1
|
Heck T, Souza GM, Fipke MV, Polito RA, Balbinot A, Lamego FP, Camargo ER, de Avila LA. Memory Induced by Recurrent Drought Stress in Chirca ( Acanthostyles buniifolius). PLANTS (BASEL, SWITZERLAND) 2025; 14:555. [PMID: 40006814 PMCID: PMC11859701 DOI: 10.3390/plants14040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
To thrive as a successful weed in natural pastures, a plant must have not only highly competitive ability, but also the resilience to endure environmental stress and rapidly reclaim space once those stressors diminish and the other non-stress-tolerant plants die. Acanthostyles buniifolius [(Hook. ex Hook. & Arn.) R.M.King & H.Rob.], known as chirca, is a widely spread weed in South American natural pastures. It is known for its remarkable ability to withstand environmental stress and flourish in environments with prevalent stressors. The study evaluated the memory effect of water stress (drought) in chirca plants. The experiment was conducted in a greenhouse in a randomized block design with three replications. Treatments included Control = control plants without water deficit kept at 100% of the soil water-holding capacity (WHC); Primed plants = plants that were primed with water stress at 141 days after emergence (DAE) and received recurrent stress at 164 DAE; Naïve plants: plants that only experienced water stress at 164 DAE. To reach water stress, plants were not watered until the soil reached 15% of the soil's WHC, which occurred ten days after water suppression in the priming stress and nine days after water suppression in the second stress. During periods without restriction, the pots were watered daily at 100% of the WHC. Primed plants exposed to water deficit better-maintained water status compared to the naïve plants; glycine betaine is an important defense mechanism against water deficit in chirca; naïve plants have a higher concentration of proline than plants under recurrent stress, demonstrating the greater need for protection against oxidative damage and needs greater osmotic regulation. Recurrent water deficits can prepare chirca plants for future drought events. These results show that chirca is a very adaptative weed and may become a greater threat to pastures in South America due to climate change, especially if drought becomes more frequent and severe.
Collapse
Affiliation(s)
- Tamara Heck
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (T.H.); (M.V.F.); (R.A.P.); (E.R.C.)
| | - Gustavo Maia Souza
- Department of Botany, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Marcus Vinícius Fipke
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (T.H.); (M.V.F.); (R.A.P.); (E.R.C.)
| | - Rubens Antonio Polito
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (T.H.); (M.V.F.); (R.A.P.); (E.R.C.)
| | - Andrisa Balbinot
- Herbicide Research and Development, Syngenta Crop Protection, Lucas do Rio Verde 78455-000, MT, Brazil;
| | | | - Edinalvo Rabaioli Camargo
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (T.H.); (M.V.F.); (R.A.P.); (E.R.C.)
| | - Luis Antonio de Avila
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
2
|
Peak D, Hogan MT, Mott KA. Stomatal patchiness and cellular computing. Proc Natl Acad Sci U S A 2023; 120:e2220270120. [PMID: 36972429 PMCID: PMC10083565 DOI: 10.1073/pnas.2220270120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Control of carbon dioxide and water vapor exchange between a leaf's interior and the surrounding air is accomplished by variations in the turgor pressures in the small epidermal and guard cells that cover the leaf's surface. These pressures respond to changes in light intensity and wavelength, temperature, CO2 concentration, and air humidity. The dynamical equations that describe such processes are formally identical to those that define computation in a two-layer, adaptive, cellular nonlinear network. This exact identification suggests that leaf gas-exchange processes can be understood as analog computation and that exploiting the output of two-layer, adaptive, cellular nonlinear networks might provide new tools in applied plant research.
Collapse
Affiliation(s)
- David Peak
- Physics Department, Utah State University, Logan, UT84322-4415
| | - Matthew T. Hogan
- Physics and Astronomy Department, University of Utah, Salt Lake City, UT84112-0830
| | - Keith A. Mott
- Biology Department, Utah State University, Logan, UT84322-0300
| |
Collapse
|
3
|
Chiolerio A, Vitiello G, Dehshibi MM, Adamatzky A. Living Plants Ecosystem Sensing: A Quantum Bridge between Thermodynamics and Bioelectricity. Biomimetics (Basel) 2023; 8:biomimetics8010122. [PMID: 36975352 PMCID: PMC10046232 DOI: 10.3390/biomimetics8010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
The in situ measurement of the bioelectric potential in xilematic and floematic superior plants reveals valuable insights into the biological activity of these organisms, including their responses to lunar and solar cycles and collective behaviour. This paper reports on the “Cyberforest Experiment” conducted in the open-air Paneveggio forest in Valle di Fiemme, Trento, Italy, where spruce (i.e., Picea abies) is cultivated. Our analysis of the bioelectric potentials reveals a strong correlation between higher-order complexity measurements and thermodynamic entropy and suggests that bioelectrical signals can reflect the metabolic activity of plants. Additionally, temporal correlations of bioelectric signals from different trees may be precisely synchronized or may lag behind. These correlations are further explored through the lens of quantum field theory, suggesting that the forest can be viewed as a collective array of in-phase elements whose correlation is naturally tuned depending on the environmental conditions. These results provide compelling evidence for the potential of living plant ecosystems as environmental sensors.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Converging Technologies, Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 16065 Genova, Italy
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Correspondence:
| | - Giuseppe Vitiello
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Department of Physics “E.R. Caianiello”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Mohammad Mahdi Dehshibi
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
| |
Collapse
|
4
|
Couée I. Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:3-22. [PMID: 36944870 DOI: 10.1007/978-1-0716-3044-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10-20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.
| |
Collapse
|
5
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
6
|
Leveraging plant physiological dynamics using physical reservoir computing. Sci Rep 2022; 12:12594. [PMID: 35869238 PMCID: PMC9307625 DOI: 10.1038/s41598-022-16874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Plants are complex organisms subject to variable environmental conditions, which influence their physiology and phenotype dynamically. We propose to interpret plants as reservoirs in physical reservoir computing. The physical reservoir computing paradigm originates from computer science; instead of relying on Boolean circuits to perform computations, any substrate that exhibits complex non-linear and temporal dynamics can serve as a computing element. Here, we present the first application of physical reservoir computing with plants. In addition to investigating classical benchmark tasks, we show that Fragaria × ananassa (strawberry) plants can solve environmental and eco-physiological tasks using only eight leaf thickness sensors. Although the results indicate that plants are not suitable for general-purpose computation but are well-suited for eco-physiological tasks such as photosynthetic rate and transpiration rate. Having the means to investigate the information processing by plants improves quantification and understanding of integrative plant responses to dynamic changes in their environment. This first demonstration of physical reservoir computing with plants is key for transitioning towards a holistic view of phenotyping and early stress detection in precision agriculture applications since physical reservoir computing enables us to analyse plant responses in a general way: environmental changes are processed by plants to optimise their phenotype.
Collapse
|
7
|
Szechyńska-Hebda M, Lewandowska M, Witoń D, Fichman Y, Mittler R, Karpiński SM. Aboveground plant-to-plant electrical signaling mediates network acquired acclimation. THE PLANT CELL 2022; 34:3047-3065. [PMID: 35595231 PMCID: PMC9338792 DOI: 10.1093/plcell/koac150] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/16/2022] [Indexed: 05/05/2023]
Abstract
Systemic acquired acclimation and wound signaling require the transmission of electrical, calcium, and reactive oxygen species (ROS) signals between local and systemic tissues of the same plant. However, whether such signals can be transmitted between two different plants is largely unknown. Here, we reveal a new type of plant-to-plant aboveground direct communication involving electrical signaling detected at the surface of leaves, ROS, and photosystem networks. A foliar electrical signal induced by wounding or high light stress applied to a single dandelion leaf can be transmitted to a neighboring plant that is in direct contact with the stimulated plant, resulting in systemic photosynthetic, oxidative, molecular, and physiological changes in both plants. Furthermore, similar aboveground changes can be induced in a network of plants serially connected via touch. Such signals can also induce responses even if the neighboring plant is from a different plant species. Our study demonstrates that electrical signals can function as a communication link between transmitter and receiver plants that are organized as a network (community) of plants. This process can be described as network-acquired acclimation.
Collapse
Affiliation(s)
| | | | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Yosef Fichman
- The Division of Plant Sciences and Technology and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
| | - Ron Mittler
- The Division of Plant Sciences and Technology and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
| | | |
Collapse
|
8
|
Gołębiowska G, Dyda M, Wajdzik K. Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122678. [PMID: 34961149 PMCID: PMC8704164 DOI: 10.3390/plants10122678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Tolerance to pink snow mold caused by Microdochium nivale appears after a cold-hardening period and it is an essential, genotype-dependent, complex quantitative trait for the wintering of triticale (x Triticosecale) and other cereals. Despite long-term studies, a marker for the selection of the tolerant genotypes is still insufficiently recognized. Chlorophyll fluorescence has been reported as a sensitive indicator of stress effects on photosynthesis and can be used to predict plant tolerance. In this study, the genomic regions (QTLs) associated with the level of winter triticale seedlings damage caused by M. nivale infection as well as photosynthesis quantum efficiency and chlorophyll a fluorescence parameters were identified in seedlings of mapping population of 89 doubled haploids lines (DHs) derived from F1 hybrid of cv. 'Hewo' and cv. 'Magnat' accompanied with the genetic map consisting of 20 linkage groups with a total map length 4997.4 cm. Independent experiments performed in controlled conditions revealed 13 regions identified by a composite interval mapping, located on 7A, 1B, 2B, 6B, 7B, 3R, 5R, and 6R linkage groups and related to the PI, PIABS, TRo/CS, ABS/CS, ABS/CSm, ABS/RC, and Qy values as well as M. nivale tolerance T and susceptibility level P expressed by the seedling damage index. Additionally, candidate genes were in silico identified with the sequence position on wheat (2B and 7B) and rye (5R) chromosomes, where relevant QTL regions were found. The most important candidate genes indicated for M. nivale tolerance of cold-hardened triticale seedlings include those coding: sterol 3-beta-glucosyltransferase UGT80A2-like, transcription factor NAI1-like, and flavonol3-sulfotransferase-like proteins on chromosomes 2B and 5R.
Collapse
|
9
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
10
|
Abstract
Meaning has traditionally been regarded as a problem for philosophers and psychologists. Advances in cognitive science since the early 1960s, however, broadened discussions of meaning, or more technically, the semantics of perceptions, representations, and/or actions, into biology and computer science. Here, we review the notion of “meaning” as it applies to living systems, and argue that the question of how living systems create meaning unifies the biological and cognitive sciences across both organizational and temporal scales.
Collapse
|
11
|
FMO1 Is Involved in Excess Light Stress-Induced Signal Transduction and Cell Death Signaling. Cells 2020; 9:cells9102163. [PMID: 32987853 PMCID: PMC7600522 DOI: 10.3390/cells9102163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Because of their sessile nature, plants evolved integrated defense and acclimation mechanisms to simultaneously cope with adverse biotic and abiotic conditions. Among these are systemic acquired resistance (SAR) and systemic acquired acclimation (SAA). Growing evidence suggests that SAR and SAA activate similar cellular mechanisms and employ common signaling pathways for the induction of acclimatory and defense responses. It is therefore possible to consider these processes together, rather than separately, as a common systemic acquired acclimation and resistance (SAAR) mechanism. Arabidopsis thaliana flavin-dependent monooxygenase 1 (FMO1) was previously described as a regulator of plant resistance in response to pathogens as an important component of SAR. In the current study, we investigated its role in SAA, induced by a partial exposure of Arabidopsis rosette to local excess light stress. We demonstrate here that FMO1 expression is induced in leaves directly exposed to excess light stress as well as in systemic leaves remaining in low light. We also show that FMO1 is required for the systemic induction of ASCORBATE PEROXIDASE 2 (APX2) and ZINC-FINGER OF ARABIDOPSIS 10 (ZAT10) expression and spread of the reactive oxygen species (ROS) systemic signal in response to a local application of excess light treatment. Additionally, our results demonstrate that FMO1 is involved in the regulation of excess light-triggered systemic cell death, which is under control of LESION SIMULATING DISEASE 1 (LSD1). Our study indicates therefore that FMO1 plays an important role in triggering SAA response, supporting the hypothesis that SAA and SAR are tightly connected and use the same signaling pathways.
Collapse
|
12
|
Sims M. Minimal perception: Responding to the challenges of perceptual constancy and veridicality with plants. PHILOSOPHICAL PSYCHOLOGY 2019. [DOI: 10.1080/09515089.2019.1646898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew Sims
- Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S. Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E290. [PMID: 31426325 PMCID: PMC6724177 DOI: 10.3390/plants8080290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that these proteins are also required for acclimation responses to various abiotic stresses, such as high light, UV radiation, drought and cold, and that their function is mediated through secondary messengers, such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules. Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell walls, and the regulation of seed yield, biomass production and water use efficiency. The function of these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for agricultural and industrial use.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Cracow, Poland
- The Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Błonie, Radzików, Poland
| | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
14
|
Adamatzky A. Plant leaf computing. Biosystems 2019; 182:59-64. [DOI: 10.1016/j.biosystems.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/05/2023]
|
15
|
Lee C, Daiute C. Introduction to Developmental Digital Technologies in Human History, Culture, and Well-Being. Hum Dev 2019. [DOI: 10.1159/000496072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Baluška F, Mancuso S. Actin Cytoskeleton and Action Potentials: Forgotten Connections. THE CYTOSKELETON 2019. [DOI: 10.1007/978-3-030-33528-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Latzel V, Münzbergová Z. Anticipatory Behavior of the Clonal Plant Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2018; 9:1847. [PMID: 30619415 PMCID: PMC6297673 DOI: 10.3389/fpls.2018.01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 05/07/2023]
Abstract
Active foraging for patchy resources is a crucial feature of many clonal plant species. It has been recently shown that plants' foraging for resources can be facilitated by anticipatory behavior via association of resource position with other environmental cues. We therefore tested whether clones of Fragaria vesca are able to associate and memorize positions of soil nutrients with particular light intensity, which will consequently enable them anticipating nutrients in new environment. We trained clones of F. vesca for nutrients to occur either in shade or in light. Consequently, we tested their growth response to differing light intensity in the absence of soil nutrients. We also manipulated epigenetic status of a subset of the clones to test the role of DNA methylation in the anticipatory behavior. Clones of F. vesca were able to associate presence of nutrients with particular light intensity, which enabled them to anticipate nutrient positions in the new environment based on its light intensity. Clones that had been trained for nutrients to occur in shade increased placement of ramets to shade whereas clones trained for nutrients to occur in light increased biomass of ramets in light. Our study clearly shows that the clonal plant F. vesca is able to relate two environmental factors, light and soil nutrients, and use this connection in anticipatory behavior. We conclude that anticipatory behavior can substantially improve the ability of clonal plants to utilize scarce and unevenly distributed resources.
Collapse
Affiliation(s)
- Vít Latzel
- Department of Population Ecology, Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Zuzana Münzbergová
- Department of Population Ecology, Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
19
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Front Physiol 2017; 8:684. [PMID: 28959209 PMCID: PMC5603676 DOI: 10.3389/fphys.2017.00684] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA) and the systemic acquired resistance (SAR). The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKrakow, Poland
| | - Maria Lewandowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| |
Collapse
|
21
|
Calvo P, Baluška F, Sims A. "Feature Detection" vs. "Predictive Coding" Models of Plant Behavior. Front Psychol 2016; 7:1505. [PMID: 27757094 PMCID: PMC5047902 DOI: 10.3389/fpsyg.2016.01505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
In this article we consider the possibility that plants exhibit anticipatory behavior, a mark of intelligence. If plants are able to anticipate and respond accordingly to varying states of their surroundings, as opposed to merely responding online to environmental contingencies, then such capacity may be in principle testable, and subject to empirical scrutiny. Our main thesis is that adaptive behavior can only take place by way of a mechanism that predicts the environmental sources of sensory stimulation. We propose to test for anticipation in plants experimentally by contrasting two empirical hypotheses: “feature detection” and “predictive coding.” We spell out what these contrasting hypotheses consist of by way of illustration from the animal literature, and consider how to transfer the rationale involved to the plant literature.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Lab (MINT Lab), Department of Philosophy, University of MurciaMurcia, Spain; School of Philosophy, Psychology and Language Sciences, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn Bonn, Germany
| | - Andrew Sims
- Institut Supérieur de Philosophie, Université Catholique de Louvain Louvain, Belgium
| |
Collapse
|
22
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Latzel V, Rendina González AP, Rosenthal J. Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1354. [PMID: 27630664 PMCID: PMC5006084 DOI: 10.3389/fpls.2016.01354] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/24/2016] [Indexed: 05/20/2023]
Abstract
Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.
Collapse
Affiliation(s)
- Vít Latzel
- Institute of Botany of Czech Academy of SciencesPrůhonice, Czech Republic
| | | | | |
Collapse
|
24
|
Carmody M, Crisp PA, d'Alessandro S, Ganguly D, Gordon M, Havaux M, Albrecht-Borth V, Pogson BJ. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. PLANT PHYSIOLOGY 2016; 171:1734-49. [PMID: 27288360 PMCID: PMC4936574 DOI: 10.1104/pp.16.00404] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 05/18/2023]
Abstract
Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction.
Collapse
Affiliation(s)
- Melanie Carmody
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Stefano d'Alessandro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Diep Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Matthew Gordon
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Michel Havaux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Verónica Albrecht-Borth
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| |
Collapse
|
25
|
Miller WB. Cognition, Information Fields and Hologenomic Entanglement: Evolution in Light and Shadow. BIOLOGY 2016; 5:biology5020021. [PMID: 27213462 PMCID: PMC4929535 DOI: 10.3390/biology5020021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
As the prime unification of Darwinism and genetics, the Modern Synthesis continues to epitomize mainstay evolutionary theory. Many decades after its formulation, its anchor assumptions remain fixed: conflict between macro organic organisms and selection at that level represent the near totality of any evolutionary narrative. However, intervening research has revealed a less easily appraised cellular and microbial focus for eukaryotic existence. It is now established that all multicellular eukaryotic organisms are holobionts representing complex collaborations between the co-aligned microbiome of each eukaryote and its innate cells into extensive mixed cellular ecologies. Each of these ecological constituents has demonstrated faculties consistent with basal cognition. Consequently, an alternative hologenomic entanglement model is proposed with cognition at its center and conceptualized as Pervasive Information Fields within a quantum framework. Evolutionary development can then be reconsidered as being continuously based upon communication between self-referential constituencies reiterated at every scope and scale. Immunological reactions support and reinforce self-recognition juxtaposed against external environmental stresses.
Collapse
Affiliation(s)
- William B Miller
- Independent Researcher, 6526 N. 59th St., Paradise Valley, AZ 85253, USA.
| |
Collapse
|
26
|
Abramson CI, Chicas-Mosier AM. Learning in Plants: Lessons from Mimosa pudica. Front Psychol 2016; 7:417. [PMID: 27065905 PMCID: PMC4814444 DOI: 10.3389/fpsyg.2016.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/09/2016] [Indexed: 11/13/2022] Open
Abstract
This article provides an overview of the early Mimosa pudica literature; much of which is in journals not easily accessible to the reader. In contrast to the contemporary plant learning literature which is conducted primarily by plant biologists, this early literature was conducted by comparative psychologists whose goal was to search for the generality of learning phenomena such as habituation, and classical conditioning using experimental designs based on animal conditioning studies. In addition to reviewing the early literature, we hope to encourage collaborations between plant biologists and comparative psychologists by familiarizing the reader with issues in the study of learning faced by those working with animals. These issues include no consistent definition of learning phenomena and an overreliance on the use of cognition. We suggested that greater collaborative efforts be made between plant biologists and comparative psychologists if the study of plant learning is to be fully intergraded into the mainstream behavior theory.
Collapse
Affiliation(s)
- Charles I Abramson
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State UniversityStillwater, OK, USA; Department of Integrative Biology, Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State UniversityStillwater, OK, USA
| | - Ana M Chicas-Mosier
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State UniversityStillwater, OK, USA; Department of Integrative Biology, Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
27
|
Szechyńska-Hebda M, Czarnocka W, Hebda M, Bernacki MJ, Karpiński S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. PLANT CELL REPORTS 2016; 35:527-39. [PMID: 26754794 DOI: 10.1007/s00299-015-1901-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition. The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marek Hebda
- Institute of Materials Engineering, Cracow University of Technology, Kraków, Poland
| | - Maciej J Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
28
|
Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:478-93. [PMID: 26749255 DOI: 10.1111/tpj.13120] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/13/2015] [Accepted: 12/24/2015] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H2O2 and NO. Scavenging of H2O2 or NO in upper leaves blocked BR-induced systemic virus resistance. BR-induced systemic H2O2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite-dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR-triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR-activated H2O2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H2O2 generation blocked BR-induced systemic NO production, but BR-induced H2O2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR-induced systemic virus defense in NbRBOHB-silenced plants, but H2O2 did not reverse the effect of NbNR silencing on BR-induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR-mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR-induced H2O2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR-mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)-dependent H2O2 production and subsequent systemic NR-dependent NO generation.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue-Ying Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
29
|
Szechyńska-Hebda M, Wąsek I, Gołębiowska-Pikania G, Dubas E, Żur I, Wędzony M. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.). JOURNAL OF PLANT PHYSIOLOGY 2015; 177:30-43. [PMID: 25666539 DOI: 10.1016/j.jplph.2014.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/26/2014] [Accepted: 12/06/2014] [Indexed: 05/29/2023]
Abstract
The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense responses. These data provide a new insight into the cross talk between cold acclimation and cold-induced resistance in triticale, indicating a key role of photosynthesis-related processes.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horiculture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland.
| | - Iwona Wąsek
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
| | | | - Ewa Dubas
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
| | - Iwona Żur
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
| | - Maria Wędzony
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland
| |
Collapse
|
30
|
Gardiner J. Use of Arabidopsis to Model Hereditary Spastic Paraplegia and Other Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Szechyńska-Hebda M, Karpiński S. Light intensity-dependent retrograde signalling in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1501-16. [PMID: 23850030 DOI: 10.1016/j.jplph.2013.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 05/23/2023]
Abstract
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland; Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warszawa, Poland
| | | |
Collapse
|
32
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
33
|
Baluška F, Mancuso S. Microorganism and filamentous fungi drive evolution of plant synapses. Front Cell Infect Microbiol 2013; 3:44. [PMID: 23967407 PMCID: PMC3744040 DOI: 10.3389/fcimb.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022] Open
Abstract
In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell–cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.
Collapse
Affiliation(s)
- František Baluška
- IZMB, Department of Plant Cell Biology, University of Bonn Bonn, Germany.
| | | |
Collapse
|
34
|
Marder M. Plant intelligence and attention. PLANT SIGNALING & BEHAVIOR 2013; 8:e23902. [PMID: 23425923 PMCID: PMC3906434 DOI: 10.4161/psb.23902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/06/2013] [Indexed: 05/19/2023]
Abstract
This article applies the phenomenological model of attention to plant monitoring of environmental stimuli and signal perception. Three complementary definitions of attention as selectivity, modulation and perdurance are explained with reference to plant signaling and behaviors, including foraging, ramet placement and abiotic stress communication. Elements of animal and human attentive attitudes are compared with plant attention at the levels of cognitive focus, context and margin. It is argued that the concept of attention holds the potential of becoming a cornerstone of plant intelligence studies.
Collapse
Affiliation(s)
- Michael Marder
- Department of Philosophy; The University of the Basque Country; UPV-EHU; Ikerbasque: Basque Foundation for Science; Vitoria-Gasteiz, Basque Country
| |
Collapse
|
35
|
Karpiński S, Szechyńska-Hebda M, Wituszyńska W, Burdiak P. Light acclimation, retrograde signalling, cell death and immune defences in plants. PLANT, CELL & ENVIRONMENT 2013; 36:736-44. [PMID: 23046215 DOI: 10.1111/pce.12018] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA).
Collapse
Affiliation(s)
- Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warszawa, Poland.
| | | | | | | |
Collapse
|
36
|
Gordon MJ, Carmody M, Albrecht V, Pogson B. Systemic and Local Responses to Repeated HL Stress-Induced Retrograde Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 3:303. [PMID: 23335929 PMCID: PMC3547187 DOI: 10.3389/fpls.2012.00303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/16/2012] [Indexed: 05/18/2023]
Abstract
CHLOROPLASTS OF LEAVES UNDER HIGH LIGHT STRESS INITIATE SIGNALS TO THE NUCLEI OF BOTH EXPOSED AND DISTAL LEAVES IN ORDER TO ACCLIMATE AGAINST THE POTENTIAL THREAT OF OXIDATIVE DAMAGE: a process known as high light systemic acquired acclimation (HL SAA). This study explores the nature of HL SAA, synergistic interactions with other environmental stresses, and the impact of repeated HL stress on the acclimation response of exposed and distal leaves. This necessitated the development of novel experimental systems to investigate the initiation, perception, and response to HL SAA. These systems were used to investigate the HL SAA response by monitoring the induction of mRNA in distal leaves not exposed to the HL stress. Acclimation to HL is induced within minutes and the response is proportionally dependent on the quality and quantity of light. HL SAA treatments in conjunction with variations in temperature and humidity reveal HL SAA is influenced by fluctuations in humidity. These treatments also result in changes in auxin accumulation and auxin-responsive genes. A key question in retrograde signaling is the extent to which transient changes in light intensity result in a "memory" of the event leading to acclimation responses. Repeated exposure to short term HL resulted in acclimation of the exposed tissue and that of emerging and young leaves (but not older leaves) to HL and oxidative stress.
Collapse
Affiliation(s)
- Matthew J. Gordon
- School of Biochemistry and Molecular Biology, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
| | - Melanie Carmody
- School of Biochemistry and Molecular Biology, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
| | - Verónica Albrecht
- School of Biochemistry and Molecular Biology, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
| | - Barry Pogson
- School of Biochemistry and Molecular Biology, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
37
|
Systemic Photooxidative Stress Signalling. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|