1
|
Shao C, Sun S, Liu K, Wang J, Li S, Liu Q, Deagle BE, Seim I, Biscontin A, Wang Q, Liu X, Kawaguchi S, Liu Y, Jarman S, Wang Y, Wang HY, Huang G, Hu J, Feng B, De Pittà C, Liu S, Wang R, Ma K, Ying Y, Sales G, Sun T, Wang X, Zhang Y, Zhao Y, Pan S, Hao X, Wang Y, Xu J, Yue B, Sun Y, Zhang H, Xu M, Liu Y, Jia X, Zhu J, Liu S, Ruan J, Zhang G, Yang H, Xu X, Wang J, Zhao X, Meyer B, Fan G. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 2023; 186:1279-1294.e19. [PMID: 36868220 DOI: 10.1016/j.cell.2023.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.
Collapse
Affiliation(s)
- Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiahao Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bruce E Deagle
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Fish Collection, National Research Collections Australia, Hobart, TAS 7000, Australia; Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | | | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Beijing, Beijing 102601, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - So Kawaguchi
- Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
| | - Yalin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6009, Australia
| | - Yue Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Jiang Hu
- Nextomics Biosciences Institute, Wuhan, Hubei 430073, China
| | - Bo Feng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | | | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Rui Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Kailong Ma
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yiping Ying
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Gabrielle Sales
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tao Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinliang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yunxia Zhao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xiancai Hao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yang Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jiakun Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yuyan Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jiancheng Zhu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shufang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; James D. Watson Institute of Genome Science, Hangzhou 310058, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xianyong Zhao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129 Oldenburg, Germany.
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen 518120, China.
| |
Collapse
|
2
|
Meitha K, Agudelo-Romero P, Signorelli S, Gibbs DJ, Considine JA, Foyer CH, Considine MJ. Developmental control of hypoxia during bud burst in grapevine. PLANT, CELL & ENVIRONMENT 2018; 41:1154-1170. [PMID: 29336037 DOI: 10.1111/pce.13141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds.
Collapse
Affiliation(s)
- Karlia Meitha
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Department of Primary Industries and Rural Development, South Perth, 6151, Australia
| |
Collapse
|
3
|
Rousvoal S, Bouyer B, López-Cristoffanini C, Boyen C, Collén J. Mutant swarms of a totivirus-like entities are present in the red macroalga Chondrus crispus and have been partially transferred to the nuclear genome. JOURNAL OF PHYCOLOGY 2016; 52:493-504. [PMID: 27151076 DOI: 10.1111/jpy.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Chondrus crispus Stackhouse (Gigartinales) is a red seaweed found on North Atlantic rocky shores. Electrophoresis of RNA extracts showed a prominent band with a size of around 6,000 bp. Sequencing of the band revealed several sequences with similarity to totiviruses, double-stranded RNA viruses that normally infect fungi. This virus-like entity was named C. crispus virus (CcV). It should probably be regarded as an extreme viral quasispecies or a mutant swarm since low identity (<65%) was found between sequences. Totiviruses typically code for two genes: one capsid gene (gag) and one RNA-dependent RNA polymerase gene (pol) with a pseudoknot structure between the genes. Both the genes and the intergenic structures were found in the CcV sequences. A nonidentical gag gene was also found in the nuclear genome of C. crispus, with associated expressed sequence tags (EST) and upstream regulatory features. The gene was presumably horizontally transferred from the virus to the alga. Similar dsRNA bands were seen in extracts from different life cycle stages of C. crispus and from all geographic locations tested. In addition, similar bands were also observed in RNA extractions from other red algae; however, the significance of this apparently widespread phenomenon is unknown. Neither phenotype caused by the infection nor any virus particles or capsid proteins were identified; thus, the presence of viral particles has not been validated. These findings increase the known host range of totiviruses to include marine red algae.
Collapse
Affiliation(s)
- Sylvie Rousvoal
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Betty Bouyer
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Camilo López-Cristoffanini
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Catherine Boyen
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
5
|
Aparicio-Fabre R, Guillén G, Loredo M, Arellano J, Valdés-López O, Ramírez M, Íñiguez LP, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC PLANT BIOLOGY 2013; 13:26. [PMID: 23402340 PMCID: PMC3621168 DOI: 10.1186/1471-2229-13-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. RESULTS Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P-responsive genes; this process could be mediated by JA-signaling. CONCLUSION Our work contributes to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors in the JA signaling pathway. In addition, we propose that the JA-signaling pathway involving PvTIFY genes might play a role in regulating the plant response/adaptation to P-starvation.
Collapse
Affiliation(s)
- Rosaura Aparicio-Fabre
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Gabriel Guillén
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Montserrat Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Jesús Arellano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Luis P Íñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Dario Panzeri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Francesco Strozzi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| |
Collapse
|