1
|
Choi JH, Oh MH. Role of Tyrosine Phosphorylation in PEP1 Receptor 1(PEPR1) in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:1515. [PMID: 40431080 PMCID: PMC12115080 DOI: 10.3390/plants14101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, to understand the role of tyrosine phosphorylation. PEPR1-CD (cytoplasmic domain) recombinant protein exhibited strong tyrosine autophosphorylation, including threonine autophosphorylation. We subjected all tyrosine residues in PEPR1-CD to site-directed mutagenesis. The recombinant proteins were purified along with PEPR1-CD, and Western blotting was performed using a tyrosine-specific antibody. Among the 13 tyrosine residues in PEPR1-CD, the PEPR1(Y995F)-CD recombinant protein showed significantly reduced tyrosine autophosphorylation intensity compared to PEPR1-CD and other tyrosine mutants, despite little change in threonine autophosphorylation. To confirm the autophosphorylation site, we generated a phospho-specific peptide Ab, pY995. As a result, Tyr-995 of PEPR1-CD was a major tyrosine autophosphorylation site in vitro. To understand the function of tyrosine phosphorylation in vivo, we generated transgenic plants, expressing PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag in a pepr1/2 double mutant background. Interestingly, the root growths of PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag were not inhibited by pep1 peptide treatment, compared to Col-0 and PEPR1-Flag (pepr1/2) transgenic plants. Also, we analyzed downstream components, which included PROPEP1, MPK3, WRKY33, and RBOHD gene expressions in four different genotypes (Col-0, PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag) of plants in the presence of the pep1 peptide. Interestingly, the expressions of PROPEP1, MPK3, WRKY33, and RBOHD were not regulated by pep1 peptide treatment in PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag transgenic plants, in contrast to Col-0 and PEPR1-Flag. These results suggest that specific tyrosine residues play an important role in vivo in the plant receptor function.
Collapse
Affiliation(s)
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
2
|
Zhang H, Yang Q, Wang L, Liu H, Zhang D, Duan CG, Li X. Moss-pathogen interactions: a review of the current status and future opportunities. Front Genet 2025; 16:1539311. [PMID: 40008229 PMCID: PMC11850516 DOI: 10.3389/fgene.2025.1539311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In complex and diverse environments, plants face constant challenges from various pathogens, including fungi, bacteria, and viruses, which can severely impact their growth, development, and survival. Mosses, representing early divergent lineages of land plants, lack traditional vascular systems yet demonstrate remarkable adaptability across diverse habitats. While sharing the fundamental innate immune systems common to all land plants, mosses have evolved distinct chemical and physical defense mechanisms. Notably, they exhibit resistance to many pathogens that typically affect vascular plants. Their evolutionary significance, relatively simple morphology, and well-conserved defense mechanisms make mosses excellent model organisms for studying plant-pathogen interactions. This article reviews current research on moss-pathogen interactions, examining host-pathogen specificity, characterizing infection phenotypes and physiological responses, and comparing pathogen susceptibility and defense mechanisms between mosses and angiosperms. Through this analysis, we aim to deepen our understanding of plant immune system evolution and potentially inform innovative approaches to enhancing crop disease resistance.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Leyi Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
3
|
Tavakolian S, Eshkiki ZS, Akbari A, Faghihloo E, Tabaeian SP. PTEN regulation in virus-associated cancers. Pathol Res Pract 2025; 266:155749. [PMID: 39642806 DOI: 10.1016/j.prp.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Despite advancements in science, researchers still face challenges in curing patients with malignancies. This health issue is linked to various risk factors, including alcohol consumption, age, sex, and infectious diseases. Among these, viral agents play a significant role in cancer-related health problems and are currently a subject of ongoing research. In this review, we summarize how several viruses-such as herpesviruses, human papillomavirus, hepatitis B virus, hepatitis C virus, and adenovirus-impact cancer signaling pathways through their effects on the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xin J, Li C, Liu X, Shi X, Sun Y, Shang JX. Emerging Functions of Protein Tyrosine Phosphatases in Plants. Int J Mol Sci 2024; 25:12050. [PMID: 39596119 PMCID: PMC11593807 DOI: 10.3390/ijms252212050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Reversible protein phosphorylation, known as the "switch" of the cell, is controlled by protein kinases (PKs) and protein phosphatases (PPs). Based on substrate specificity, PPs are classified into protein serine/threonine phosphatases and protein tyrosine phosphatases (PTPs). PTPs can dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine. In plants, PTPs monitor plant physiology, growth, and development. This review summarizes an overview of the PTPs' classification and describes how PTPs regulate various plant processes, including plant growth and development, plant hormone responses, and responses to abiotic and biotic stresses. Then, future research directions on the PTP family in plants are discussed. This summary will serve as a reference for researchers studying PTPs in plants.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Chuanling Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Xiaoqian Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Xueke Shi
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| | - Jian-Xiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (X.L.); (X.S.); (Y.S.)
| |
Collapse
|
5
|
Poretsky E, Andorf CM, Sen TZ. PhosBoost: Improved phosphorylation prediction recall using gradient boosting and protein language models. PLANT DIRECT 2023; 7:e554. [PMID: 38124705 PMCID: PMC10732782 DOI: 10.1002/pld3.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Protein phosphorylation is a dynamic and reversible post-translational modification that regulates a variety of essential biological processes. The regulatory role of phosphorylation in cellular signaling pathways, protein-protein interactions, and enzymatic activities has motivated extensive research efforts to understand its functional implications. Experimental protein phosphorylation data in plants remains limited to a few species, necessitating a scalable and accurate prediction method. Here, we present PhosBoost, a machine-learning approach that leverages protein language models and gradient-boosting trees to predict protein phosphorylation from experimentally derived data. Trained on data obtained from a comprehensive plant phosphorylation database, qPTMplants, we compared the performance of PhosBoost to existing protein phosphorylation prediction methods, PhosphoLingo and DeepPhos. For serine and threonine prediction, PhosBoost achieved higher recall than PhosphoLingo and DeepPhos (.78, .56, and .14, respectively) while maintaining a competitive area under the precision-recall curve (.54, .56, and .42, respectively). PhosphoLingo and DeepPhos failed to predict any tyrosine phosphorylation sites, while PhosBoost achieved a recall score of .6. Despite the precision-recall tradeoff, PhosBoost offers improved performance when recall is prioritized while consistently providing more confident probability scores. A sequence-based pairwise alignment step improved prediction results for all classifiers by effectively increasing the number of inferred positive phosphosites. We provide evidence to show that PhosBoost models are transferable across species and scalable for genome-wide protein phosphorylation predictions. PhosBoost is freely and publicly available on GitHub.
Collapse
Affiliation(s)
- Elly Poretsky
- Agricultural Research Service, Crop Improvement and Genetics Research UnitU.S. Department of AgricultureAlbanyCAUnited States
| | - Carson M. Andorf
- Agricultural Research Service, Corn Insects and Crop Genetics ResearchU.S. Department of AgricultureAmesIAUnited States
- Department of Computer ScienceIowa State UniversityAmesIAUnited States
| | - Taner Z. Sen
- Agricultural Research Service, Crop Improvement and Genetics Research UnitU.S. Department of AgricultureAlbanyCAUnited States
- Department of BioengineeringUniversity of CaliforniaBerkeleyCAUnited States
| |
Collapse
|
6
|
Ventimiglia M, Marturano G, Vangelisti A, Usai G, Simoni S, Cavallini A, Giordani T, Natali L, Zuccolo A, Mascagni F. Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:734-748. [PMID: 36573648 DOI: 10.1111/tpj.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
Collapse
Affiliation(s)
- Maria Ventimiglia
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Marturano
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Zuccolo
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
7
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
8
|
Wu L, Meng X, Huang H, Liu Y, Jiang W, Su X, Wang Z, Meng F, Wang L, Peng D, Xing S. Comparative Proteome and Phosphoproteome Analyses Reveal Different Molecular Mechanism Between Stone Planting Under the Forest and Greenhouse Planting of Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:937392. [PMID: 35873990 PMCID: PMC9301318 DOI: 10.3389/fpls.2022.937392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The highly esteemed Chinese herb, Dendrobium huoshanense, whose major metabolites are polysaccharides and alkaloids, is on the verge of extinction. The stone planting under the forest (SPUF) and greenhouse planting (GP) of D. huoshanense are two different cultivation methods of pharmaceutical Dendrobium with significantly differences in morphology, metabolites content and composition, and medication efficacy. Here, we conducted proteomics and phosphoproteomics analyses to reveal differences in molecular mechanisms between SPUF and GP. We identified 237 differentially expressed proteins (DEPs) between the two proteomes, and 291 modification sites belonging to 215 phosphoproteins with a phosphorylation level significantly changed (PLSC) were observed. GO, KEGG pathway, protein domain, and cluster analyses revealed that these DEPs were mainly localized in the chloroplast; involved in processes such as posttranslational modification, carbohydrate transport and metabolism, and secondary metabolite biosynthesis; and enriched in pathways mainly including linoleic acid metabolism, plant-pathogen interactions, and phenylpropanoid, cutin, suberin, and wax biosynthesis. PLSC phosphoproteins were mainly located in the chloroplast, and highly enriched in responses to different stresses and signal transduction mechanisms through protein kinase and phosphotransferase activities. Significant differences between SPUF and GP were observed by mapping the DEPs and phosphorylated proteins to photosynthesis and polysaccharide and alkaloid biosynthesis pathways. Phosphorylation characteristics and kinase categories in D. huoshanense were also clarified in this study. We analyzed different molecular mechanisms between SPUF and GP at proteomic and phosphoproteomic levels, providing valuable information for the development and utilization of D. huoshanense.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Huizhen Huang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
10
|
Khalili E, Ramazi S, Ghanati F, Kouchaki S. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Brief Bioinform 2022; 23:bbac015. [PMID: 35152280 DOI: 10.1093/bib/bbac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2023] Open
Abstract
Phosphorylation of proteins is one of the most significant post-translational modifications (PTMs) and plays a crucial role in plant functionality due to its impact on signaling, gene expression, enzyme kinetics, protein stability and interactions. Accurate prediction of plant phosphorylation sites (p-sites) is vital as abnormal regulation of phosphorylation usually leads to plant diseases. However, current experimental methods for PTM prediction suffers from high-computational cost and are error-prone. The present study develops machine learning-based prediction techniques, including a high-performance interpretable deep tabular learning network (TabNet) to improve the prediction of protein p-sites in soybean. Moreover, we use a hybrid feature set of sequential-based features, physicochemical properties and position-specific scoring matrices to predict serine (Ser/S), threonine (Thr/T) and tyrosine (Tyr/Y) p-sites in soybean for the first time. The experimentally verified p-sites data of soybean proteins are collected from the eukaryotic phosphorylation sites database and database post-translational modification. We then remove the redundant set of positive and negative samples by dropping protein sequences with >40% similarity. It is found that the developed techniques perform >70% in terms of accuracy. The results demonstrate that the TabNet model is the best performing classifier using hybrid features and with window size of 13, resulted in 78.96 and 77.24% sensitivity and specificity, respectively. The results indicate that the TabNet method has advantages in terms of high-performance and interpretability. The proposed technique can automatically analyze the data without any measurement errors and any human intervention. Furthermore, it can be used to predict putative protein p-sites in plants effectively. The collected dataset and source code are publicly deposited at https://github.com/Elham-khalili/Soybean-P-sites-Prediction.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Samaneh Kouchaki
- Department of Electrical and Electronic Engineering, .Faculty of Engineering and Physical Sciences, Centre for Vision, Speech, and Signal Processing, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Faraji S, Heidari P, Amouei H, Filiz E, Abdullah, Poczai P. Investigation and Computational Analysis of the Sulfotransferase (SOT) Gene Family in Potato ( Solanum tuberosum): Insights into Sulfur Adjustment for Proper Development and Stimuli Responses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2597. [PMID: 34961068 PMCID: PMC8707064 DOI: 10.3390/plants10122597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 07/20/2023]
Abstract
Various kinds of primary metabolisms in plants are modulated through sulfate metabolism, and sulfotransferases (SOTs), which are engaged in sulfur metabolism, catalyze sulfonation reactions. In this study, a genome-wide approach was utilized for the recognition and characterization of SOT family genes in the significant nutritional crop potato (Solanum tuberosum L.). Twenty-nine putative StSOT genes were identified in the potato genome and were mapped onto the nine S. tuberosum chromosomes. The protein motifs structure revealed two highly conserved 5'-phosphosulfate-binding (5' PSB) regions and a 3'-phosphate-binding (3' PB) motif that are essential for sulfotransferase activities. The protein-protein interaction networks also revealed an interesting interaction between SOTs and other proteins, such as PRTase, APS-kinase, protein phosphatase, and APRs, involved in sulfur compound biosynthesis and the regulation of flavonoid and brassinosteroid metabolic processes. This suggests the importance of sulfotransferases for proper potato growth and development and stress responses. Notably, homology modeling of StSOT proteins and docking analysis of their ligand-binding sites revealed the presence of proline, glycine, serine, and lysine in their active sites. An expression essay of StSOT genes via potato RNA-Seq data suggested engagement of these gene family members in plants' growth and extension and responses to various hormones and biotic or abiotic stimuli. Our predictions may be informative for the functional characterization of the SOT genes in potato and other nutritional crops.
Collapse
Affiliation(s)
- Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Hoorieh Amouei
- Department of Plant Breeding, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran; (S.F.); (H.A.)
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750 Duzce, Turkey;
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00065 Helsinki, Finland
| |
Collapse
|
12
|
Abulfaraj AA, Hirt H, Rayapuram N. G3BPs in Plant Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:680710. [PMID: 34177995 PMCID: PMC8222905 DOI: 10.3389/fpls.2021.680710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 05/24/2023]
Abstract
The sessile nature of plants enforces highly adaptable strategies to adapt to different environmental stresses. Plants respond to these stresses by a massive reprogramming of mRNA metabolism. Balancing of mRNA fates, including translation, sequestration, and decay is essential for plants to not only coordinate growth and development but also to combat biotic and abiotic environmental stresses. RNA stress granules (SGs) and processing bodies (P bodies) synchronize mRNA metabolism for optimum functioning of an organism. SGs are evolutionarily conserved cytoplasmic localized RNA-protein storage sites that are formed in response to adverse conditions, harboring mostly but not always translationally inactive mRNAs. SGs disassemble and release mRNAs into a translationally active form upon stress relief. RasGAP SH3 domain binding proteins (G3BPs or Rasputins) are "scaffolds" for the assembly and stability of SGs, which coordinate receptor mediated signal transduction with RNA metabolism. The role of G3BPs in the formation of SGs is well established in mammals, but G3BPs in plants are poorly characterized. In this review, we discuss recent findings of the dynamics and functions of plant G3BPs in response to environmental stresses and speculate on possible mechanisms such as transcription and post-translational modifications that might regulate the function of this important family of proteins.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Avalbaev A, Yuldashev R, Fedorova K, Petrova N, Fedina E, Gilmanova R, Karimova F, Shakirova F. 24-epibrassinolide-induced growth promotion of wheat seedlings is associated with changes in the proteome and tyrosine phosphoproteome. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:456-463. [PMID: 33369832 DOI: 10.1111/plb.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) represent a unique class of steroidal plant hormones that display pronounced growth-promoting activity at very low concentrations. Although many efforts have been made to characterize the molecular basis of BR action, little is known about the mechanisms behind the growth-promoting effect of BRs at protein level. Proteomic analysis of response to the steroid plant hormone 24-epibrassinolide (EBR) in wheat seedling shoots (Triticum aestivum L.) was performed using two-dimensional electrophoresis (2-DE) and immunoblotting with highly specific antibodies (PY20) to phosphotyrosine. EBR-modulated proteins and phosphotyrosine polypeptides were identified using MALDI-TOF mass spectrometry. The study revealed that EBR-stimulated growth of wheat seedlings was accompanied by changes in the content of multiple proteins as well as in tyrosine phosphorylation of numerous polypeptides. Among them, 22 differentially accumulated proteins and 13 phosphotyrosine proteins were identified. Based on their performed functions, the identified proteins are involved in physiological processes (photosynthesis, growth, energy and amino acid metabolism) closely associated with intensification of plant metabolism. The EBR-induced changes in protein abundance and tyrosine phosphorylation profile may contribute to growth stimulation of wheat seedlings under the action of EBR. The obtained data suggest an important role for EBR in the activation of protein metabolism underlying fundamental physiological processes, including growth promotion.
Collapse
Affiliation(s)
- A Avalbaev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - R Yuldashev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - K Fedorova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - N Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - E Fedina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - R Gilmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Karimova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Shakirova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| |
Collapse
|
14
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
15
|
Characterization of Atypical Protein Tyrosine Kinase (PTK) Genes and Their Role in Abiotic Stress Response in Rice. PLANTS 2020; 9:plants9050664. [PMID: 32456239 PMCID: PMC7284356 DOI: 10.3390/plants9050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Tyrosine phosphorylation constitutes up to 5% of the total phophoproteome. However, only limited studies are available on protein tyrosine kinases (PTKs) that catalyze protein tyrosine phosphorylation in plants. In this study, domain analysis of the 27 annotated PTK genes in rice genome led to the identification of 18 PTKs with tyrosine kinase domain. The kinase domain of rice PTKs shared high homology with that of dual specificity kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) of Arabidopsis. In phylogenetic analysis, rice PTKs clustered with receptor-like cytoplasmic kinases-VII (RLCKs-VII) of Arabidopsis. mRNAseq analysis using Genevestigator revealed that rice PTKs except PTK9 and PTK16 express at moderate to high level in most tissues. PTK16 expression was highly abundant in panicle at flowering stage. mRNAseq data analysis led to the identification of drought, heat, salt, and submergence stress regulated PTK genes in rice. PTK14 was upregulated under all stresses. qRT-PCR analysis also showed that all PTKs except PTK10 were significantly upregulated in root under osmotic stress. Tissue specificity and abiotic stress mediated differential regulation of PTKs suggest their potential role in development and stress response of rice. The candidate dual specificity PTKs identified in this study paves way for molecular analysis of tyrosine phosphorylation in rice.
Collapse
|
16
|
Ahsan N, Wilson RS, Rao RSP, Salvato F, Sabila M, Ullah H, Miernyk JA. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics. J Proteome Res 2020; 19:561-571. [PMID: 31967836 DOI: 10.1021/acs.jproteome.9b00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O-Phosphorylation (phosphorylation of the hydroxyl-group of S, T, and Y residues) is among the first described and most thoroughly studied posttranslational modification (PTM). Y-Phosphorylation, catalyzed by Y-kinases, is a key step in both signal transduction and regulation of enzymatic activity in mammalian systems. Canonical Y-kinase sequences are absent from plant genomes/kinomes, often leading to the assumption that plant cells lack O-phospho-l-tyrosine (pY). However, recent improvements in sample preparation, coupled with advances in instrument sensitivity and accessibility, have led to results that unequivocally disproved this assumption. Identification of hundreds of pY-peptides/proteins, followed by validation using genomic, molecular, and biochemical approaches, implies previously unappreciated roles for this "animal PTM" in plants. Herein, we review extant results from studies of pY in plants and propose a strategy for preparation and analysis of pY-peptides that will allow a depth of coverage of the plant pY-proteome comparable to that achieved in mammalian systems.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine , Brown University , Providence , Rhode Island 02903 , United States.,Center for Cancer Research Development, Proteomics Core Facility , Rhode Island Hospital , Providence , Rhode Island 02903 , United States
| | - Rashaun S Wilson
- Keck Mass Spectrometry & Proteomics Resource , Yale University , New Haven , Connecticut 06511 , United States
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center , Yenepoya University , Mangalore 575018 , India
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Mercy Sabila
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Hemayet Ullah
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Ján A Miernyk
- Division of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
17
|
A key gene bHLH115 in iron homeostasis: comprehensive bioinformatics analyses in Arabidopsis, tomato, rice, and maize. Biometals 2019; 32:641-656. [DOI: 10.1007/s10534-019-00199-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
18
|
Sugano S, Maeda S, Hayashi N, Kajiwara H, Inoue H, Jiang CJ, Takatsuji H, Mori M. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1137-1147. [PMID: 30222251 DOI: 10.1111/tpj.14093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Plants have evolved many receptor-like cytoplasmic kinases (RLCKs) to modulate their growth, development, and innate immunity. Broad-Spectrum Resistance 1 (BSR1) encodes a rice RLCK, whose overexpression confers resistance to multiple diseases, including fungal rice blast and bacterial leaf blight. However, the mechanisms underlying resistance remain largely unknown. In the present study, we report that BSR1 is a functional protein kinase that autophosphorylates and transphosphorylates an artificial substrate in vitro. Although BSR1 is classified as a serine/threonine kinase, it was shown to autophosphorylate on tyrosine as well as on serine/threonine residues when expressed in bacteria, demonstrating that it is a dual-specificity kinase. Protein kinase activity was found to be indispensable for resistance to rice blast and leaf blight in BSR1-overexpressing plants. Importantly, tyrosine phosphorylation of BSR1 was critical for proper localization of BSR1 in rice cells and played a crucial role in BSR1-mediated resistance to multiple diseases, as evidenced by compromised disease resistance in transgenic plants overexpressing a mutant BSR1 in which Tyr-63 was substituted with Ala. Overall, our data indicate that BSR1 is a non-receptor dual-specificity kinase and that both tyrosine and serine/threonine kinase activities are critical for the normal functioning of BSR1 in the resistance to multiple pathogens. Our results support the notion that tyrosine phosphorylation plays a major regulatory role in the transduction of defense signals from cell-surface receptor complexes to downstream signaling components in plants.
Collapse
Affiliation(s)
- Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoru Maeda
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hideyuki Kajiwara
- Advanced Analysis Center (NAAC), NARO, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Takatsuji
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
19
|
Tong K, Wang Y, Su Z. Phosphotyrosine signalling and the origin of animal multicellularity. Proc Biol Sci 2018; 284:rspb.2017.0681. [PMID: 28768887 DOI: 10.1098/rspb.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans.
Collapse
Affiliation(s)
- Kai Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Kost MA, Perales HR, Wijeratne S, Wijeratne AJ, Stockinger E, Mercer KL. Differentiated transcriptional signatures in the maize landraces of Chiapas, Mexico. BMC Genomics 2017; 18:707. [PMID: 28886704 PMCID: PMC5591509 DOI: 10.1186/s12864-017-4005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. Results Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their ‘hub’ genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several ‘hub’ transcription factors and kinases as candidates for the regulation of these responses. Conclusions These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4005-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew A Kost
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, USA
| | - Hugo R Perales
- El Colegio de la Frontera Sur, Departmento de Agroecología, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Saranga Wijeratne
- Molecular Cellular and Imagining Center, The Ohio State University/OARDC, Wooster, OH, USA
| | - Asela J Wijeratne
- Molecular Cellular and Imagining Center, The Ohio State University/OARDC, Wooster, OH, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Eric Stockinger
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, USA
| | - Kristin L Mercer
- Department of Horticulture and Crop Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Evolutionary expansion and structural functionalism of the ancient family of profilin proteins. Gene 2017; 626:70-86. [PMID: 28501628 DOI: 10.1016/j.gene.2017.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
Abstract
Structure and functional similarities of a recent protein's orthologs with its ancient counterpart are largely determined by the configuration of evolutionary preservation of amino acids. The emergence of genome sequencing databases allowed dissecting the evolutionarily important gene families at a comprehensive and genome-wide scale. The profilin multi-gene family is an ancient, universal, and functionally diverged across kingdoms, which regulates various aspects of cellular development in both prokarya and eukarya, especially cell-wall maintenance through actin sequestering, nucleation and cytokinesis. We performed a meta-analysis of the evolutionary expansion, structural conservation, evolution of function motifs, and transcriptional biases of profilin proteins across kingdoms. An exhaustive search of various genome databases of cyanobacteria, fungi, animalia and plantae kingdoms revealed 172 paralogous/orthologous profilins those were phylogenetically clustered in various groups. Orthologous gene comparisons indicated that segmental and tandem duplication events under strong purifying selection are predominantly responsible for their convoluted structural divergences. Evidently, structural divergences were more prevalent in the paralogs than orthologs, and evolutionary variations in the exon/intron architecture were accomplished by 'exon/intron-gain' and insertion/deletion during sequence-exonization. Remarkably, temporal expression evolution of profilin paralogs/homeologs during cotton fiber domestication provides evolutionary impressions of the selection of highly diverged transcript abundance notably in the fiber morpho-evolution. These results provide global insights into the profilin evolution, their structural design across taxa; and their future utilization in translational research.
Collapse
|
22
|
Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis. Sci Rep 2016; 6:31988. [PMID: 27552928 PMCID: PMC4995487 DOI: 10.1038/srep31988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/01/2016] [Indexed: 11/12/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs.
Collapse
|
23
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
24
|
Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK. Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics 2015; 16:224-36. [PMID: 26962298 PMCID: PMC4765517 DOI: 10.2174/1389202916666150424234300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
25
|
Aryal UK, Ross ARS, Krochko JE. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings. PLoS One 2015; 10:e0130763. [PMID: 26158488 PMCID: PMC4497735 DOI: 10.1371/journal.pone.0130763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/23/2015] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC) enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development.
Collapse
Affiliation(s)
- Uma K. Aryal
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Andrew R. S. Ross
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
- * E-mail:
| | - Joan E. Krochko
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
26
|
Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T. Members of the Plant CRK Superfamily Are Capable of Trans- and Autophosphorylation of Tyrosine Residues. J Biol Chem 2015; 290:16665-77. [PMID: 25969537 DOI: 10.1074/jbc.m114.617274] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation on Tyr residues is a key post-translational modification in mammals. In plants, recent studies have identified Tyr-specific protein phosphatase and Tyr-phosphorylated proteins in Arabidopsis by phosphoproteomic screenings, implying that plants have a Tyr phosphorylation signal pathway. However, little is known about the protein kinases (PKs) involved in Tyr phosphorylation in plants. Here, we demonstrate that Arabidopsis calcium-dependent protein kinase (CDPK/CPK)-related PKs (CRKs) have high Tyr-autophosphorylation activity and that they can phosphorylate Tyr residue(s) on substrate proteins in Arabidopsis. To identify PKs for Tyr phosphorylation, we examined the autophosphorylation activity of 759 PKs using an Arabidopsis protein array based on a wheat cell-free system. In total, we identified 38 PKs with Tyr-autophosphorylation activity. The CRK family was a major protein family identified. A cell-free substrate screening revealed that these CRKs phosphorylate β-tubulin (TBB) 2, TBB7, and certain transcription factors (TFs) such as ethylene response factor 13 (ERF13). All five CRKs tested showed Tyr-auto/trans-phosphorylation activity and especially two CRKs, CRK2 and CRK3, showed a high ERF13 Tyr-phosphorylation activity. A cell-based transient expression assay revealed that Tyr(16/)Tyr(207) sites in ERF13 were phosphorylated by CRK3 and that Tyr phosphorylation of endogenous TBBs occurs in CRK2 overexpressing cells. Furthermore, crk2 and crk3 mutants showed a decrease in the Tyr phosphorylation level of TBBs. These results suggest that CRKs have Tyr kinase activity, and these might be one of the major PKs responsible for protein Tyr phosphorylation in Arabidopsis plants.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- From the Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 and
| | - Nobuaki Takemori
- From the Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 and
| | - Motoaki Seki
- the Plant Genomic Network Research Team and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuo Shinozaki
- the Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, and
| | - Tatsuya Sawasaki
- From the Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 and
| |
Collapse
|
27
|
Walton A, Stes E, De Smet I, Goormachtig S, Gevaert K. Plant hormone signalling through the eye of the mass spectrometer. Proteomics 2015; 15:1113-26. [DOI: 10.1002/pmic.201400403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Alan Walton
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Ive De Smet
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Kris Gevaert
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
| |
Collapse
|
28
|
Chen JG. Phosphorylation of RACK1 in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1022013. [PMID: 26322575 PMCID: PMC4622689 DOI: 10.1080/15592324.2015.1022013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. These findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.
Collapse
Affiliation(s)
- Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|
29
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
30
|
van Wijk KJ, Friso G, Walther D, Schulze WX. Meta-Analysis of Arabidopsis thaliana Phospho-Proteomics Data Reveals Compartmentalization of Phosphorylation Motifs. THE PLANT CELL 2014; 26:2367-2389. [PMID: 24894044 PMCID: PMC4114939 DOI: 10.1105/tpc.114.125815] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 05/18/2023]
Abstract
Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry-based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14850
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, 14476 Golm, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
31
|
Klecker M, Gasch P, Peisker H, Dörmann P, Schlicke H, Grimm B, Mustroph A. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. PLANT PHYSIOLOGY 2014; 165:774-790. [PMID: 24753539 PMCID: PMC4044847 DOI: 10.1104/pp.114.237990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.
Collapse
Affiliation(s)
- Maria Klecker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Philipp Gasch
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Helga Peisker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Peter Dörmann
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Hagen Schlicke
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Bernhard Grimm
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Angelika Mustroph
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| |
Collapse
|
32
|
Lv DW, Li X, Zhang M, Gu AQ, Zhen SM, Wang C, Li XH, Yan YM. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics 2014; 15:375. [PMID: 24885693 PMCID: PMC4079959 DOI: 10.1186/1471-2164-15-375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023] Open
Abstract
Background Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. Results In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. Conclusions Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
33
|
Parrotta L, Cresti M, Cai G. Accumulation and post-translational modifications of plant tubulins. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:521-7. [PMID: 24112714 DOI: 10.1111/plb.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/08/2013] [Indexed: 05/03/2023]
Abstract
The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α- and β-tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post-translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post-translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α- and β-tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post-translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a 'code' that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non-motor), thus creating the physical support for various microtubule functions.
Collapse
Affiliation(s)
- L Parrotta
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | | | | |
Collapse
|
34
|
Xue Y, Warburton ML, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut JM, Li W, Zhang X, Zheng Y, Yan J. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2587-96. [PMID: 23884600 DOI: 10.1007/s00122-013-2158-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/12/2013] [Indexed: 05/03/2023]
Abstract
Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P ≤ 2.25 × 10(-6) 0.1/N) were identified, located in 33 genes for 126 trait × environment × treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios.
Collapse
Affiliation(s)
- Yadong Xue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu DR, Huang WX, Cai XL. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:141-50. [PMID: 23849121 DOI: 10.1016/j.plantsci.2013.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 05/23/2023]
Abstract
Granule-bound starch synthase 1 (GBSS1) is responsible for amylose synthesis in cereals, and this enzyme is regulated at the transcriptional and post-transcriptional levels. In this study, we show that GBSS1 from Oryza sativa L. (OsGBSS1) can form oligomers in rice endosperm, and oligomerized OsGBSS1 exhibits much higher specific enzymatic activity than the monomer. A monomer-oligomer transition equilibrium for OsGBSS1 occurs in the endosperm during development. Redox potential is a key factor affecting the oligomer percentage as well as the enzymatic activity of OsGBSS1. Adenosine diphosphate glucose, the direct donor of glucose, also impacts OsGBSS1 oligomerization in a concentration-dependent manner. OsGBSS1 oligomerization is influenced by phosphorylation status, which was strongly enhanced by Mitogen-activated protein kinase (MAPK) and ATP treatment and was sharply weakened by protein phosphatase (PPase) treatment. The activity of OsGBSS1 affects the ratio of amylose to amylopectin and therefore the eating quality of rice. Understanding the regulation of OsGBSS1 activity may lead to the improvement of rice eating quality.
Collapse
Affiliation(s)
- De-Rui Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | | | | |
Collapse
|
36
|
Park CJ, Caddell DF, Ronald PC. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:177. [PMID: 22876255 PMCID: PMC3411088 DOI: 10.3389/fpls.2012.00177] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/18/2012] [Indexed: 05/03/2023]
Abstract
Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling.
Collapse
Affiliation(s)
| | | | - Pamela C. Ronald
- *Correspondence: Pamela C. Ronald, Department of Plant Pathology and the Genome Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA. e-mail:
| |
Collapse
|