1
|
Wiggan O, DeLuca JG, Stasevich TJ, Bamburg JR. Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Mol Biol Cell 2020; 31:2363-2378. [PMID: 32816614 PMCID: PMC7851964 DOI: 10.1091/mbc.e20-01-0017-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that small interfering RNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA-deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/serum response factor-regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resulting from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
2
|
Alcorta-Sevillano N, Macías I, Rodríguez CI, Infante A. Crucial Role of Lamin A/C in the Migration and Differentiation of MSCs in Bone. Cells 2020; 9:cells9061330. [PMID: 32466483 PMCID: PMC7348862 DOI: 10.3390/cells9061330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Lamin A/C, intermediate filament proteins from the nuclear lamina encoded by the LMNA gene, play a central role in mediating the mechanosignaling of cytoskeletal forces into nucleus. In fact, this mechanotransduction process is essential to ensure the proper functioning of other tasks also mediated by lamin A/C: the structural support of the nucleus and the regulation of gene expression. In this way, lamin A/C is fundamental for the migration and differentiation of mesenchymal stem cells (MSCs), the progenitors of osteoblasts, thus affecting bone homeostasis. Bone formation is a complex process regulated by chemical and mechanical cues, coming from the surrounding extracellular matrix. MSCs respond to signals modulating the expression levels of lamin A/C, and therefore, adapting their nuclear shape and stiffness. To promote cell migration, MSCs need soft nuclei with low lamin A content. Conversely, during osteogenic differentiation, lamin A/C levels are known to be increased. Several LMNA mutations present a negative impact in the migration and osteogenesis of MSCs, affecting bone tissue homeostasis and leading to pathological conditions. This review aims to describe these concepts by discussing the latest state-of-the-art in this exciting area, focusing on the relationship between lamin A/C in MSCs' function and bone tissue from both, health and pathological points of view.
Collapse
|
3
|
Wada E, Kato M, Yamashita K, Kokuba H, Liang WC, Bonne G, Hayashi YK. Deficiency of emerin contributes differently to the pathogenesis of skeletal and cardiac muscles in LmnaH222P/H222P mutant mice. PLoS One 2019; 14:e0221512. [PMID: 31430335 PMCID: PMC6701770 DOI: 10.1371/journal.pone.0221512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022] Open
Abstract
Laminopathies are tissue-selective diseases that affect differently in organ systems. Mutations in nuclear envelopes, emerin (Emd) and lamin A/C (Lmna) genes, cause clinically indistinguishable myopathy called Emery-Dreifuss muscular dystrophy (EDMD) and limb-girdle muscular dystrophy. Several murine models for EDMD have been generated; however, emerin-null (Emd) mice do not show obvious skeletal and cardiac muscle phenotypes, and Lmna H222P/H222P mutant (H222P) mice show only a mild phenotype in skeletal muscle when they already have severe cardiomyopathy. Thus, the underlying molecular mechanism of muscle involvement due to nuclear abnormalities is still unclarified. We generated double mutant (Emd-/-/LmnaH222P/H222P; EH) mice to characterize dystrophic changes and to elucidate interactions between emerin and lamin A/C in skeletal and cardiac muscles. As H222P mice, EH mice grow normally and have breeding productivity. EH mice showed severer muscle involvement compared with that of H222P mice which was an independent of cardiac abnormality at 12 weeks of age. Nuclear abnormalities, reduced muscle fiber size and increased fibrosis were prominent in EH mice. Roles of emerin and lamin A/C in satellite cells function and regeneration of muscle fiber were also evaluated by cardiotoxin-induced muscle injury. Delayed increases in myog and myh3 expression were seen in both H222P and EH mice; however, the expression levels of those genes were similar with control and regenerated muscle fiber size was not different at day 7 after injury. These results indicate that EH mouse is a suitable model for studying skeletal muscle involvement, independent of cardiac function, in laminopathies and an interaction between emerin and lamin A/C in different tissues.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Megumi Kato
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Kaori Yamashita
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS 974, Center of Research in Myology, Paris, France
| | - Yukiko K. Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
5
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
6
|
Pecorari I, Puzzi L, Sbaizero O. Atomic force microscopy and lamins: A review study towards future, combined investigations. Microsc Res Tech 2016; 80:97-108. [PMID: 27859883 DOI: 10.1002/jemt.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
In the last decades, atomic force microscopy (AFM) underwent a rapid and stunning development, especially for studying mechanical properties of biological samples. The numerous discoveries relying to this approach, have increased the credit of AFM as a versatile tool, and potentially eligible as a diagnostic equipment. Meanwhile, it has become strikingly evident that lamins are involved on the onset and development of certain diseases, including cancer, Hutchinson-Gilford progeria syndrome, cardiovascular pathologies, and muscular dystrophy. A new category of pathologies has been defined, the laminopathies, which are caused by mutations in the gene encoding for A-type lamins. As the majority of medical issues, lamins, and all their related aspects can be considered as a quite complex problem. Indeed, there are many facets to explore, and this definitely requires a multidisciplinary approach. One of the most intriguing aspects concerning lamins is their remarkable contribute to cells mechanics. Over the years, this has led to the speculation of the so-called "structural hypothesis", which attempts to elucidate the etiology and some features of the laminopathies. Among the various techniques tried to figure out the role of lamins in the cells mechanics, the AFM has been already successfully applied, proving its versatility. Therefore, the present work aims both to highlight the qualities of AFM and to review the most relevant knowledge about lamins, in order to promote the study of the latter, taking advantage from the former. Microsc. Res. Tech. 80:97-108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| |
Collapse
|
7
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Kaminski A, Fedorchak GR, Lammerding J. The cellular mastermind(?)-mechanotransduction and the nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:157-203. [PMID: 25081618 PMCID: PMC4591053 DOI: 10.1016/b978-0-12-394624-9.00007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction-both structurally and biochemically-with important implications in physiology and disease.
Collapse
Affiliation(s)
- Ashley Kaminski
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Gregory R Fedorchak
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jan Lammerding
- Department of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|