1
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
2
|
Zhou K. The regulation of the cell wall by glycosylphosphatidylinositol-anchored proteins in Arabidopsis. Front Cell Dev Biol 2022; 10:904714. [PMID: 36036018 PMCID: PMC9412048 DOI: 10.3389/fcell.2022.904714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharides-based cell wall covers the plant cell, shaping it and protecting it from the harsh environment. Cellulose microfibrils constitute the cell wall backbone and are embedded in a matrix of pectic and hemicellulosic polysaccharides and glycoproteins. Various environmental and developmental cues can regulate the plant cell wall, and diverse glycosylphosphatidylinositol (GPI)-anchored proteins participate in these regulations. GPI is a common lipid modification on eukaryotic proteins, which covalently tethers the proteins to the membrane lipid bilayer. Catalyzed by a series of enzymic complexes, protein precursors are post-translationally modified at their hydrophobic carboxyl-terminus in the endomembrane system and anchored to the lipid bilayer through an oligosaccharidic GPI modification. Ultimately, mature proteins reach the plasma membrane via the secretory pathway facing toward the apoplast and cell wall in plants. In Arabidopsis, more than three hundred GPI-anchored proteins (GPI-APs) have been predicted, and many are reported to be involved in diverse regulations of the cell wall. In this review, we summarize GPI-APs involved in cell wall regulation. GPI-APs are proposed to act as structural components of the cell wall, organize cellulose microfibrils at the cell surface, and during cell wall integrity signaling transduction. Besides regulating protein trafficking, the GPI modification is potentially governed by a GPI shedding system that cleaves and releases the GPI-anchored proteins from the plasma membrane into the cell wall.
Collapse
|
3
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
4
|
Wei Q, Yang Y, Li H, Liu Z, Fu R, Feng H, Li C. The xyloglucan galactosylation modulates the cell wall stability of pollen tube. PLANTA 2021; 254:133. [PMID: 34821984 DOI: 10.1007/s00425-021-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A pollen specific homolog to a xyloglucan galactosyltransferase regulates cell wall stability and therefore pollen tube growth in Arabidopsis. In angiosperms, pollen tubes grow through the transmitting tract to deliver the sperm cells to the ovule for fertilization. Fast growing pollen tubes coordinate the synthesis, secretion and assembly of cell wall components to maintain the mechanical properties of the cell wall. Xyloglucan, the major hemicellulosic polysaccharide in the primary cell wall, tethers cellulose to form the complexed cell wall network through its side chain modifications. How the side chain modifications of the xyloglucan regulate the pollen tube cell wall strength and growth remains elusive. Here we found that AtGT11, a MUR3 xyloglucan galactosyltransferase homolog highly expressed in pollen regulated the cell wall stability of pollen tubes. Genetic analysis of the gt11 and the xylosyltransferase 1/2 mutant indicated that the xylosylation of XyG side chains played dominant role while galactosylation of the XyG side chains finely modified the cell wall mechanics.
Collapse
Affiliation(s)
- Qiqi Wei
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rong Fu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Chen SY, Zhang JW, Wei XM, Tao KL, Niu YZ, Pan L, Zheng YY, Ma WG, Wang MQ, Ou XK, Liao JG. The morphological and physiological basis of delayed pollination overcoming pre-fertilization cross-incompatibility in Nicotiana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1002-1012. [PMID: 32772426 DOI: 10.1111/plb.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Delayed pollination is widely used to overcome pre-fertilization incompatibility, but its regulatory mechanisms are unclear. When Nicotiana tabacum was cross-pollinated with pollen of N. alata, the incompatibility occurring in the basal 1/4 region of the style (pollinated at anthesis: 0-day-old pistil) was overcome by delayed pollination (of 6-day-old pistil), and the morphological changes and corresponding physiological basis are explored here. The structure and ultrastructure of the pistil were observed under fluorescence microscopy and transmission electron microscopy. Differentially expressed proteins were screened with a monoclonal antibody chip for Nicotiana, and protein expression and distribution were analysed by immunofluorescence. Cellulase and pectinase activities were tested using enzyme-linked immunosorbent assay kits. The style of Nicotiana is solid in the basal region and pollen tubes grow in the extracellular spaces (ECM) of the transmitting tissue (TTS) cells. Seven of the 22 identified proteins were cell wall-associated proteins and were expressed at higher levels during pistil senescence. Cellulase and pectinase activities increased. The TTS cells in the basal 1/4 region of the 0-day-old style were polygonal and tightly arranged, with narrow ECM, but these were oval or partially dissolved in the 6-day-old pistil, leading to wider ECM and richer secretions. The increased expression of cell wall proteins and enhanced enzyme activity during pistil senescence might partially be responsible for the cells becoming oval and the ECM enlarged, providing the morphological basis for delayed pollination overcoming the pre-fertilization incompatibility between N. tabacum and N. alata.
Collapse
Affiliation(s)
- S-Y Chen
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| | - J-W Zhang
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| | - X-M Wei
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| | - K-L Tao
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| | - Y-Z Niu
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, China
| | - L Pan
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, China
| | - Y-Y Zheng
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - W-G Ma
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | | | - X-K Ou
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| | - J-G Liao
- Biocontrol Engineering Research Center of Plant Diseases & Pests, School of Ecology and Environmental Sciences, Kunming, Yunnan Province, China
- Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Lin W, Yang Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:142-154. [PMID: 33128897 DOI: 10.1016/j.pbi.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The leaf epidermal pavement cells with the puzzle-piece shape offer an attractive system for studying the mechanisms underpinning cell morphogenesis in a plant tissue. The formation of the interdigitated lobes and indentations in these interlocking cells relies on the integration of chemical and mechanical signals and cell-to-cell signals to establish interdigitated polar sites defining lobes and indentations. Recent computational and experimental studies have suggested new roles of cell walls, their interplay with mechanical signals, cell polarity signaling regulated by auxin and brassinosteriods, and the cytoskeleton in the regulation of pavement cell morphogenesis. This review summarizes the current state of knowledge on these regulatory mechanisms behind pavement cell morphogenesis in plants and discusses how they could be integrated spatiotemporally to generate the interdigitated polarity patterns and the interlocking shape in pavement cells.
Collapse
Affiliation(s)
- Wenwei Lin
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Mravec J, Kračun SK, Rydahl MG, Westereng B, Pontiggia D, De Lorenzo G, Domozych DS, Willats WGT. An oligogalacturonide-derived molecular probe demonstrates the dynamics of calcium-mediated pectin complexation in cell walls of tip-growing structures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:534-546. [PMID: 28419587 DOI: 10.1111/tpj.13574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 05/18/2023]
Abstract
Pectic homogalacturonan (HG) is one of the main constituents of plant cell walls. When processed to low degrees of esterification, HG can form complexes with divalent calcium ions. These macromolecular structures (also called egg boxes) play an important role in determining the biomechanics of cell walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated binding of fluorescently tagged long oligogalacturonides (OGs) with endogenous de-esterified HG. We established that more than seven galacturonic acid residues in the HG chain are required to form a stable complex with endogenous HG through calcium complexation in situ, confirming a recently suggested thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs. Our results suggest a different spatial organisation of incorporation and processing of HG in the cell walls of these two tip-growing structures.
Collapse
Affiliation(s)
- Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg-C, Denmark
| | - Stjepan K Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg-C, Denmark
| | - Maja G Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg-C, Denmark
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, Ås, Norway
| | - Daniela Pontiggia
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur-Cenci Bolognetti, Università di Roma Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur-Cenci Bolognetti, Università di Roma Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Gibalová A, Steinbachová L, Hafidh S, Bláhová V, Gadiou Z, Michailidis C, Műller K, Pleskot R, Dupľáková N, Honys D. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. PLANT REPRODUCTION 2017; 30:1-17. [PMID: 27896439 DOI: 10.1007/s00497-016-0295-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 11/15/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.
Collapse
Affiliation(s)
- Antónia Gibalová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Veronika Bláhová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
- Institute of Physiology AS CR, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Karel Műller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Roman Pleskot
- Laboratory of Cell Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
- Laboratory of Pavel Jungwirth, Institute of Organic Chemistry and Biochemistry AS CR, v. v. i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Nikoleta Dupľáková
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
9
|
Hocq L, Sénéchal F, Lefebvre V, Lehner A, Domon JM, Mollet JC, Dehors J, Pageau K, Marcelo P, Guérineau F, Kolšek K, Mercadante D, Pelloux J. Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors. PLANT PHYSIOLOGY 2017; 173:1075-1093. [PMID: 28034952 PMCID: PMC5291010 DOI: 10.1104/pp.16.01790] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 05/13/2023]
Abstract
The fine-tuning of the degree of methylesterification of cell wall pectin is a key to regulating cell elongation and ultimately the shape of the plant body. Pectin methylesterification is spatiotemporally controlled by pectin methylesterases (PMEs; 66 members in Arabidopsis [Arabidopsis thaliana]). The comparably large number of proteinaceous pectin methylesterase inhibitors (PMEIs; 76 members in Arabidopsis) questions the specificity of the PME-PMEI interaction and the functional role of such abundance. To understand the difference, or redundancy, between PMEIs, we used molecular dynamics (MD) simulations to predict the behavior of two PMEIs that are coexpressed and have distinct effects on plant development: AtPMEI4 and AtPMEI9. Simulations revealed the structural determinants of the pH dependence for the interaction of these inhibitors with AtPME3, a major PME expressed in roots. Key residues that are likely to play a role in the pH dependence were identified. The predictions obtained from MD simulations were confirmed in vitro, showing that AtPMEI9 is a stronger, less pH-independent inhibitor compared with AtPMEI4. Using pollen tubes as a developmental model, we showed that these biochemical differences have a biological significance. Application of purified proteins at pH ranges in which PMEI inhibition differed between AtPMEI4 and AtPMEI9 had distinct consequences on pollen tube elongation. Therefore, MD simulations have proven to be a powerful tool to predict functional diversity between PMEIs, allowing the discovery of a strategy that may be used by PMEIs to inhibit PMEs in different microenvironmental conditions and paving the way to identify the specific role of PMEI diversity in muro.
Collapse
Affiliation(s)
- Ludivine Hocq
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Fabien Sénéchal
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Valérie Lefebvre
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Arnaud Lehner
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Jean-Marc Domon
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Jean-Claude Mollet
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Jérémy Dehors
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Karine Pageau
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Paulo Marcelo
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - François Guérineau
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.)
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.)
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Katra Kolšek
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.);
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.);
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Davide Mercadante
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.);
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.);
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.);
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.);
- Plateforme d'Ingénierie Cellulaire en Analyses des Protéines, Université de Picardie Jules Verne, 80039 Amiens, France (P.M.); and
- HITS GmbH, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany (K.K., D.M.)
| |
Collapse
|
10
|
Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. PLANTA 2015; 242:791-811. [PMID: 26168980 DOI: 10.1007/s00425-015-2358-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 06/24/2015] [Indexed: 05/25/2023]
Abstract
Recent publications have increased our knowledge of how pectin composition and the degree of homogalacturonan methylesterification impact the biochemical and biomechanical properties of plant cell walls, plant development, and plants' interactions with their abiotic and biotic environments. Experimental observations have shown that the relationships between the DM, the pattern of de-methylesterificaton, its effect on cell wall elasticity, other biomechanical parameters, and growth are not straightforward. Working towards a detailed understanding of these relationships at single cell resolution is one of the big tasks of pectin research. Pectins are highly complex polysaccharides abundant in plant primary cell walls. New analytical and microscopy techniques are revealing the composition and mechanical properties of the cell wall and increasing our knowledge on the topic. Progress in plant physiological research supports a link between cell wall pectin modifications and plant development and interactions with the environment. Homogalacturonan pectins, which are major components of the primary cell wall, have a potential for modifications such as methylesterification, as well as an ability to form cross-linked structures with divalent cations. This contributes to changing the mechanical properties of the cell wall. This review aims to give a comprehensive overview of the pectin component homogalacturonan, including its synthesis, modification, regulation and role in the plant cell wall.
Collapse
Affiliation(s)
- Gabriel Levesque-Tremblay
- Energy Bioscience Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | | | | | | |
Collapse
|
11
|
Matsuda T, Matsushima M, Nabemoto M, Osaka M, Sakazono S, Masuko-Suzuki H, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Okumura K, Suzuki G, Watanabe M, Suwabe K. Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination. PLANT & CELL PHYSIOLOGY 2015; 56:663-73. [PMID: 25527828 DOI: 10.1093/pcp/pcu209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/13/2014] [Indexed: 05/09/2023]
Abstract
Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.
Collapse
Affiliation(s)
- Tomoki Matsuda
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Mai Matsushima
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Moe Nabemoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Masaaki Osaka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Satomi Sakazono
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Katsuzumi Okumura
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| |
Collapse
|
12
|
Zúñiga-Sánchez E, Soriano D, Martínez-Barajas E, Orozco-Segovia A, Gamboa-deBuen A. BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development. BMC PLANT BIOLOGY 2014; 14:338. [PMID: 25442819 PMCID: PMC4264326 DOI: 10.1186/s12870-014-0338-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/17/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND DUF642 proteins constitute a highly conserved family of proteins that are associated with the cell wall and are specific to spermatophytes. Transcriptome studies have suggested that members of this family are involved in seed development and germination processes. Previous in vitro studies have revealed that At4g32460- and At5g11420-encoded proteins interact with the catalytic domain of pectin methyl esterase 3 (AtPME3, which is encoded by At3g14310). PMEs play an important role in plant development, including seed germination. The aim of this study was to evaluate the function of the DUF642 gene At4g32460 during seed germination and plant development and to determine its relation to PME activity regulation. RESULTS Our results indicated that the DUF642 proteins encoded by At4g32460 and At5g11420 could be positive regulators of PME activity during several developmental processes. Transgenic lines overexpressing these proteins showed increased PME activity during seed germination, and improved seed germination performance. In plants expressing At4g32460 antisense RNA, PME activity was decreased in the leaves, and the siliques were very short and contained no seeds. This phenotype was also present in the SALK_142260 and SALK_054867 lines for At4g32460. CONCLUSIONS Our results suggested that the DUF642 family contributes to the complexity of the methylesterification process by participating in the fine regulation of pectin status during plant development.
Collapse
Affiliation(s)
- Esther Zúñiga-Sánchez
- />Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, México, 04510 Distrito Federal Mexico
| | - Diana Soriano
- />Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, México, 04510 Distrito Federal Mexico
| | - Eleazar Martínez-Barajas
- />Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, 04510 Distrito Federal Mexico
| | - Alma Orozco-Segovia
- />Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, México, 04510 Distrito Federal Mexico
| | - Alicia Gamboa-deBuen
- />Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, México, 04510 Distrito Federal Mexico
| |
Collapse
|
13
|
Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. ANNALS OF BOTANY 2014; 114:1177-1188. [PMID: 24825296 PMCID: PMC4195553 DOI: 10.1093/aob/mcu093] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Sophie Bouton
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Marie Christine Kiefer-Meyer
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Aline Voxeur
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France Institut Jean-Pierre Bourgin UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France
| | - Jérôme Pelloux
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
14
|
Rafińska K, Świdziński M, Bednarska-Kozakiewicz E. Homogalacturonan deesterification during pollen-ovule interaction in Larix decidua Mill.: an immunocytochemical study. PLANTA 2014; 240:195-208. [PMID: 24793355 PMCID: PMC4065381 DOI: 10.1007/s00425-014-2074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/01/2014] [Indexed: 05/07/2023]
Abstract
Studies on angiosperm plants have shown that homogalacturonan present in the extracellular matrix of pistils plays an important role in the interaction with the male gametophyte. However, in gymnosperms, knowledge on the participation of HG in the pollen-ovule interaction is limited, and only a few studies on male gametophytes have been reported. Thus, the aim of this study was to determine the distribution of HG in male gametophytes and ovules during their interaction in Larix decidua Mill. The distribution of HG in pollen grains and unpollinated and pollinated ovules was investigated by immunofluorescence techniques using monoclonal antibodies that recognise high methyl-esterified HG (JIM7), low methyl-esterified HG (JIM5) and calcium cross-linked HG (2F4). All studied categories of HG were detected in the ovule. Highly methyl-esterified HG was present in the cell walls of all cells throughout the interaction; however, the distribution of low methyl-esterified and calcium cross-linked HG changed during the course of interaction. Both of these categories of HG appeared only in the apoplast and the extracellular matrix of the ovule tissues, which interact with the male gametophyte. This finding suggests that in L. decidua, low methyl-esterified and calcium cross-linked HG play an important role in pollen-ovule interaction. The last category of HG is most likely involved in adhesion between the pollen and the ovule and might provide an optimal calcium environment for pollen grain germination and pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Świdziński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Osaka M, Matsuda T, Sakazono S, Masuko-Suzuki H, Maeda S, Sewaki M, Sone M, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Yano K, Lim YP, Suzuki G, Suwabe K, Watanabe M. Cell type-specific transcriptome of Brassicaceae stigmatic papilla cells from a combination of laser microdissection and RNA sequencing. PLANT & CELL PHYSIOLOGY 2013; 54:1894-906. [PMID: 24058146 PMCID: PMC3814185 DOI: 10.1093/pcp/pct133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanisms.
Collapse
Affiliation(s)
- Masaaki Osaka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- These authors contributed equally to this work
| | - Tomoki Matsuda
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
- These authors contributed equally to this work
| | - Satomi Sakazono
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | - Shunsuke Maeda
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Misato Sewaki
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Mikako Sone
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kentaro Yano
- Faculty of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara 582-8582, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
- *Corresponding authors: Masao Watanabe, E-mail, ; Fax, +81-22-217-5683; Keita Suwabe, E-mail, ; Fax, +81-59-231-9540
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- *Corresponding authors: Masao Watanabe, E-mail, ; Fax, +81-22-217-5683; Keita Suwabe, E-mail, ; Fax, +81-59-231-9540
| |
Collapse
|
16
|
Wang L, Wang W, Wang YQ, Liu YY, Wang JX, Zhang XQ, Ye D, Chen LQ. Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. MOLECULAR PLANT 2013; 6:1131-48. [PMID: 23709340 DOI: 10.1093/mp/sst084] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell wall biosynthesis is indispensable for pollen tube growth. Despite its importance to sexual reproduction, the molecular mechanisms of pollen tube wall biosynthesis remain poorly understood. Here, we report functional characterization of two putative Arabidopsis galacturonosyltransferase genes, GAUT13 and GAUT14, which are essential for pollen tube growth. GAUT13 and GAUT14 encode the proteins that share a high amino acid sequence identity and are located in the Golgi apparatus. The T-DNA insertion mutants, gaut13 and gaut14, did not exhibit any observable defects, but the gaut13 gaut14 double mutants were defective in pollen tube growth; 35.2-37.3% pollen tubes in the heterozygous double mutants were swollen and defective in elongation. The outer layer of the cell wall did not appear distinctly fibrillar in the double mutant pollen tubes. Furthermore, distribution of homogalacturonan labeled with JIM5 and JIM7 in the double mutant pollen tube wall was significantly altered compared to wild-type. Our results suggest that GAUT13 and GAUT14 function redundantly in pollen tube growth, possibly through participation in pectin biosynthesis of the pollen tube wall.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
18
|
Suárez C, Zienkiewicz A, Castro AJ, Zienkiewicz K, Majewska-Sawka A, Rodríguez-García MI. Cellular localization and levels of pectins and arabinogalactan proteins in olive (Olea europaea L.) pistil tissues during development: implications for pollen-pistil interaction. PLANTA 2013; 237:305-19. [PMID: 23065053 DOI: 10.1007/s00425-012-1774-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/20/2012] [Indexed: 05/07/2023]
Abstract
Cell wall components in the pistil are involved in cell-cell recognition, nutrition and regulation of pollen tube growth. The aim of this work was to study the level, whole-organ distribution, and subcellular localization of pectins and arabinogalactan proteins (AGPs) in the olive developing pistil. Western blot analyses and immunolocalization with fluorescence and electron microscopy were carried out using a battery of antibodies recognizing different types of pectin epitopes (JIM7, JIM5, LM5, and LM6) and one anti-AGPs antibody (JIM13). In the olive pistil, highest levels of acid esterified and de-esterified pectins were observed at pollination. Moreover, pollination was accompanied by a slight decrease of the galactose-rich pectins pool, whereas arabinose-rich pectins were more abundant at that time. An increased expression of AGPs was also observed during pollination, in comparison to the pistil at the pre-anthesis stage. After pollination, the levels of pectins and AGPs declined significantly. Inmunofluorescence localization of pectins showed their different localization in the olive pistil. Pectins with galactose residues were located mainly in the cortical zones of the pistil, similar to the neutral pectins, which were found in the parenchyma and epidermis. In turn, the neutral pectins, which contain arabinose residues and AGPs, were localized predominantly in the stigmatic exudate, in the cell wall of secretory cells of the stigma, as well as in the transmitting tissue of the pistil during the pollination period. The differences in localization of pectins and AGPs are discussed in relation to their roles during olive pistil developmental course.
Collapse
Affiliation(s)
- Cynthia Suárez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Chebli Y, Kaneda M, Zerzour R, Geitmann A. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides. PLANT PHYSIOLOGY 2012; 160:1940-55. [PMID: 23037507 PMCID: PMC3510122 DOI: 10.1104/pp.112.199729] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/02/2012] [Indexed: 05/17/2023]
Abstract
The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other.
Collapse
Affiliation(s)
- Youssef Chebli
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|