1
|
Mangena P. Cell Mutagenic Autopolyploidy Enhances Salinity Stress Tolerance in Leguminous Crops. Cells 2023; 12:2082. [PMID: 37626892 PMCID: PMC10453822 DOI: 10.3390/cells12162082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Salinity stress affects plant growth and development by causing osmotic stress and nutrient imbalances through excess Na+, K+, and Cl- ion accumulations that induce toxic effects during germination, seedling development, vegetative growth, flowering, and fruit set. However, the effects of salt stress on growth and development processes, especially in polyploidized leguminous plants, remain unexplored and scantly reported compared to their diploid counterparts. This paper discusses the physiological and molecular response of legumes towards salinity stress-based osmotic and ionic imbalances in plant cells. A multigenic response involving various compatible solutes, osmolytes, ROS, polyamines, and antioxidant activity, together with genes encoding proteins involved in the signal transduction, regulation, and response mechanisms to this stress, were identified and discussed. This discussion reaffirms polyploidization as the driving force in plant evolution and adaptation to environmental stress constraints such as drought, feverish temperatures, and, in particular, salt stress. As a result, thorough physiological and molecular elucidation of the role of gene duplication through induced autopolyploidization and possible mechanisms regulating salinity stress tolerance in grain legumes must be further studied.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
2
|
Priya P, Aneesh B, Sivakumar KC, Harikrishnan K. Comparative proteomic analysis of saline tolerant, phosphate solubilizing endophytic Pantoea sp., and Pseudomonas sp. isolated from Eichhornia rhizosphere. Microbiol Res 2022; 265:127217. [DOI: 10.1016/j.micres.2022.127217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
|
3
|
Hafeez A, Gě Q, Zhāng Q, Lǐ J, Gōng J, Liú R, Shí Y, Shāng H, Liú À, Iqbal MS, Dèng X, Razzaq A, Ali M, Yuán Y, Gǒng W. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species. BMC PLANT BIOLOGY 2021; 21:37. [PMID: 33430775 PMCID: PMC7798291 DOI: 10.1186/s12870-020-02786-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND O-methyltransferases (OMTs) are an important group of enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine to their acceptor substrates. OMTs are divided into several groups according to their structural features. In Gossypium species, they are involved in phenolics and flavonoid pathways. Phenolics defend the cellulose fiber from dreadful external conditions of biotic and abiotic stresses, promoting strength and growth of plant cell wall. RESULTS An OMT gene family, containing a total of 192 members, has been identified and characterized in three main Gossypium species, G. hirsutum, G. arboreum and G. raimondii. Cis-regulatory elements analysis suggested important roles of OMT genes in growth, development, and defense against stresses. Transcriptome data of different fiber developmental stages in Chromosome Substitution Segment Lines (CSSLs), Recombination Inbred Lines (RILs) with excellent fiber quality, and standard genetic cotton cultivar TM-1 demonstrate that up-regulation of OMT genes at different fiber developmental stages, and abiotic stress treatments have some significant correlations with fiber quality formation, and with salt stress response. Quantitative RT-PCR results revealed that GhOMT10_Dt and GhOMT70_At genes had a specific expression in response to salt stress while GhOMT49_At, GhOMT49_Dt, and GhOMT48_At in fiber elongation and secondary cell wall stages. CONCLUSIONS Our results indicate that O-methyltransferase genes have multi-responses to salt stress and fiber development in Gossypium species and that they may contribute to salt tolerance or fiber quality formation in Gossypium.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qí Zhāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruìxián Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yùzhēn Shí
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hǎihóng Shāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Àiyīng Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muhammad S Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiǎoyīng Dèng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muharam Ali
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan.
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
4
|
Das P, Behera BK, Chatterjee S, Das BK, Mohapatra T. De novo transcriptome analysis of halotolerant bacterium Staphylococcus sp. strain P-TSB-70 isolated from East coast of India: In search of salt stress tolerant genes. PLoS One 2020; 15:e0228199. [PMID: 32040520 PMCID: PMC7010390 DOI: 10.1371/journal.pone.0228199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
In the present study, we identified salt stress tolerant genes from the marine bacterium Staphylococcus sp. strain P-TSB-70 through transcriptome sequencing. In favour of whole-genome transcriptome profiling of Staphylococcus sp. strain P-TSB-70 (GenBank Accn. No. KP117091) which tolerated upto 20% NaCl stress, the strain was cultured in the laboratory condition with 20% NaCl stress. Transcriptome analyses were performed by SOLiD4.0 sequencing technology from which 10280 and 9612 transcripts for control and treated, respectively, were obtained. The coverage per base (CPB) statistics were analyzed for both the samples. Gene ontology (GO) analysis has been categorized at varied graph levels based on three primary ontology studies viz. cellular components, biological processes, and molecular functions. The KEGG analysis of the assembled transcripts using KAAS showed presumed components of metabolic pathways which perhaps implicated in diverse metabolic pathways responsible for salt tolerance viz. glycolysis/gluconeogenesis, oxidative phosphorylation, glutathione metabolism, etc. further involving in salt tolerance. Overall, 90 salt stress tolerant genes were identified as of 186 salt-related transcripts. Several genes have been found executing normally in the TCA cycle pathway, integral membrane proteins, generation of the osmoprotectants, enzymatic pathway associated with salt tolerance. Recognized genes fit diverse groups of salt stress genes viz. abc transporter, betaine, sodium antiporter, sodium symporter, trehalose, ectoine, and choline, that belong to different families of genes involved in the pathway of salt stress. The control sample of the bacterium showed elevated high proportion of transcript contigs (29%) while upto 20% salt stress treated sample of the bacterium showed a higher percentage of transcript contigs (31.28%). A total of 1,288 and 1,133 transcript contigs were measured entirely as novel transcript contigs in both control and treated samples, respectively. The structure and function of 10 significant salt stress tolerant genes of Staphylococcus sp. have been analyzed in this study. The information acquired in the present study possibly used to recognize and clone the salt stress tolerant genes and support in developing the salt stress-tolerant plant varieties to expand the agricultural productivity in the saline system.
Collapse
Affiliation(s)
- Priyanka Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Bijay Kumar Behera
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- * E-mail:
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
| | - Basanta Kumar Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Trilochan Mohapatra
- Secretary, DARE and Director General, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
5
|
Wang J, Mao X, Wang R, Li A, Zhao G, Zhao J, Jing R. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci Rep 2019; 9:141. [PMID: 30644420 PMCID: PMC6333785 DOI: 10.1038/s41598-018-37859-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022] Open
Abstract
Abiotic stress significantly impacts growth and yield of crop plants. It is imperative for crop improvement to discover and utilize stress-tolerant functional genes. In this study, genes responding to abiotic stresses, such as freezing, salt and osmotic stress, were screened from a cDNA yeast library that was constructed from the drought- and heat-tolerant wheat variety Hanxuan 10. After screening for surviving clones we isolated 7,249, 4,313 and 4,469 raw sequences, corresponding to 4,695, 2,641 and 2,771 genes following each treatment. Venn diagrams revealed 377 overlapping genes. GO analysis suggested that these genes were mainly involved in the metabolic and stress signal pathways. KEGG pathway enrichment analysis indicated that the isolated genes predominantly belonged to pathways concerning energy and metabolism. Overlapping gene TaPR-1-1 within the pathogenesis-related (PR) protein family was selected for detailed characterization. Although previous studies had shown that PR genes function during pathogen attack, our results demonstrated that TaPR-1-1 expression was also induced by freezing, salinity, and osmotic stresses. Overexpression in yeast and Arabidopsis showed that TaPR-1-1 conferred tolerance to these stresses. We concluded that screening cDNA yeast libraries following abiotic stress is an efficient way to identify stress-tolerance genes.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruitong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Stenzler B, Hinz A, Ruuskanen M, Poulain AJ. Ionic Strength Differentially Affects the Bioavailability of Neutral and Negatively Charged Inorganic Hg Complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9653-9662. [PMID: 28701033 DOI: 10.1021/acs.est.7b01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) bioavailability to bacteria in marine systems is the first step toward its bioamplification in food webs. These systems exhibit high salinity and ionic strength that will both alter Hg speciation and properties of the bacteria cell walls. The role of Hg speciation on Hg bioavailability in marine systems has not been teased apart from that of ionic strength on cell wall properties, however. We developed and optimized a whole-cell Hg bioreporter capable of functioning under aerobic and anaerobic conditions and exhibiting no physiological limitations of signal production to changes in ionic strength. We show that ionic strength controls the bioavailability of Hg species, regardless of their charge, possibly by altering properties of the bacterial cell wall. The unexpected anaerobic bioavailability of negatively charged halocomplexes may help explain Hg methylation in marine systems such as the oxygen-deficient zone in the oceanic water column, sea ice or polar snow.
Collapse
Affiliation(s)
- Benjamin Stenzler
- Biology Department, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aaron Hinz
- Biology Department, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Matti Ruuskanen
- Biology Department, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Alexandre J Poulain
- Biology Department, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli. World J Microbiol Biotechnol 2015; 31:1195-209. [DOI: 10.1007/s11274-015-1867-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
|
8
|
Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R. Isolation of salt stress-related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. ScientificWorldJournal 2014; 2014:620959. [PMID: 25383373 PMCID: PMC4212599 DOI: 10.1155/2014/620959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022] Open
Abstract
The halotolerant fungus Aspergillus glaucus CCHA was isolated from the surface of wild vegetation around a saltern with the salinity range being 0-31%. Here, a full-length cDNA library of A. glaucus under salt stress was constructed to identify genes related to salt tolerance, and one hundred clones were randomly selected for sequencing and bioinformatics analysis. Among these, 82 putative sequences were functionally annotated as being involved in signal transduction, osmolyte synthesis and transport, or regulation of transcription. Subsequently, the cDNA library was transformed into E. coli cells to screen for putative salt stress-related clones. Five putative positive clones were obtained from E. coli cells grown on LB agar containing 1 M NaCl, on which they showed rapid growth compared to the empty vector control line. Analysis of transgenic Arabidopsis thaliana lines overexpressing CCHA-2142 demonstrated that the gene conferred increased salt tolerance to plants as well by protecting the cellular membranes, suppressing the inhibition of chlorophyll biosynthesis. These results highlight the utility of this A. glaucus cDNA library as a tool for isolating and characterizing genes related to salt tolerance. Furthermore, the identified genes can be used for the study of the underlying biology of halotolerance.
Collapse
Affiliation(s)
- Jie Fang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Lihua Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Lab of Tree Genomics, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| |
Collapse
|
9
|
Trivedi DK, Ansari MW, Dutta T, Singh P, Tuteja N. Molecular characterization of cyclophilin A-like protein from Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. BMC Res Notes 2013; 6:555. [PMID: 24365575 PMCID: PMC3878271 DOI: 10.1186/1756-0500-6-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022] Open
Abstract
Background Cyclophilins (CyP), conserved in all genera, are known to have regulatory responses of various cellular processes including stress tolerance. Interestingly, CyP has a crucial role as peptidyl-prolyl cis–trans isomerases (PPIases). Our earlier in silico based approach resulted into the identification of cyclophilin family from rice, Arabidopsis and yeast. In our recent report, we discovered a new OsCYP-25 from rice. Here, we identified a novel cyclophylin A-like protein (PiCyP) from Piriformospora indica which is responsible for abiotic stress tolerance in E. coli. Results Cyclophylin A-like protein (CyPA) (accession number GQ214003) was selected from cDNA library. The genomic organization CyPA revealed a 1304 bp of CyPA in P. indica genome, showing 10 exons and 9 introns. Further, CyPA was evident in PCR with gDNA and cDNA and Southern blot analysis. The phylogenetic examination of CyPA of P. indica showed that it is closed to human cyclophilin. The uniqueness of PiCyPA protein was apparent in western blot study. Kinetics of purified PiCyPA protein for its PPIas activity was determined via first order rate constant (0.104 s-1) in the presence of 1 μg of PiCyPA, with increasing PiCyPA concentration, in the presence of cyclosporin A (CsA) and the inhibition constant (4.435 nM) of CsA for inhibition of PiCyPA. The differential response of E. coli harbouring pET28a-PiCypA was observed for their different degree of tolerance to different abiotic stresses as compared to empty pET28a vector. Conclusions Overexpression of PiCyPA protein E. coli cells confer enhanced tolerance to wide range of abiotic stresses. Thus, this study provides the significance of PiCypA as a molecular chaperone which advanced cellular stress responses of E. coli cells under adverse conditions, and it, furthermore, confirms the mounting the sustainability of E. coli for exploitation in recombinant proteins production. Additionally, the PiCyPA gene cooperates substantial functions in cellular network of stress tolerance mechanism, essentially required for various developmental stages, and might be a potential paramount candidate for crop improvement and its sustainable production under adverse conditions.
Collapse
Affiliation(s)
| | | | | | | | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
10
|
Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. C R Biol 2013; 336:530-45. [DOI: 10.1016/j.crvi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
11
|
Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, Sopory SK, Pareek A, Singla-Pareek SL. Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. PLANT MOLECULAR BIOLOGY 2012; 79:555-68. [PMID: 22644442 DOI: 10.1007/s11103-012-9928-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/13/2012] [Indexed: 05/19/2023]
Abstract
Salinity, one of the most deleterious stresses, affects growth and overall yield of crop plants. To identify new "candidate genes" having potential role in salinity tolerance, we have carried out 'functional screening' of a cDNA library (made from a salt tolerant rice-Pokkali). Based on this screening, we identified a cDNA clone that was allowing yeast cells to grow in the presence of 1.2 M NaCl. Sequencing and BLAST search identified it as mannose-1-phosphate guanyl transferase (OsMPG1) gene from rice. Analysis of rice genome sequence database indicated the presence of 3 additional genes for MPG. Out of four, three MPG genes viz. OsMPG1, 3 and 4 were able to functionally complement yeast MPG mutant -YDL055C. We have carried out detailed transcript profiling of all members of MPG family by qRT-PCR using two contrasting rice genotypes (IR64 and Pokkali) under different abiotic stresses (salinity, drought, oxidative stress, heat stress, cold or UV light). These MPG genes showed differential expression under various abiotic stresses with two genes (OsMPG1 and 3) showing high induction in response to multiple stresses. Analysis of rice microarray data indicated higher expression levels for OsMPG1 in specific tissues such as roots, leaves, shoot apical meristem and different stages of panicle and seed development, thereby indicating its developmental regulation. Functional validation of OsMPG1 carried out by overexpression in the transgenic tobacco revealed its involvement in enhancing salinity stress tolerance.
Collapse
Affiliation(s)
- Ritesh Kumar
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bhatt H, Trivedi DK, Pal RK, Johri AK, Tuteja N, Bhavesh NS. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of a cyclophilin A-like protein from Piriformospora indica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:709-12. [PMID: 22684077 PMCID: PMC3370917 DOI: 10.1107/s1744309112018131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
Abstract
Cyclophilins are widely distributed both in eukaryotes and prokaryotes and have a primary role as peptidyl-prolyl cis-trans isomerases (PPIases). This study focuses on the cloning, expression, purification and crystallization of a salinity-stress-induced cyclophilin A (CypA) homologue from the symbiotic fungus Piriformospora indica. Crystallization experiments in the presence of 56 mM sodium phosphate monobasic monohydrate, 1.34 M potassium phosphate dibasic pH 8.2 yielded crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 121.15, b = 144.12, c = 110.63 Å. The crystals diffracted to a resolution limit of 2.0 Å. Analysis of the diffraction data indicated the presence of three molecules of the protein per asymmetric unit (V(M) = 4.48 Å(3) Da(-1), 72.6% solvent content).
Collapse
Affiliation(s)
- Harshesh Bhatt
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Dipesh Kumar Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Neel Sarovar Bhavesh
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
13
|
Gostinčar C, Gunde-Cimerman N, Turk M. Genetic resources of extremotolerant fungi: a method for identification of genes conferring stress tolerance. BIORESOURCE TECHNOLOGY 2012; 111:360-367. [PMID: 22386631 DOI: 10.1016/j.biortech.2012.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
Fungal species from extreme environments represent an underexploited source of stress-resistance genes. These genes have the potential to improve stress tolerance of economically important microorganisms and crops. An efficient high-throughput method for the identification of biotechnologically interesting genes of extremotolerant fungi was developed by constructing a cDNA expression library in Saccharomyces cerevisiae and screening for gain-of-function transformants under stress conditions. The advantages and possible modifications of this method are discussed, and its efficiency is demonstrated using the stress-tolerant basidiomycetous yeast Rhodotorula mucilaginosa. Twelve R. mucilaginosa genes are described that increase halotolerance in S. cerevisiae. These include genes encoding a phosphoglucomutase and a phosphomannomutase. All 12 investigated genes might be useful for the improvement of halotolerance in genetically modified crops or industrial microorganisms.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
14
|
Tajrishi MM, Vaid N, Tuteja R, Tuteja N. Overexpression of a pea DNA helicase 45 in bacteria confers salinity stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:1271-5. [PMID: 21847021 PMCID: PMC3258049 DOI: 10.4161/psb.6.9.16726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 05/18/2023]
Abstract
Salinity stress is one of the major factors negatively affecting growth and productivity in living organisms including plants and bacteria resulting in significant losses worldwide. Therefore, it would be fruitful to develop salinity stress tolerant useful species and also to understand the mechanism of stress tolerance. The pea DNA helicase 45 (PDH45) is a DNA and RNA helicase, homologous to eukaryotic translation initiation factor 4A (eIF-4A) and is involved in various processes including protein synthesis, maintaining the basic activities of the cell, upregulation of topoisomerase I activity and salinity stress tolerance in plant, but its role in salinity stress tolerance in bacteria has not heretofore been studied. This study provides an evidence for a novel function of the PDH45 gene in high salinity (NaCl) stress tolerance in bacteria (Eschericia coli, BL21 cells) also. Furthermore, it has been shown that the functionally active PDH45 gene is required to show the stress tolerance in bacteria because the single mutants (E183G or R363Q) and the double mutant (E183G + R363Q) of the gene could not confer the same function. The response was specific to Na+ ions as the bacteria could not grow in presence of LiCl. This study suggests that the cellular response to high salinity stress across prokaryotes and plant kingdom is conserved and also helps in our better understanding of mechanism of stress tolerance in bacteria and plants. It could also be very useful in developing high salinity stress tolerant useful bacteria of agronomic importance. Overall, this study provides an evidence for a novel function of the PDH45 gene in high salinity stress tolerance in bacteria.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
15
|
Joshi A, Dang HQ, Vaid N, Tuteja N. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 2010; 27:133-50. [PMID: 19898933 DOI: 10.1007/s10719-009-9265-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/01/2022]
Abstract
The plant lectin receptor-like kinases (LecRLKs) are involved in various signaling pathways but their role in salinity stress tolerance has not heretofore been well described. Salinity stress negatively affects plant growth/productivity and threatens food security worldwide. Based on functional gene-mining assay, we have isolated 34 salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs grown in 0.8 M NaCl. Sequence analysis of one of these revealed homology to LecRLK, which possesses N-myristilation and N-glycosylation sites thus corroborating the protein to be a glycoconjugate. The homology based computational modeling of the kinase domain suggested high degree of conservation with the protein already known to be stress responsive in plants. The NaCl tolerance provided by PsLecRLK to the above bacteria was further confirmed in E. coli (DH5alpha). In planta studies showed that the expression of PsLecRLK cDNA was significantly upregulated in response to NaCl as compared to K(+) and Li(+) ions, suggesting the Na(+) ion specific response. Transcript of the PsLecRLK gene accumulates mainly in roots and shoots. The purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to phosphorylate general substrates like MBP and casein. This study not only suggests the conservation of the cellular response to high salinity stress across prokaryotes and plant kingdom but also provides impetus to develop novel concepts for better understanding of mechanism of stress tolerance in bacteria and plants. It also opens up new avenues for studying practical aspects of plant salinity tolerance for enhanced agricultural productivity.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- DNA, Complementary/genetics
- Escherichia coli/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Models, Molecular
- Molecular Sequence Data
- Pisum sativum/enzymology
- Pisum sativum/genetics
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/isolation & purification
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Mitogen/chemistry
- Receptors, Mitogen/genetics
- Receptors, Mitogen/isolation & purification
- Receptors, Mitogen/metabolism
- Recombinant Proteins/metabolism
- Salinity
- Salt-Tolerant Plants/enzymology
- Salt-Tolerant Plants/genetics
- Sequence Analysis, DNA
- Sodium/metabolism
- Stress, Physiological
- Structural Homology, Protein
- Transformation, Genetic
Collapse
Affiliation(s)
- Amita Joshi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|