathogenic Fungi-Mediated Solubilization and Induction of Fe Related Genes in Melon and Cucumber Plants. J Fungi (Basel) 2023; 9:jof9020258. [PMID: 36836372 PMCID: PMC9960893 DOI: 10.3390/jof9020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Endophytic insect pathogenic fungi have a multifunctional lifestyle; in addition to its well-known function as biocontrol agents, it may also help plants respond to other biotic and abiotic stresses, such as iron (Fe) deficiency. This study explores M. brunneum EAMa 01/58-Su strain attributes for Fe acquisition. Firstly, direct attributes include siderophore exudation (in vitro assay) and Fe content in shoots and in the substrate (in vivo assay) were evaluated for three strains of Beauveria bassiana and Metarhizium bruneum. The M. brunneum EAMa 01/58-Su strain showed a great ability to exudate iron siderophores (58.4% surface siderophores exudation) and provided higher Fe content in both dry matter and substrate compared to the control and was therefore selected for further research to unravel the possible induction of Fe deficiency responses, Ferric Reductase Activity (FRA), and relative expression of Fe acquisition genes by qRT-PCR in melon and cucumber plants.. In addition, root priming by M. brunneum EAMa 01/58-Su strain elicited Fe deficiency responses at transcriptional level. Our results show an early up-regulation (24, 48 or 72 h post inoculation) of the Fe acquisition genes FRO1, FRO2, IRT1, HA1, and FIT as well as the FRA. These results highlight the mechanisms involved in the Fe acquisition as mediated by IPF M. brunneum EAMa 01/58-Su strain.
Collapse
|
4
|
Robe K, Conjero G, Dubos C. The Use of Spectral Imaging to Follow the Iron and pH-Dependent Accumulation of Fluorescent Coumarins. Methods Mol Biol 2023; 2665:23-30. [PMID: 37166589 DOI: 10.1007/978-1-0716-3183-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants challenged with iron deficiency produce in their roots and secrete into the rhizosphere several small molecules named coumarins that derive from the phenylpropanoid pathway. Coumarins are biosynthesized in different root cell types and transported to the root epidermis prior to their secretion in the surrounding media. Taking advantage of the natural fluorescence of most coumarins glycosides when exposed to UV light, we developed a method to uncover their individual cellular localization and accumulation. This approach couples spectral imaging acquisition and linear unmixing analysis. In this protocol, we describe guidelines, experimental setup, and conditions for the analysis of coumarins localization and accumulation in Arabidopsis thaliana root seedlings grown in control and iron deficiency conditions, at both acidic and alkaline pH.
Collapse
Affiliation(s)
- Kevin Robe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conjero
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
5
|
Kabir AH, Rahman MA, Rahman MM, Brailey‐Jones P, Lee K, Bennetzen JL. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. J Appl Microbiol 2022; 133:2760-2778. [PMID: 35665578 PMCID: PMC9796762 DOI: 10.1111/jam.15651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
| | - Philip Brailey‐Jones
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Ki‐Won Lee
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Jeffrey L. Bennetzen
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| |
Collapse
|
6
|
Robe K, Izquierdo E, Vignols F, Rouached H, Dubos C. The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health. TRENDS IN PLANT SCIENCE 2021; 26:248-259. [PMID: 33246890 DOI: 10.1016/j.tplants.2020.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 05/16/2023]
Abstract
Although abundant in soils, iron (Fe) is poorly bioavailable for plants. Improving Fe uptake in crops, enabling them to grow in Fe-depleted soils, has become a major focal interest. The secretion of Fe-mobilizing coumarins by plant roots recently emerged as an important factor allowing nongrass species to cope with low Fe bioavailability. The main molecular actors involved in the biosynthesis and secretion of coumarins have been identified, but the precise regulatory mechanisms that tune their production remain poorly understood. Here, we review the recent progress in coumarin synthesis and transport in plants and future research directions to gain knowledge of these mechanisms, which will offer novel opportunities for improving plant growth and health and for generating Fe-fortified crops.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Esther Izquierdo
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Hatem Rouached
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
7
|
Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host Microbe 2020; 28:825-837.e6. [PMID: 33027611 PMCID: PMC7738756 DOI: 10.1016/j.chom.2020.09.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Plants benefit from associations with a diverse community of root-colonizing microbes. Deciphering the mechanisms underpinning these beneficial services are of interest for improving plant productivity. We report a plant-beneficial interaction between Arabidopsis thaliana and the root microbiota under iron deprivation that is dependent on the secretion of plant-derived coumarins. Disrupting this pathway alters the microbiota and impairs plant growth in iron-limiting soil. Furthermore, the microbiota improves iron-limiting plant performance via a mechanism dependent on plant iron import and secretion of the coumarin fraxetin. This beneficial trait is strain specific yet functionally redundant across phylogenetic lineages of the microbiota. Transcriptomic and elemental analyses revealed that this interaction between commensals and coumarins promotes growth by relieving iron starvation. These results show that coumarins improve plant performance by eliciting microbe-assisted iron nutrition. We propose that the bacterial root microbiota, stimulated by secreted coumarins, is an integral mediator of plant adaptation to iron-limiting soils.
Collapse
|
8
|
Liang G, Zhang H, Li Y, Pu M, Yang Y, Li C, Lu C, Xu P, Yu D. Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:668-689. [PMID: 32237201 DOI: 10.1111/jipb.12933] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is indispensable for the growth and development of plants. It is well known that FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a key regulator of Fe uptake in Arabidopsis. Here, we identify the Oryza sativa FIT (also known as OsbHLH156) as the interacting partner of IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) that is critical for regulating Fe uptake. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations of OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicate that OsFIT and OsIRO2 function in the same genetic node. Further analyses suggest that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Yujie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| |
Collapse
|
9
|
Lei R, Li Y, Cai Y, Li C, Pu M, Lu C, Yang Y, Liang G. bHLH121 Functions as a Direct Link that Facilitates the Activation of FIT by bHLH IVc Transcription Factors for Maintaining Fe Homeostasis in Arabidopsis. MOLECULAR PLANT 2020; 13:634-649. [PMID: 31962167 DOI: 10.1016/j.molp.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) deficiency is prevalent in plants grown in neutral or alkaline soil. Plants have evolved sophisticated mechanisms that regulate Fe homeostasis, ensuring survival. In Arabidopsis, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a crucial regulator of Fe-deficiency response. FIT is activated indirectly by basic helix-loop-helix (bHLH) IVc transcription factors (TFs) under Fe deficiency; however, it remains unclear which protein(s) act as the linker to mediate the activation of FIT by bHLH IVc TFs. In this study, we characterize the functions of bHLH121 and demonstrate that it directly associates with the FIT promoter. We found that loss-of-function mutations of bHLH121 cause severe Fe-deficiency symptoms, reduced Fe accumulation, and disrupted expression of genes associated with Fe homeostasis. Genetic analysis showed that FIT is epistatic to bHLH121 and FIT overexpression partially rescues the bhlh121 mutant. Further investigations revealed that bHLH IVc TFs interact with and promote nuclear accumulation of bHLH121. We demonstrated that bHLH121 has DNA-binding activity and can bind the promoters of the FIT and bHLH Ib genes, but we did not find that it has either direct transcriptional activation or repression activity toward these genes. Meanwhile, we found that bHLH121 functions downstream of and is a direct target of bHLH IVc TFs, and its expression is induced by Fe deficiency in a bHLH IVc-dependent manner. Taken together, these results establish that bHLH121 functions together with bHLH IVc TFs to positively regulate the expression of FIT and thus plays a pivotal role in maintaining Fe homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yujie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
10
|
Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, Haustraete J, Tsai HH, Schmidt W, Vanholme B, Ralph J, Boerjan W. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. NATURE PLANTS 2019; 5:1066-1075. [PMID: 31501530 DOI: 10.1038/s41477-019-0510-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 07/30/2019] [Indexed: 05/23/2023]
Abstract
Coumarins, also known as 1,2-benzopyrones, comprise a large class of secondary metabolites that are ubiquitously found throughout the plant kingdom. In many plant species, coumarins are particularly important for iron acquisition and plant defence. Here, we show that COUMARIN SYNTHASE (COSY) is a key enzyme in the biosynthesis of coumarins. Arabidopsis thaliana cosy mutants have strongly reduced levels of coumarin and accumulate o-hydroxyphenylpropanoids instead. Accordingly, cosy mutants have reduced iron content and show growth defects when grown under conditions in which there is a limited availability of iron. Recombinant COSY is able to produce umbelliferone, esculetin and scopoletin from their respective o-hydroxycinnamoyl-CoA thioesters by two reaction steps-a trans-cis isomerization followed by a lactonization. This conversion happens partially spontaneously and is catalysed by light, which explains why the need for an enzyme for this conversion has been overlooked. The combined results show that COSY has an essential function in the biosynthesis of coumarins in organs that are shielded from light, such as roots. These findings provide routes to improving coumarin production in crops or by microbial fermentation.
Collapse
Affiliation(s)
- Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lisa Sundin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Keletso Carol Seetso
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry and the DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jin Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Metabolomics Core, VIB, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jurgen Haustraete
- Protein Core, VIB-UGent Center for Inflammation Research, VIB, Ghent University, Ghent, Belgium
| | - Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry and the DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
11
|
Tan X, Li K, Wang Z, Zhu K, Tan X, Cao J. A Review of Plant Vacuoles: Formation, Located Proteins, and Functions. PLANTS 2019; 8:plants8090327. [PMID: 31491897 PMCID: PMC6783984 DOI: 10.3390/plants8090327] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.
Collapse
Affiliation(s)
- Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Kaixia Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:287. [PMID: 30915094 PMCID: PMC6421314 DOI: 10.3389/fpls.2019.00287] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 05/03/2023]
Abstract
Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.
Collapse
Affiliation(s)
- Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Miguel A. Aparicio
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
13
|
Narayanan N, Beyene G, Chauhan RD, Gaitán-Solís E, Gehan J, Butts P, Siritunga D, Okwuonu I, Woll A, Jiménez-Aguilar DM, Boy E, Grusak MA, Anderson P, Taylor NJ. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol 2019; 37:144-151. [PMID: 30692693 PMCID: PMC6784895 DOI: 10.1038/s41587-018-0002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/20/2018] [Indexed: 02/01/2023]
Abstract
Less than 10% of the estimated average requirement (EAR) for iron and zinc is provided by consumption of storage roots of the staple crop cassava (Manihot esculenta Crantz) in West African human populations. We used genetic engineering to improve mineral micronutrient concentrations in cassava. Overexpression of the Arabidopsis thaliana vacuolar iron transporter VIT1 in cassava accumulated three- to seven-times-higher levels of iron in transgenic storage roots than nontransgenic controls in confined field trials in Puerto Rico. Plants engineered to coexpress a mutated A. thaliana iron transporter (IRT1) and A. thaliana ferritin (FER1) accumulated iron levels 7-18 times higher and zinc levels 3-10 times higher than those in nontransgenic controls in the field. Growth parameters and storage-root yields were unaffected by transgenic fortification in our field data. Measures of retention and bioaccessibility of iron and zinc in processed transgenic cassava indicated that IRT1 + FER1 plants could provide 40-50% of the EAR for iron and 60-70% of the EAR for zinc in 1- to 6-year-old children and nonlactating, nonpregnant West African women.
Collapse
Affiliation(s)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Jackson Gehan
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Paula Butts
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Ihuoma Okwuonu
- National Root Crops Research Institute, Umudike, Nigeria
| | - Arthur Woll
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | | | - Erick Boy
- Harvest Plus/International Food Policy Research Institute, Washington, DC, USA
| | - Michael A Grusak
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Paul Anderson
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
14
|
Abstract
This review deals with two essential plant mineral nutrients, iron (Fe) and phosphorus (P); the acquisition of both has important environmental and economic implications. Both elements are abundant in soils but are scarcely available to plants. To prevent deficiency, dicot plants develop physiological and morphological responses in their roots to specifically acquire Fe or P. Hormones and signalling substances, like ethylene, auxin and nitric oxide (NO), are involved in the activation of nutrient-deficiency responses. The existence of common inducers suggests that they must act in conjunction with nutrient-specific signals in order to develop nutrient-specific deficiency responses. There is evidence suggesting that P- or Fe-related phloem signals could interact with ethylene and NO to confer specificity to the responses to Fe- or P-deficiency, avoiding their induction when ethylene and NO increase due to other nutrient deficiency or stress. The mechanisms responsible for such interaction are not clearly determined, and thus, the regulatory networks that allow or prevent cross talk between P and Fe deficiency responses remain obscure. Here, fragmented information is drawn together to provide a clearer overview of the mechanisms and molecular players involved in the regulation of the responses to Fe or P deficiency and their interactions.
Collapse
|
15
|
Gonzalez-Aravena AC, Yunus K, Zhang L, Norling B, Fisher AC. Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth. RSC Adv 2018; 8:20263-20274. [PMID: 35541668 PMCID: PMC9080828 DOI: 10.1039/c8ra00951a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
The exoelectrogenic capacity of the cyanobacterium Synechococcus elongatus PCC7942 was studied in iron limited growth in order to establish conditions favouring extracellular electron transfer in cyanobacteria for photo-bioelectricity generation. Investigation into extracellular reduction of ferricyanide by Synechococcus elongatus PCC7942 demonstrated enhanced capability for the iron limited conditions in comparison to the iron sufficient conditions. Furtheremore, the significance of pH showed that higher rates of ferricyanide reduction occurred at pH 7, with a 2.7-fold increase with respect to pH 9.5 for iron sufficient cultures and 24-fold increase for iron limited cultures. The strategy presented induced exoelectrogenesis driven mainly by photosynthesis and an estimated redirection of the 28% of electrons from photosynthetic activity was achieved by the iron limited conditions. In addition, ferricyanide reduction in the dark by iron limited cultures also presented a significant improvement, with a 6-fold increase in comparison to iron sufficient cultures. Synechococcus elongatus PCC7942 ferricyanide reduction rates are unprecedented for cyanobacteria and they are comparable to those of microalgae. The redox activity of biofilms directly on ITO-coated glass, in the absence of any artificial mediator, was also enhanced under the iron limited conditions, implying that iron limitation increased exoelectrogenesis at the outer membrane level. Cyclic voltammetry of Synechococcus elongatus PCC7942 biofilms on ITO-coated glass showed a midpoint potential around 0.22 V vs. Ag/AgCl and iron limited biofilms had the capability to sustain currents in a saturated-like fashion. The present work proposes an iron related exoelectrogenic capacity of Synechococcus elongatus PCC7942 and sets a starting point for the study of this strain in order to improve photo-bioelectricity and dark-bioelectricity generation by cyanobacteria, including more sustainable mediatorless systems.
Collapse
Affiliation(s)
- A C Gonzalez-Aravena
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - K Yunus
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - L Zhang
- School of Biological Sciences, Nanyang Technological University 637551 Singapore
| | - B Norling
- School of Biological Sciences, Nanyang Technological University 637551 Singapore
| | - A C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
16
|
Waters BM, Amundsen K, Graef G. Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:10. [PMID: 29403520 PMCID: PMC5780454 DOI: 10.3389/fpls.2018.00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 05/04/2023]
Abstract
Alkaline soils comprise 30% of the earth and have low plant-available iron (Fe) concentration, and can cause iron deficiency chlorosis (IDC). IDC causes soybean yield losses of $260 million annually. However, it is not known whether molecular responses to IDC are equivalent to responses to low iron supply. IDC tolerant and sensitive soybean lines provide a contrast to identify specific factors associated with IDC. We used RNA-seq to compare gene expression under combinations of normal pH (5.7) or alkaline pH (7.7, imposed by 2.5 mM bicarbonate, or pH 8.2 imposed by 5 mM bicarbonate) and normal (25 μM) or low (1 μM) iron conditions from roots of these lines. Thus, we were able to treat pH and Fe supply as separate variables. We also noted differential gene expression between IDC sensitive and tolerant genotypes in each condition. Classical iron uptake genes, including ferric-chelate reductase (FCR) and ferrous transporters, were upregulated by both Fe deficiency and alkaline stress, however, their gene products did not function well at alkaline pH. In addition, genes in the phenylpropanoid synthesis pathway were upregulated in both alkaline and low Fe conditions. These genes lead to the production of fluorescent root exudate (FluRE) compounds, such as coumarins. Fluorescence of nutrient solution increased with alkaline treatment, and was higher in the IDC tolerant line. Some of these genes also localized to previously identified QTL regions associated with IDC. We hypothesize that FluRE become essential at alkaline pH where the classical iron uptake system does not function well. This work could result in new strategies to screen for IDC tolerance, and provide breeding targets to improve crop alkaline stress tolerance.
Collapse
Affiliation(s)
- Brian M. Waters
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | | |
Collapse
|
17
|
Chen YT, Wang Y, Yeh KC. Role of root exudates in metal acquisition and tolerance. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:66-72. [PMID: 28654805 DOI: 10.1016/j.pbi.2017.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Plants acquire mineral nutrients mostly through the rhizosphere; they secrete a large number of metabolites into the rhizosphere to regulate nutrient availability and to detoxify undesirable metal pollutants in soils. The secreted metabolites are inorganic ions, gaseous molecules, and mainly carbon-based compounds. This review focuses on the mechanisms and regulation of low-molecular-weight organic-compound exudation in terms of metal acquisition. We summarize findings on riboflavin/phenolic-facilitated and phytosiderophore-facilitated iron acquisition and discuss recent studies of the functions and secretion mechanisms of low-molecular-weight organic acids in heavy-metal detoxification.
Collapse
Affiliation(s)
- Yi-Tze Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
18
|
dos Santos RS, de Araujo AT, Pegoraro C, de Oliveira AC. Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification. Genet Mol Biol 2017; 40:312-325. [PMID: 28304072 PMCID: PMC5452141 DOI: 10.1590/1678-4685-gmb-2016-0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Iron is a well-known metal. Used by humankind since ancient times in many different ways, this element is present in all living organisms, where, unfortunately, it represents a two-way problem. Being an essential block in the composition of different proteins and metabolic pathways, iron is a vital component for animals and plants. That is why iron deficiency has a severe impact on the lives of different organisms, including humans, becoming a major concern, especially in developing countries where access to adequate nutrition is still difficult. On the other hand, this metal is also capable of causing damage when present in excess, becoming toxic to cells and affecting the whole organism. Because of its importance, iron absorption, transport and storage mechanisms have been extensively investigated in order to design alternatives that may solve this problem. As the understanding of the strategies that plants use to control iron homeostasis is an important step in the generation of improved plants that meet both human agricultural and nutritional needs, here we discuss some of the most important points about this topic.
Collapse
Affiliation(s)
- Railson Schreinert dos Santos
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
- Technology Development Center (CDTec), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| | | | - Camila Pegoraro
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
- Technology Development Center (CDTec), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
19
|
Leaden L, Pagani MA, Balparda M, Busi MV, Gomez-Casati DF. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. PLANT MOLECULAR BIOLOGY 2016; 92:613-628. [PMID: 27655366 DOI: 10.1007/s11103-016-0537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/29/2016] [Indexed: 05/26/2023]
Abstract
Plants overexpressing AtHSCB and hscb knockdown mutants showed altered iron homeostasis. The overexpression of AtHSCB led to activation of the iron uptake system and iron accumulation in roots without concomitant transport to shoots, resulting in reduced iron content in the aerial parts of plants. By contrast, hscb knockdown mutants presented the opposite phenotype, with iron accumulation in shoots despite the reduced levels of iron uptake in roots. AtHSCB play a key role in iron metabolism, probably taking part in the control of iron translocation from roots to shoots. Many aspects of plant iron metabolism remain obscure. The most known and studied homeostatic mechanism is the control of iron uptake in the roots by shoots. Nevertheless, this mechanism likely involves various unknown sensors and unidentified signals sent from one tissue to another which need to be identified. Here, we characterized Arabidopsis thaliana plants overexpressing AtHSCB, encoding a mitochondrial cochaperone involved in [Fe-S] cluster biosynthesis, and hscb knockdown mutants, which exhibit altered shoot/root Fe partitioning. Overexpression of AtHSCB induced an increase in root iron uptake and content along with iron deficiency in shoots. Conversely, hscb knockdown mutants exhibited increased iron accumulation in shoots and reduced iron uptake in roots. Different experiments, including foliar iron application, citrate supplementation and iron deficiency treatment, indicate that the shoot-directed control of iron uptake in roots functions properly in these lines, implying that [Fe-S] clusters are not involved in this regulatory mechanism. The most likely explanation is that both lines have altered Fe transport from roots to shoots. This could be consistent with a defect in a homeostatic mechanism operating at the root-to-shoot translocation level, which would be independent of the shoot control over root iron deficiency responses. In summary, the phenotypes of these plants indicate that AtHSCB plays a role in iron metabolism.
Collapse
Affiliation(s)
- Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
20
|
Fourcroy P, Tissot N, Gaymard F, Briat JF, Dubos C. Facilitated Fe Nutrition by Phenolic Compounds Excreted by the Arabidopsis ABCG37/PDR9 Transporter Requires the IRT1/FRO2 High-Affinity Root Fe(2+) Transport System. MOLECULAR PLANT 2016; 9:485-488. [PMID: 26415695 DOI: 10.1016/j.molp.2015.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 05/19/2023]
Affiliation(s)
- Pierre Fourcroy
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Nicolas Tissot
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Jean-Francois Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, SupAgro, Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France.
| |
Collapse
|
21
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
22
|
Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N, Anderson P. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:170-81. [PMID: 26475197 DOI: 10.1016/j.plantsci.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 05/21/2023]
Abstract
Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.
Collapse
Affiliation(s)
- Narayanan Narayanan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA.
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Eliana Gaitán-Solis
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Nigel Taylor
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Paul Anderson
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
23
|
Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. FRONTIERS IN PLANT SCIENCE 2015; 6:716. [PMID: 26442030 PMCID: PMC4568396 DOI: 10.3389/fpls.2015.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/27/2015] [Indexed: 05/03/2023]
Abstract
Iron (Fe) is essential for plant growth and development. However, alkaline soils, which occupy approximately 30% of the world's arable lands, are considered Fe-limiting for plant growth because insoluble Fe (III) chelates prevail under these conditions. In contrast, high bioavailability of Fe in acidic soils can be toxic to plants due to the ability of Fe ions to promote oxidative stress. Therefore, plants have evolved sophisticated mechanisms to sense and respond to the fluctuation of Fe availability in the immediate environment and to the needs of developing shoot tissues to preclude deficiency while avoiding toxicity. In this review, we focus on recent advances in our understanding of local and systemic signaling of Fe status with emphasis on the contribution of Fe, its interaction with other metals and metal ligands in triggering molecular responses that regulate Fe uptake and partitioning in the plant body.
Collapse
Affiliation(s)
| | | | | | - Olena K. Vatamaniuk
- *Correspondence: Olena K. Vatamaniuk, Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, 360 Tower Road, 608 Bradfield Hall, Ithaca, NY 14853, USA,
| |
Collapse
|