1
|
Arra Y, Auguy F, Stiebner M, Chéron S, Wudick MM, Miras M, Schepler‐Luu V, Köhler S, Cunnac S, Frommer WB, Albar L. Rice Yellow Mottle Virus resistance by genome editing of the Oryza sativa L. ssp. japonica nucleoporin gene OsCPR5.1 but not OsCPR5.2. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1299-1311. [PMID: 38124291 PMCID: PMC11022797 DOI: 10.1111/pbi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.
Collapse
Affiliation(s)
- Yugander Arra
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Florence Auguy
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Melissa Stiebner
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sophie Chéron
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Michael M. Wudick
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Manuel Miras
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Van Schepler‐Luu
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Steffen Köhler
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Advanced ImagingHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sébastien Cunnac
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Wolf B. Frommer
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Advanced ImagingHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Transformative Bio‐Molecules (ITbM‐WPI)Nagoya UniversityNagoyaJapan
| | - Laurence Albar
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| |
Collapse
|
2
|
Qi F, Li J, Hong X, Jia Z, Wu B, Lin F, Liang Y. Overexpression of an Antioxidant Enzyme APX1 in cpr5 Mutant Restores its Pleiotropic Growth Phenotype. Antioxidants (Basel) 2023; 12:301. [PMID: 36829863 PMCID: PMC9952838 DOI: 10.3390/antiox12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breeding crops with enhanced immunity is an effective strategy to reduce yield loss caused by pathogens. The constitutive expresser of pathogenesis-related genes (cpr5) mutant shows enhanced pathogen resistance but retarded growth; thus, it restricts the application of cpr5 in breeding crops with disease resistance. Reactive oxygen species (ROS) play important roles in plant growth and defense. In this study, we determined that the cpr5 mutant exhibited excessive ROS accumulation. However, the mutation of respiratory burst oxidase homolog D (RBOHD), a reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for the production of ROS signaling in plant immunity, did not suppress excessive ROS levels in cpr5. Furthermore, the cpr5 mutant showed low levels of ascorbate peroxidase 1 (APX1), an important cytosolic ROS-scavenging enzyme. APX1 overexpression in the cpr5 background removed excessive ROS and restored the pleiotropic growth phenotype. Notably, APX1 overexpression did not reduce the resistance of cpr5 mutant to virulent strain Pseudomonas syringae pv. tomato (Pst) DC3000 and avirulent strain Pst DC3000 (avrRpt2). These results suggest that the removal of excessive ROS by APX1 overexpression restored the cpr5 growth phenotype while conserving pathogen resistance. Hence, our study provides a theoretical and empirical basis for utilizing CPR5 in the breeding of crops with disease resistance by effective oxidative stress management via APX1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|
4
|
Huh SU. Optimization of immune receptor-related hypersensitive cell death response assay using agrobacterium-mediated transient expression in tobacco plants. PLANT METHODS 2022; 18:57. [PMID: 35501866 PMCID: PMC9063123 DOI: 10.1186/s13007-022-00893-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The study of the regulatory mechanisms of evolutionarily conserved Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins in animals and plants is of increasing importance due to understanding basic immunity and the value of various crop engineering applications of NLR immune receptors. The importance of temperature is also emerging when applying NLR to crops responding to global climate change. In particular, studies of pathogen effector recognition and autoimmune activity of NLRs in plants can quickly and easily determine their function in tobacco using agro-mediated transient assay. However, there are conditions that should not be overlooked in these cell death-related assays in tobacco. RESULTS Environmental conditions play an important role in the immune response of plants. The system used in this study was to establish conditions for optimal hypertensive response (HR) cell death analysis by using the paired NLR RPS4/RRS1 autoimmune and AvrRps4 effector recognition system. The most suitable greenhouse temperature for growing plants was fixed at 22 °C. In this study, RPS4/RRS1-mediated autoimmune activity, RPS4 TIR domain-dependent cell death, and RPS4/RRS1-mediated HR cell death upon AvrRps4 perception significantly inhibited under conditions of 65% humidity. The HR is strongly activated when the humidity is below 10%. Besides, the leaf position of tobacco is important for HR cell death. Position #4 of the leaf from the top in 4-5 weeks old tobacco plants showed the most effective HR cell death. CONCLUSIONS As whole genome sequencing (WGS) or resistance gene enrichment sequencing (RenSeq) of various crops continues, different types of NLRs and their functions will be studied. At this time, if we optimize the conditions for evaluating NLR-mediated HR cell death, it will help to more accurately identify the function of NLRs. In addition, it will be possible to contribute to crop development in response to global climate change through NLR engineering.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biological Science, Kunsan National University, Gunsan, 54150, Republic of Korea.
| |
Collapse
|
5
|
Chen J, Sui X, Ma B, Li Y, Li N, Qiao L, Yu Y, Dong CH. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. PLANT CELL REPORTS 2022; 41:1075-1085. [PMID: 35201411 DOI: 10.1007/s00299-022-02838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis CPR5 is involved in regulation of ethylene signaling via two different ways: interacting with the ETR1 N-terminal domains, and controlling nucleocytoplasmic transport of ethylene-related mRNAs. The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented the data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.
Collapse
Affiliation(s)
- Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Vincent SA, Ebertz A, Spanu PD, Devlin PF. Salicylic Acid-Mediated Disturbance Increases Bacterial Diversity in the Phyllosphere but Is Overcome by a Dominant Core Community. Front Microbiol 2022; 13:809940. [PMID: 35283825 PMCID: PMC8908428 DOI: 10.3389/fmicb.2022.809940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two Arabidopsis mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.
Collapse
Affiliation(s)
- Stacey A. Vincent
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Andreas Ebertz
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Pietro D. Spanu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
7
|
Faisal MB, Gechev TS, Mueller-Roeber B, Dijkwel PP. Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance. BMC PLANT BIOLOGY 2020; 20:295. [PMID: 32600419 PMCID: PMC7322872 DOI: 10.1186/s12870-020-02485-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. RESULTS Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. CONCLUSION Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance.
Collapse
Affiliation(s)
- Muhammad B Faisal
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
8
|
Xu P, Chen H, Cai W. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep 2020; 21:e48967. [PMID: 32484317 DOI: 10.15252/embr.201948967] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/18/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Leaf senescence is a highly complex developmental process that is tightly controlled by multiple layers of regulation. Abscisic acid (ABA) and reactive oxygen species (ROS) are two well-known factors that promote leaf senescence. We show here that the transcription factor CDF4 positively regulates leaf senescence. Constitutive and inducible overexpression of CDF4 accelerates leaf senescence, while knockdown of CDF4 delays it. CDF4 increases endogenous ABA levels by upregulating the transcription of the ABA biosynthesis genes 9-cis-epoxycarotenoid dioxygenase 2, 3 (NCED2, 3) and suppresses H2 O2 scavenging by repressing expression of the catalase2 (CAT2) gene. NCED2, 3 knockout and CAT2 overexpression partially rescue premature leaf senescence caused by CDF4 overexpression. We also show that CDF4 promotes floral organ abscission by activating the polygalacturonase PGAZAT gene. Based on these results, we propose that the levels of CDF4, ABA, and ROS undergo a gradual increase driven by their interlinking positive feedback loops during the leaf senescence and floral organ abscission processes.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Wang F, Wang L, Qiao L, Chen J, Pappa MB, Pei H, Zhang T, Chang C, Dong CH. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:810-824. [PMID: 28708312 PMCID: PMC5680097 DOI: 10.1111/jipb.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/11/2017] [Indexed: 05/06/2023]
Abstract
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Belen Pappa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: Chun-Hai Dong ()
| |
Collapse
|
10
|
Sun K, Wolters AMA, Vossen JH, Rouwet ME, Loonen AEHM, Jacobsen E, Visser RGF, Bai Y. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 2016; 25:731-42. [PMID: 27233778 PMCID: PMC5023794 DOI: 10.1007/s11248-016-9964-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/21/2016] [Indexed: 01/01/2023]
Abstract
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thalianaS-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.
Collapse
Affiliation(s)
- Kaile Sun
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anne-Marie A Wolters
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maarten E Rouwet
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Annelies E H M Loonen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Masclaux-Daubresse C, Clément G, Anne P, Routaboul JM, Guiboileau A, Soulay F, Shirasu K, Yoshimoto K. Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in Arabidopsis. THE PLANT CELL 2014; 26:1857-1877. [PMID: 24808053 PMCID: PMC4079355 DOI: 10.1105/tpc.114.124677] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/21/2014] [Accepted: 04/13/2014] [Indexed: 05/18/2023]
Abstract
Autophagy is a fundamental process in the plant life story, playing a key role in immunity, senescence, nutrient recycling, and adaptation to the environment. Transcriptomics and metabolomics of the rosette leaves of Arabidopsis thaliana autophagy mutants (atg) show that autophagy is essential for cell homeostasis and stress responses and that several metabolic pathways are affected. Depletion of hexoses, quercetins, and anthocyanins parallel the overaccumulation of several amino acids and related compounds, such as glutamate, methionine, glutathione, pipecolate, and 2-aminoadipate. Transcriptomic data show that the pathways for glutathione, methionine, raffinose, galacturonate, and anthocyanin are perturbed. Anthocyanin depletion in atg mutants, which was previously reported as a possible defect in flavonoid trafficking to the vacuole, appears due to the downregulation of the master genes encoding the enzymes and regulatory proteins involved in flavonoid biosynthesis. Overexpression of the PRODUCTION OF ANTHOCYANIN PIGMENT1 transcription factor restores anthocyanin accumulation in vacuoles of atg mutants. Transcriptome analyses reveal connections between autophagy and (1) salicylic acid biosynthesis and response, (2) cytokinin perception, (3) oxidative stress and plant defense, and possible interactions between autophagy and the COP9 signalosome machinery. The metabolic and transcriptomic signatures identified for the autophagy mutants are discussed and show consistencies with the observed phenotypes.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Gilles Clément
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Pauline Anne
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Jean-Marc Routaboul
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Anne Guiboileau
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Fabienne Soulay
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Ken Shirasu
- RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohki Yoshimoto
- Unité Mixte de Recherche 1318, INRA, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France RIKEN, Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
12
|
Orjuela J, Deless EFT, Kolade O, Chéron S, Ghesquière A, Albar L. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1455-63. [PMID: 23944999 DOI: 10.1094/mpmi-05-13-0127-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O. glaberrima CG14 reference sequence. This mutation was found to be a one-base deletion leading to a truncated and probably nonfunctional protein. It affected a gene homologous to the Arabidopsis thaliana CPR5 gene, known to be a defense mechanism regulator. Only seven O. glaberrima accessions showing this deletion were identified in a collection consisting of 417 accessions from three rice species. All seven accessions were resistant to RYMV, which is an additional argument in favor of the involvement of the deletion in resistance. In addition, fine mapping of a resistance quantitative trait locus in O. sativa advanced backcrossed lines pinpointed a 151-kb interval containing RYMV2, suggesting that allelic variants of the same gene may control both high and partial resistance.
Collapse
|
13
|
Li Z, Peng J, Wen X, Guo H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:526-39. [PMID: 22709441 DOI: 10.1111/j.1744-7909.2012.01136.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant leaf senescence has been recognized as the last phase of plant development, a highly ordered process regulated by genes known as senescence associated genes (SAGs). However, the function of most of SAGs in regulating leaf senescence as well as regulators of those functionally known SAGs are still unclear. We have previously developed a curated database of genes potentially associated with leaf senescence, the Leaf Senescence Database (LSD). In this study, we built gene networks to identify common regulators of leaf senescence in Arabidopsis thaliana using promoting or delaying senescence genes in LSD. Our results demonstrated that plant hormones cytokinin, auxin, nitric oxide as well as small molecules, such as Ca(2+), delay leaf senescence. By contrast, ethylene, ABA, SA and JA as well as small molecules, such as oxygen, promote leaf senescence, altogether supporting the idea that phytohormones play a critical role in regulating leaf senescence. Functional analysis of candidate SAGs in LSD revealed that a WRKY transcription factor WRKY75 and a Cys2/His2-type transcription factor AZF2 are positive regulators of leaf senescence and loss-of-function of WRKY75 or AZF2 delayed leaf senescence. We also found that silencing of a protein phosphatase, AtMKP2, promoted early senescence. Collectively, LSD can serve as a comprehensive resource for systematic study of the molecular mechanism of leaf senescence as well as offer candidate genes for functional analyses.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | | | | | | |
Collapse
|
14
|
Perazza D, Laporte F, Balagué C, Chevalier F, Remo S, Bourge M, Larkin J, Herzog M, Vachon G. GeBP/GPL transcription factors regulate a subset of CPR5-dependent processes. PLANT PHYSIOLOGY 2011; 157:1232-42. [PMID: 21875893 PMCID: PMC3252139 DOI: 10.1104/pp.111.179804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/28/2011] [Indexed: 05/22/2023]
Abstract
The CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene of Arabidopsis (Arabidopsis thaliana) encodes a putative membrane protein of unknown biochemical function and displays highly pleiotropic functions, particularly in pathogen responses, cell proliferation, cell expansion, and cell death. Here, we demonstrate a link between CPR5 and the GLABRA1 ENHANCER BINDING PROTEIN (GeBP) family of transcription factors. We investigated the primary role of the GeBP/GeBP-like (GPL) genes using transcriptomic analysis of the quadruple gebp gpl1,2,3 mutant and one overexpressing line that displays several cpr5-like phenotypes including dwarfism, spontaneous necrotic lesions, and increased pathogen resistance. We found that GeBP/GPLs regulate a set of genes that represents a subset of the CPR5 pathway. This subset includes genes involved in response to stress as well as cell wall metabolism. Analysis of the quintuple gebp gpl1,2,3 cpr5 mutant indicates that GeBP/GPLs are involved in the control of cell expansion in a CPR5-dependent manner but not in the control of cell proliferation. In addition, to our knowledge, we provide the first evidence that the CPR5 protein is localized in the nucleus of plant cells and that a truncated version of the protein with no transmembrane domain can trigger cpr5-like processes when fused to the VP16 constitutive transcriptional activation domain. Our results provide clues on how CPR5 and GeBP/GPLs play opposite roles in the control of cell expansion and suggest that the CPR5 protein is involved in transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilles Vachon
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale/Université Joseph Fourier U823, Equipe Interference ARN et Epigenetique, Rond-point de la Chantourne, 38706 La Tronche cedex, France (D.P.); Laboratoire d’Ecologie Alpine, Université Joseph Fourier and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, 2233, F–38041 Grenoble cedex 9, France (F.L., M.H.); Laboratoire des Interactions Plantes-Microorganismes Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594/441 BP 52627, 31326 Castanet-Tolosan cedex, France (C.B.); Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, F–31326 Castanet-Tolosan, France (C.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808 (S.R., J.L.); Institut des Sciences Végétales Centre National de la Recherche Scientifique, F–91198 Gif-sur-Yvette cedex, France (M.B.); Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l'Energie Atomique et aux Energies Alternatives, 38054 Grenoble cedex 9, France (G.V.)
| |
Collapse
|
15
|
Kutuzov MA, Andreeva AV. Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 2011; 12:11-23. [DOI: 10.1007/s10142-011-0254-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 12/12/2022]
|
16
|
Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS One 2011; 6:e19406. [PMID: 21556325 PMCID: PMC3083440 DOI: 10.1371/journal.pone.0019406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 04/04/2011] [Indexed: 01/14/2023] Open
Abstract
The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.
Collapse
|