1
|
Raghavendra KP, Das J, Kumar R, Gawande SP, Santosh HB, Sheeba JA, Kranthi S, Kranthi KR, Waghmare VN. Genome-wide identification and expression analysis of the plant specific LIM genes in Gossypium arboreum under phytohormone, salt and pathogen stress. Sci Rep 2021; 11:9177. [PMID: 33911097 PMCID: PMC8080811 DOI: 10.1038/s41598-021-87934-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Asiatic cotton (Gossypium arboreum) cultivated as ‘desi cotton’ in India, is renowned for its climate resilience and robustness against biotic and abiotic stresses. The genome of G. arboreum is therefore, considered as a valued reserve of information for discovering novel genes or gene functions for trait improvements in the present context of cotton cultivation world-wide. In the present study, we carried out genome-wide analysis of LIM gene family in desi cotton and identified twenty LIM domain proteins (GaLIMs) which include sixteen animals CRP-like GaLIMs and four plant specific GaLIMs with presence (GaDA1) or absence (GaDAR) of UIM (Ubiquitin Interacting Motifs). Among the sixteen CRP-like GaLIMs, eleven had two conventional LIM domains while, five had single LIM domain which was not reported in LIM gene family of the plant species studied, except in Brassica rapa. Phylogenetic analysis of these twenty GaLIM proteins in comparison with LIMs of Arabidopsis, chickpea and poplar categorized them into distinct αLIM1, βLIM1, γLIM2, δLIM2 groups in CRP-like LIMs, and GaDA1 and GaDAR in plant specific LIMs group. Domain analysis had revealed consensus [(C-X2-C-X17-H-X2-C)-X2-(C-X2-C-X17-C-X2-H)] and [(C-X2-C-X17-H-X2-C)-X2-(C-X4-C-X15-C-X2-H)] being conserved as first and/or second LIM domains of animal CRP-like GaLIMs, respectively. Interestingly, single LIM domain containing GaLIM15 was found to contain unique consensus with longer inter-zinc-motif spacer but shorter second zinc finger motif. All twenty GaLIMs showed variable spatio-temporal expression patterns and accordingly further categorized into distinct groups of αLIM1, βLIM1, γLIM2 δLIM2 and plant specific LIM (DA1/DAR). For the first time, response of GaDA1/DAR under the influence of biotic and abiotic stresses were studied in cotton, involving treatments with phytohormones (Jasmonic acid and Abscisic acid), salt (NaCl) and wilt causing pathogen (Fusarium oxysporum). Expressions patterns of GaDA1/DAR showed variable response and identified GaDA2 as a probable candidate gene for stress tolerance in G. arboreum.
Collapse
Affiliation(s)
- K P Raghavendra
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India.
| | - J Das
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - R Kumar
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - S P Gawande
- Division of Crop Protection, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - H B Santosh
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - J A Sheeba
- Division of Crop Production, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - S Kranthi
- Division of Crop Protection, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - K R Kranthi
- Technical Information Section, International Cotton Advisory Committee (ICAC), Washington, DC, USA
| | - V N Waghmare
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| |
Collapse
|
2
|
Zhu X, Wang B, Wang X, Zhang C, Wei X. Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:787-800. [PMID: 33967462 PMCID: PMC8055757 DOI: 10.1007/s12298-021-00988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Lim family members play an important role in the regulation of plant cell development and stress response. However, there are few studies on LIM family in quinoa. In this study, we identified nine LIMS (named cqlim01-cqlim09) from quinoa, which were divided into three subfamilies (α Lim1, γ lim2 and δ lim2) according to phylogeny. The differences in gene structure and motif composition among different subfamilies have been observed. In addition, we studied the repetitive events of the members of the family. The Ka/Ks (non synchronous substitution rate / synchronous substitution rate) ratio analysis showed that the repetitive CqLIMs probably experienced purifying selection pressure. Promoter analysis showed that the family genes contained a variety of hormones, stress and tissue-specific expression elements, and protein interactions showed that these genes had actin stabilizing effect. In addition, QRT PCR results showed that all CqLIM genes were positively regulated under three stresses (low temperature, salt and ABA). These results provide a theoretical basis of further study of LIM gene in quinoa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00988-2.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xian Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Chaoyang Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
3
|
Khatun K, Robin AHK, Park JI, Ahmed NU, Kim CK, Lim KB, Kim MB, Lee DJ, Nou IS, Chung MY. Genome-wide identification, characterization and expression profiling of LIM family genes in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:177-190. [PMID: 27439220 DOI: 10.1016/j.plaphy.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
LIM domain proteins, some of which have been shown to be actin binding proteins, are involved in various developmental activities and cellular processes in plants. To date, the molecular defense-related functions of LIM family genes have not been investigated in any solanaceous vegetable crop species. In this study, we identified 15 LIM family genes in tomato (Solanum lycopersicum L.) through genome-wide analysis and performed expression profiling in different organs of tomato, including fruits at six different developmental stages. We also performed expression profiling of selected tomato LIM genes in plants under ABA, drought, cold, NaCl and heat stress treatment. The encoded proteins of the 15 tomato LIM genes were classified into two main groups, i.e., proteins similar to cysteine-rich proteins and plant-specific DAR proteins, based on differences in functional domains and variability in their C-terminal regions. The DAR proteins contain a so far poorly characterized zinc-finger-like motif that we propose to call DAR-ZF. Six of the 15 LIM genes were expressed only in flowers, indicating that they play flower-specific roles in plants. The other nine genes were expressed in all organs and at various stages of fruit development. SlβLIM1b was expressed relatively highly at the later stage of fruit development, but three other genes, SlWLIM2a, SlDAR2 and SlDAR4, were expressed at the early stage of fruit development. Seven genes were induced by ABA, five by cold, seven by drought, eight by NaCl and seven by heat treatment respectively, indicating their possible roles in abiotic stress tolerance. Our results will be useful for functional analysis of LIM genes during fruit development in tomato plants under different abiotic stresses.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Nasar Uddin Ahmed
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh.
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Min-Bae Kim
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea; Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Do-Jin Lee
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea; Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea; Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| |
Collapse
|
4
|
Park JI, Ahmed NU, Jung HJ, Arasan SKT, Chung MY, Cho YG, Watanabe M, Nou IS. Identification and characterization of LIM gene family in Brassica rapa. BMC Genomics 2014; 15:641. [PMID: 25086651 PMCID: PMC4246497 DOI: 10.1186/1471-2164-15-641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LIM (Lin-11, Isl-1 and Mec-3 domains) genes have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly, in higher plants; however, the stress resistance related functions of these genes are still not well known. In this study, we collected 22 LIM genes designated as Brassica rapa LIM (BrLIM) from the Brassica database, analyzed the sequences, compared them with LIM genes of other plants and analyzed their expression after applying biotic and abiotic stresses in Chinese cabbage. RESULTS Upon sequence analysis these genes were confirmed as LIM genes and found to have a high degree of homology with LIM genes of other species. These genes showed distinct clusters when compared to other recognized LIM proteins upon phylogenetic analysis. Additionally, organ specific expression of these genes was observed in Chinese cabbage plants, with BrPLIM2a, b, c, BrDAR1, BrPLIM2e, f and g only being expressed in flower buds. Furthermore, the expression of these genes (except for BrDAR1 and BrPLIM2e) was high in the early flowering stages. The remaining genes were expressed in almost all organs tested. All BrDAR genes showed higher expression in flower buds compared to other organs. These organ specific expressions were clearly correlated with the phylogenetic grouping. In addition, BrWLIM2c and BrDAR4 responded to Fusarium oxysporum f. sp. conglutinans infection, while commonly two BrDARs and eight BrLIMs responded to cold, ABA and pH (pH5, pH7 and pH9) stress treatments in Chinese cabbage plants. CONCLUSION Taken together, the results of this study indicate that BrLIM and BrDAR genes may be involved in resistance against biotic and abiotic stresses in Brassica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 540-950, Republic of Korea.
| |
Collapse
|
5
|
Wang J, Qian D, Fan T, Jia H, An L, Xiang Y. Arabidopsis actin capping protein (AtCP) subunits have different expression patterns, and downregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:110-119. [PMID: 22794924 DOI: 10.1016/j.plantsci.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/30/2012] [Accepted: 06/04/2012] [Indexed: 05/16/2023]
Abstract
As a heterodimer actin-binding protein, capping protein is composed of α and β subunits, and can stabilize the actin filament cytoskeleton by binding to F-actin ends to inhibit G-actin addition or loss from that end. Until now, studies on plant capping protein have focused on biochemical functions in vitro, and so the expression patterns and physiological functions of actin capping protein in Arabidopsis (AtCP) are poorly understood. In the present study, real-time quantitative PCR and Western blot analysis showed that although AtCP α and β subunits (i.e. AtCPA and AtCPB) were expressed in various tissues, their expression patterns were significantly different. GUS staining further indicated they were present in different parts of the same organs. We also demonstrated that the expression levels of both subunits were induced by heat shock stress. However, only the atcpβ-mutant showed enhanced thermotolerance, and confocal microscopy showed that the actin filaments of the atcpβ-mutant were much more complete than that in the wild-type and the atcpα-mutant after heat treatment at 45 °C for 40 and 45 min. In conclusion, these results demonstrated that AtCPA and AtCPB showed distinct expression patterns in vivo, and that downregulation of AtCPB conferred increased plant thermotolerance after heat shock stress.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dong Qian
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tingting Fan
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Honglei Jia
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
van der Honing HS, Kieft H, Emons AMC, Ketelaar T. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. PLANT PHYSIOLOGY 2012; 158:1426-38. [PMID: 22209875 PMCID: PMC3291277 DOI: 10.1104/pp.111.192385] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 05/18/2023]
Abstract
In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.
Collapse
Affiliation(s)
- Hannie S. van der Honing
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Henk Kieft
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Anne Mie C. Emons
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands (H.S.v.d.H., H.K., A.M.C.E., T.K.); and Department of Biomolecular Systems, Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics, 1098 SG Amsterdam, The Netherlands (A.M.C.E.)
| |
Collapse
|
7
|
Xue XH, Guo CQ, Du F, Lu QL, Zhang CM, Ren HY. AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. MOLECULAR PLANT 2011; 4:264-78. [PMID: 21307369 DOI: 10.1093/mp/ssq085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organization is poorly understood. In this study, we characterized the bundling activity of AtFH8 in vitro and in vivo. Biochemical analysis showed that AtFH8(FH1FH2) could form dimers and bundle preformed actin filaments or induce stellar structures during actin polymerization. Expression of truncated forms of AtFH8 and immunolocalization analysis showed that AtFH8 localized primarily to nuclear envelope in interphase and to the new cell wall after cytokinesis, depending primarily on its N-terminal transmembrane domain. GUS histochemical staining showed AtFH8 was predominantly expressed in Arabidopsis root meristem, vasculature, and outgrowth points of lateral roots. The primary root growth and lateral root initiation of atfh8 could be decreased by latrunculin B (LatB). Analysis of the number of dividing cells in Arabidopsis root tips showed that much fewer dividing cells in Lat B-treated atfh8 plants than wild-type plants, which indicates that AtFH8 was involved in cell division. Actin cytoskeleton in root meristem of atfh8-1 was more sensitive to LatB treatment than that of wild-type. Altogether, our results indicate that AtFH8 is an actin filament nucleator and bundler that functions in cell division and root development.
Collapse
Affiliation(s)
- Xiu-Hua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
8
|
Intracellular Movements: Integration at the Cellular Level as Reflected in the Organization of Organelle Movements. MECHANICAL INTEGRATION OF PLANT CELLS AND PLANTS 2011. [DOI: 10.1007/978-3-642-19091-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. THE PLANT CELL 2010; 22:3034-52. [PMID: 20817848 PMCID: PMC2965535 DOI: 10.1105/tpc.110.075960] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/04/2010] [Accepted: 08/19/2010] [Indexed: 05/18/2023]
Abstract
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca(2+)]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clément Thomas
- Centre de Recherche Public-Santé, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
10
|
Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers. Biochem Soc Trans 2010; 38:823-8. [DOI: 10.1042/bst0380823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be considered. In the present review, we discuss literature that gives an insight into how cytoplasmic organization is achieved and in which actin-binding proteins have been identified that play a role in this process. We discuss how physical properties of the actin cytoskeleton in the cytoplasm of live plant cells, such as deformability and elasticity, can be probed by using optical tweezers. This technique allows non-invasive manipulation of cytoplasmic organization. Optical tweezers, integrated in a confocal microscope, can be used to manipulate cytoplasmic organization while studying actin dynamics. By combining this with mutant studies and drug applications, insight can be obtained about how the physical properties of the actin cytoskeleton, and thus the cytoplasmic organization, are influenced by different cellular processes.
Collapse
|
11
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|