1
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
3
|
Banasiak J, Jamruszka T, Murray JD, Jasiński M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. PLANT PHYSIOLOGY 2021; 187:2071-2091. [PMID: 34618047 PMCID: PMC8644718 DOI: 10.1093/plphys/kiab280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań 60-632, Poland
| |
Collapse
|
4
|
Bian Z, Wang D, Liu Y, Xi Y, Wang X, Meng S. Analysis of Populus glycosyl hydrolase family I members and their potential role in the ABA treatment and drought stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:178-188. [PMID: 33848930 DOI: 10.1016/j.plaphy.2021.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Glycoside hydrolase family 1 (GH1) β-glucosidases (BGLUs) are encoded by a large number of genes and are involved in many developmental processes and stress responses in plants. Due to their importance in plant growth and development, genome-wide analyses have been conducted in the model plant species Arabidopsis thaliana, rice and maize but not in woody plant species, which have important economic and ecological value. In this study, we systematically analyzed Populus BGLUs (PtBGLUs) and demonstrated the involvement of several genes under stress conditions. Forty-four PtBGLUs were identified in Populus databases; these genes were located on 11 chromosomes, and the proteins of several PtBGLU genes were highly similar. More than 90% of PtBGLUs contain three conserved motifs. Collinearity results showed that 44 PtBGLU genes resulted from 12 tandem and 5 segmental duplication events. Phylogenetic analysis revealed that 128 BGLU genes from Populus trichocarpa, A. thaliana and Oryza sativa could be classified into 4 subgroups and subgroup Ⅱ and Ⅳ were differently having PtBGLUs and AtBGLUs. We further investigated whether several PtBGLUs responded to drought stress and ABA treatment, and the results showed that most of the selected BGLU genes were expressed in response to stress, which is consistent with previous studies involving rice and Arabidopsis homologous genes. Large numbers of stress-, hormone-, and development-related elements in the PtBGLU promoters suggest that BGLU genes may be involved in complex networks. Taken together, our results provide valuable information for an improved understanding of β-glucosidase function in woody plants.
Collapse
Affiliation(s)
- Zhan Bian
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China.
| | - Dongli Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China.
| | - Yunshan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404100, China
| | - Yimin Xi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Sen Meng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China.
| |
Collapse
|
5
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
6
|
Zhang C, Qi M, Zhang X, Wang Q, Yu Y, Zhang Y, Kong Z. Rhizobial infection triggers systemic transport of endogenous RNAs between shoots and roots in soybean. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1213-1226. [PMID: 32221813 DOI: 10.1007/s11427-019-1608-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 10/24/2022]
Abstract
Legumes have evolved a symbiotic relationship with rhizobial bacteria and their roots form unique nitrogen-fixing organs called nodules. Studies have shown that abiotic and biotic stresses alter the profile of gene expression and transcript mobility in plants. However, little is known about the systemic transport of RNA between roots and shoots in response to rhizobial infection on a genome-wide scale during the formation of legume-rhizobia symbiosis. In our study, we found that two soybean (Glycine max) cultivars, Peking and Williams, show a high frequency of single nucleotide polymorphisms; this allowed us to characterize the origin and mobility of transcripts in hetero-grafts of these two cultivars. We identified 4,552 genes that produce mobile RNAs in soybean, and found that rhizobial infection triggers mass transport of mRNAs between shoots and roots at the early stage of nodulation. The majority of these mRNAs are of relatively low abundance and their transport occurs in a selective manner in soybean plants. Notably, the mRNAs that moved from shoots to roots at the early stage of nodulation were enriched in many nodule-related responsive processes. Moreover, the transcripts of many known symbiosis-related genes that are induced by rhizobial infection can move between shoots and roots. Our findings provide a deeper understanding of endogenous RNA transport in legume-rhizobia symbiotic processes.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yijing Zhang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Smigielski L, Laubach EM, Pesch L, Glock JML, Albrecht F, Slusarenko A, Panstruga R, Kuhn H. Nodulation Induces Systemic Resistance of Medicago truncatula and Pisum sativum Against Erysiphe pisi and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1243-1255. [PMID: 31025899 DOI: 10.1094/mpmi-11-18-0304-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants encounter beneficial and detrimental microorganisms both above- and belowground and the health status of the plant depends on the composition of this pan-microbiome. Beneficial microorganisms contribute to plant nutrition or systemically or locally protect plants against pathogens, thus facilitating adaptation to a variety of environments. Induced systemic resistance, caused by root-associated microbes, manifests as aboveground resistance against necrotrophic pathogens and is mediated by jasmonic acid/ethylene-dependent signaling. By contrast, systemic acquired resistance relies on salicylic acid (SA) signaling and confers resistance against secondary infection by (hemi)biotrophic pathogens. To investigate whether symbiotic rhizobia that are ubiquitously found in natural ecosystems are able to modulate resistance against biotrophs, we tested the impact of preestablished nodulation of Medicago truncatula and pea (Pisum sativum) plants against infection by the powdery mildew fungus Erysiphe pisi. We found that root symbiosis interfered with fungal penetration of M. truncatula and reduced asexual spore formation on pea leaves independently of symbiotic nitrogen fixation. Improved resistance of nodulated plants correlated with elevated levels of free SA and SA-dependent marker gene expression upon powdery mildew infection. Our results suggest that nodulation primes the plants systemically for E. pisi-triggered SA accumulation and defense gene expression, resulting in increased resistance.
Collapse
Affiliation(s)
- Lara Smigielski
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Eva-Maria Laubach
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Lina Pesch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Joanna Marie Leyva Glock
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Frank Albrecht
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Alan Slusarenko
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
8
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
9
|
Wang C, Reid JB, Foo E. The Art of Self-Control - Autoregulation of Plant-Microbe Symbioses. FRONTIERS IN PLANT SCIENCE 2018; 9:988. [PMID: 30042780 PMCID: PMC6048281 DOI: 10.3389/fpls.2018.00988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/19/2018] [Indexed: 05/07/2023]
Abstract
Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes.
Collapse
Affiliation(s)
| | | | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Ahmad H, Hayat S, Ali M, Liu T, Cheng Z. The combination of arbuscular mycorrhizal fungi inoculation ( Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber ( Cucumis sativus L.) under salinity. Ecol Evol 2018; 8:5724-5740. [PMID: 29938088 PMCID: PMC6010694 DOI: 10.1002/ece3.4112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
Salinity is one of the major obstacles in the agriculture industry causing huge losses in productivity. Several strategies such as plant growth regulators with arbuscular mycorrhizal fungi (AMF) have been used to decrease the negative effects of salt stress. In our experiment, 28-homobrassinolide (HBL) with spraying intervals was combined with AMF (Glomus versiforme) in cucumber cultivars Jinyou 1# (salt sensitive) and (Changchun mici, in short, CCMC, salt tolerant) under NaCl (100 mmol/L). Studies have documented that the foliar application of HBL and AMF colonization can enhance tolerance to plants under stress conditions. However, the mechanism of the HBL spraying intervals after 15 and 30 days in combination with AMF in cucumber under salt stress is still unknown. Our results revealed that the HBL spraying interval after 15 days in combination with AMF resulted in improved growth, photosynthesis, and decreased sodium toxicity under NaCl. Moreover, the antioxidant enzymes SOD (superoxide dismutase; EC 1.15.1.1) and POD activity (peroxidase; EC 1.11.1.7) showed a gradual increase after every 10 days, while the CAT (catalase; EC 1.11.1.6) increased after 30 days of salt treatments in both cultivars. This research suggests that the enhanced tolerance to salinity was mainly related to elevated levels of antioxidant enzymes and lower uptake of Na+, which lowers the risk of ion toxicity and decreases cell membrane damage.
Collapse
Affiliation(s)
- Husain Ahmad
- College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sikandar Hayat
- College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Muhammad Ali
- College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Tao Liu
- College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhihui Cheng
- College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
11
|
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:48-56. [PMID: 28969802 DOI: 10.1016/j.plantsci.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE.
Collapse
Affiliation(s)
- Julien Verzeaux
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Bertrand Hirel
- Intitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, RD10, F-78026 Versailles Cedex, France.
| | - Frédéric Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Thierry Tétu
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| |
Collapse
|
12
|
Blake SN, Barry KM, Gill WM, Reid JB, Foo E. The role of strigolactones and ethylene in disease caused by Pythium irregulare. MOLECULAR PLANT PATHOLOGY 2016; 17:680-90. [PMID: 26377026 PMCID: PMC6638477 DOI: 10.1111/mpp.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth-promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant-microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant-pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole-plant levels using a set of well-characterized hormone mutants, including an ethylene-insensitive ein2 mutant and SL-deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests.
Collapse
Affiliation(s)
- Sara N Blake
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Karen M Barry
- Tasmanian Institute of Agriculture & School of Land and Food, University of Tasmania, Private Bag 98, Hobart, Tasmania, 7001, Australia
| | - Warwick M Gill
- Tasmanian Institute of Agriculture & School of Land and Food, University of Tasmania, Private Bag 98, Hobart, Tasmania, 7001, Australia
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
13
|
Cui N, Luo H, Xia H, Chen W, Yu G. Influence of Helicobacter pylori Infection on Gastrointestinal Hormone and Colon Motility of Rats. Am J Med Sci 2016; 351:520-4. [DOI: 10.1016/j.amjms.2016.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023]
|
14
|
Foo E, Heynen EMH, Reid JB. Common and divergent shoot-root signalling in legume symbioses. THE NEW PHYTOLOGIST 2016; 210:643-56. [PMID: 26661110 DOI: 10.1111/nph.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The role of shoot-root signals in the control of nodulation and arbuscular mycorrhizal (AM) development were examined in the divergent legume species pea and blue lupin. These species were chosen as pea can host both symbionts, whereas lupin can nodulate but has lost the ability to form AM. Intergeneric grafts between lupin and pea enabled examination of key long-distance signals in these symbioses. The role of strigolactones, auxin and elements of the autoregulation of nodulation (AON) pathway were investigated. Grafting studies were combined with loss-of-function mutants to monitor symbioses (nodulation, AM) and hormone effects (levels, gene expression and application studies). Lupin shoots suppress AM colonization in pea roots, in part by downregulating strigolactone exudation involving reduced expression of the strigolactone biosynthesis gene PsCCD8. By contrast, lupin shoots enhance pea nodulation, independently of strigolactones, possibly due to a partial incompatibility in AON shoot-root signalling between pea and lupin. This study highlights that nodulation and AM symbioses can be regulated independently and this may be due to long-distance signals, a phenomenon we were able to uncover by working with divergent legumes. We also identify a role for strigolactone exudation in determining the status of non-AM hosts.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eveline M H Heynen
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- Applied Biology, HAS University of Applied Sciences, 5200 MA, 's-Hertogenbosch, the Netherlands
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
15
|
Vernié T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F, Mbengue M, Timmers T, Gasciolli V, Thompson R, le Signor C, Lefebvre B, Cullimore J, Hervé C. PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. PLANT PHYSIOLOGY 2016; 170:2312-24. [PMID: 26839127 PMCID: PMC4825150 DOI: 10.1104/pp.15.01694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/30/2016] [Indexed: 05/21/2023]
Abstract
PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.
Collapse
Affiliation(s)
- Tatiana Vernié
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Sylvie Camut
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Camps
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Céline Rembliere
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Fernanda de Carvalho-Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Malick Mbengue
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Ton Timmers
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Virginie Gasciolli
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Richard Thompson
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine le Signor
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Benoit Lefebvre
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Julie Cullimore
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| | - Christine Hervé
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan F-31326, France (T.V., S.C., C.C, C.R., F.D.C.-N., M.M., T.T., V.G., B.L., J.C., C.H.); and Institut National de la Recherche Agronomique-UMR1347-Agroecologie AgroSup/Institut National de la Recherche Agronomique/uB, Pôle Génétique & Ecophysiologie GEAPSI, 21065 Dijon France (R.T., C.L.)
| |
Collapse
|
16
|
Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:311-34. [PMID: 26047562 DOI: 10.1146/annurev-phyto-080614-120149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells. Plants perceive microbial LCO molecules by specific LysM-domain-containing receptor-like kinases. These do not only activate a common symbiosis signaling pathway that is shared in both symbioses but also modulate innate immune responses. Recent studies revealed that symbiotic LCO receptors are closely related to chitin innate immune receptors, and some of these receptors even function in symbiosis as well as immunity. This raises questions about how plants manage to translate structurally very similar microbial signals into different outputs. Here, we describe the current view on chitin and LCO perception in innate immunity and endosymbiosis and question how LCOs might modulate the immune system. Furthermore, we discuss what it takes to become an endosymbiont.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, 6708PB Wageningen, The Netherlands;
| | | | | |
Collapse
|