1
|
Taheri Z, Zaki-Dizaji M. Epigenetically Regulating Non-coding RNAs in Colorectal Cancer: Promises and Potentials. Middle East J Dig Dis 2025; 17:40-53. [PMID: 40322568 PMCID: PMC12048831 DOI: 10.34172/mejdd.2025.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/09/2024] [Indexed: 05/08/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. Despite advancements in understanding its molecular causes and improved drug therapies, patient survival rates remain low. The main reasons for the high mortality rate are cancer metastasis and the emergence of drug-resistant cancer cell populations. While genetic changes are recognized as the main driver of CRC occurrence and progression, recent studies suggest that epigenetic regulation is a crucial marker in cancer, influencing the interplay between genetics and the environment. Research has shown the significant regulatory roles of non-coding RNAs (ncRNAs) in CRC development. This review explores epigenetically regulated ncRNAs and their functions, aiming to understand key regulatory mechanisms that impact CRC development. Additionally, it discusses the potential use of these ncRNAs in CRC diagnosis, prognosis, and targeted treatments.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fiordoro S, Rosano C, Pechkova E, Barocci S, Izzotti A. Epigenetic modulation of immune cells: Mechanisms and implications. Adv Biol Regul 2024; 94:101043. [PMID: 39305736 DOI: 10.1016/j.jbior.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 12/12/2024]
Abstract
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
Collapse
Affiliation(s)
- S Fiordoro
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - C Rosano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | - E Pechkova
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| | - S Barocci
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy
| |
Collapse
|
3
|
Hu X, Cui W, Liu M, Zhang F, Zhao Y, Zhang M, Yin Y, Li Y, Che Y, Zhu X, Fan Y, Deng X, Wei M, Wu H. SnoRNAs: The promising targets for anti-tumor therapy. J Pharm Anal 2024; 14:101064. [PMID: 39634568 PMCID: PMC11613181 DOI: 10.1016/j.jpha.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 12/07/2024] Open
Abstract
Recently, small nucleolar RNAs (snoRNAs) have transcended the genomic "noise" to emerge as pivotal molecular markers due to their essential roles in tumor progression. Substantial evidence indicates a strong association between snoRNAs and critical clinical features such as tumor pathology and drug resistance. Historically, snoRNA research has concentrated on two classical mechanisms: 2'-O-ribose methylation and pseudouridylation. This review specifically summarizes the novel regulatory mechanisms and functional patterns of snoRNAs in tumors, encompassing transcriptional, post-transcriptional, and post-translational regulation. We further discuss the synergistic effect between snoRNA host genes (SNHGs) and snoRNAs in tumor progression. More importantly, snoRNAs extensively contribute to the development of tumor cell resistance as oncogenes or tumor suppressor genes. Accordingly, we provide a comprehensive review of the clinical diagnosis and treatment associated with snoRNAs and explore their significant potential as novel drug targets.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Fangxiao Zhang
- The Second Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingqi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuhang Yin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Che
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuxuan Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| |
Collapse
|
4
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
5
|
He C, Huang Q, Zhong S, Chen LS, Xiao H, Li L. Screening and identifying of biomarkers in early colorectal cancer and adenoma based on genome-wide methylation profiles. World J Surg Oncol 2023; 21:312. [PMID: 37779184 PMCID: PMC10544418 DOI: 10.1186/s12957-023-03189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.
Collapse
Affiliation(s)
- Chungang He
- Department of Colorectal and Anal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Tao Yuan Road No.6, Nanning, 530021, Guangxi, China.
| | - Qinyuan Huang
- Nursing College of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shibiao Zhong
- Department of Gastrointestinal Surgery, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011, Guangxi, China
| | - Li Sheng Chen
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hewei Xiao
- Office of Academic Research, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lei Li
- Department of Gastrointestinal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| |
Collapse
|
6
|
Dong W, Liu Y, Wang P, Ruan X, Liu L, Xue Y, Ma T, E T, Wang D, Yang C, Lin H, Song J, Liu X. U3 snoRNA-mediated degradation of ZBTB7A regulates aerobic glycolysis in isocitrate dehydrogenase 1 wild-type glioblastoma cells. CNS Neurosci Ther 2023; 29:2811-2825. [PMID: 37066523 PMCID: PMC10493654 DOI: 10.1111/cns.14218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS The isocitrate dehydrogenase (IDH) phenotype is associated with reprogrammed energy metabolism in glioblastoma (GBM) cells. Small nucleolar RNAs (snoRNAs) are known to exert an important regulatory role in the energy metabolism of tumor cells. The purpose of this study was to investigate the role of C/D box snoRNA U3 and transcription factor zinc finger and BTB domain-containing 7A (ZBTB7A) in the regulation of aerobic glycolysis and the proliferative capacity of IDH1 wild-type (IDH1WT ) GBM cells. METHODS Quantitative reverse transcription PCR and western blot assays were utilized to detect snoRNA U3 and ZBTB7A expression. U3 promoter methylation status was analyzed via bisulfite sequencing and methylation-specific PCR. Seahorse XF glycolysis stress assays, lactate production and glucose consumption measurement assays, and cell viability assays were utilized to detect glycolysis and proliferation of IDH1WT GBM cells. RESULTS We found that hypomethylation of the CpG island in the promoter region of U3 led to the upregulation of U3 expression in IDH1WT GBM cells, and the knockdown of U3 suppressed aerobic glycolysis and the proliferation ability of IDH1WT GBM cells. We found that small nucleolar-derived RNA (sdRNA) U3-miR, a small fragment produced by U3, was able to bind to the ZBTB4 3'UTR region and reduce ZBTB7A mRNA stability, thereby downregulating ZBTB7A protein expression. Furthermore, ZBTB7A transcriptionally inhibited the expression of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), which are key enzymes of aerobic glycolysis, by directly binding to the HK2 and LDHA promoter regions, thereby forming the U3/ZBTB7A/HK2 LDHA pathway that regulates aerobic glycolysis and proliferation of IDH1WT GBM cells. CONCLUSION U3 enhances aerobic glycolysis and proliferation in IDH1WT GBM cells via the U3/ZBTB7A/HK2 LDHA axis.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Ping Wang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Libo Liu
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Teng Ma
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Tiange E
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Hongda Lin
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|
7
|
Shen L, Lin C, Lu W, He J, Wang Q, Huang Y, Zheng X, Wang Z. Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol Toxicol 2023; 39:1377-1394. [PMID: 36087186 DOI: 10.1007/s10565-022-09765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Colorectal cancer (CRC) is a common malignant cancer worldwide. Although the molecular mechanism of CRC carcinogenesis has been studied extensively, the details remain unclear. Small nucleolar RNAs (snoRNAs) have recently been reported to have essential functions in carcinogenesis, although their roles in CRC pathogenesis are largely unknown. In this study, we found that the H/ACA snoRNA SNORA24 was upregulated in various cancers, including CRC. SNORA24 expression was significantly associated with age and history of colon polyps in CRC patient cohorts, with high expression associated with a decreased 5-year overall survival. Our results indicated that the oncogenic function of SNORA24 is mediated by promoting G1/S phase transformation, cell proliferation, colony formation, and growth of xenograft tumors. Furthermore, SNORA24 knockdown induced massive apoptosis. RNA-sequencing and gene ontology (GO) enrichment analyses were performed to explore its downstream targets. Finally, we confirmed that SNORA24 regulates p53 protein stability in a proteasomal degradation pathway. Our study clarifies the oncogenic role of SNORA24 in CRC and advance the current model of the role of the p53 pathway in this process.
Collapse
Affiliation(s)
- Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenqing Lu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Junyan He
- The First Affiliated Hospital, Department of Radiation Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yujv Huang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaofei Zheng
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
8
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
9
|
Yue X, Zheng Y, Li L, Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Bian E, Zhao B. Integrative analysis of a novel 5 methylated snoRNA genes prognostic signature in patients with glioma. Epigenomics 2022; 14:1089-1104. [PMID: 36222052 DOI: 10.2217/epi-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the prognostic value of methylated snoRNA genes in glioma and construct a prognostic risk signature. Materials & methods: We retrieved clinical information and 450K methylation data from The Cancer Genome Atlas and obtained five methylated snoRNA genes. Then we established a risk signature and verified the effect of SNORA71B on glioma cells with functional assays. Results: A risk signature containing five methylated snoRNA genes was constructed and demonstrated to be an independent predictor of glioma prognosis. Silencing SNORA71B restrained the proliferation, migration and invasion of glioma cells and reduced the expression of mesenchymal and cell cycle marker proteins. Conclusion: This study constructed a methylated snoRNA gene risk signature, which may provide a reference for glioma patients' prognosis assessment.
Collapse
Affiliation(s)
- Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Deran Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
10
|
SNORD15B and SNORA5C: Novel Diagnostic and Prognostic Biomarkers for Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8260800. [PMID: 35586811 PMCID: PMC9110153 DOI: 10.1155/2022/8260800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is presenting a global public health problem with high incidence and mortality. Early diagnosis and treatment are the most important strategies to improve prognosis of this disease. Besides fecal occult blood test (FOBT) and colonoscopy, the most widely used methods for CRC screening currently, more effective methods for early diagnosis or prognostic prediction for CRC are needed. Small nucleolar RNAs (snoRNAs) is a class of noncoding RNAs (ncRNAs) playing crucial roles in carcinogenesis and considered to be promising tumor biomarker. In this study, we found that SNORD15B, SNORD48, and SNORA5C were significantly upregulated in CRC tissues. High levels of SNORD15B, SNORD48, or SNORA5C predicted poor clinical outcomes of CRC patients. Forced expression of SNORD15B or SNORA5C in CRC cells promoted proliferation and colony formation. In a further investigation, association between the level of SNORD15B/SNORA5C and clinicopathological parameters of CRC patient cohorts was analyzed based on data from The Cancer Genome Atlas (TCGA). We found that high expressions of SNORD15B and SNORA5C were significantly associated with age, lymphatic invasion, and history of colon polyps, and they were proved to be independent risk factors for survival of CRC patients. This study confirms that SNORD15B and SNORA5C have oncogenic effects in carcinogenesis of CRC. The findings suggest the two genes as potential diagnostic and prognostic biomarkers for CRC.
Collapse
|
11
|
Epigenetic regulation of human non-coding RNA gene transcription. Biochem Soc Trans 2022; 50:723-736. [PMID: 35285478 DOI: 10.1042/bst20210860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.
Collapse
|
12
|
Das A, Ganesan H, Sriramulu S, Marotta F, Kanna NRR, Banerjee A, He F, Duttaroy AK, Pathak S. A review on interplay between small RNAs and oxidative stress in cancer progression. Mol Cell Biochem 2021; 476:4117-4131. [PMID: 34292483 DOI: 10.1007/s11010-021-04228-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been known to be the underlying cause in many instances of cancer development. The new aspect of cancer genesis that has caught the attention of many researchers worldwide is its connection to non-coding RNAs (ncRNAs). ncRNAs may not be protein coding, but in light of the more recent discovery of their wide range of functions, the term 'dark matter of the genome' has been rendered inapplicable. There is an extensive mention of colon cancer as an example, where some of these ncRNAs and their manipulations have seen significant progress. As of now, the focus is on discovering a non-invasive, cost-effective method for diagnosis that is easier to monitor and can be conducted before visible symptoms indicate cancer in a patient, by which time it may already be too late. The concept of liquid biopsies has revolutionized recent diagnostic measures. It has been possible to detect circulating parts of the cancer genome or other biomarkers in the patients' bodily fluids, resulting in the effective management of the disease. This has led these ncRNAs to be considered effective therapeutic targets and extrinsic modifications in several tumor types, proven to be effective as therapy. However, there is a vast scope for further understanding and pertinent application of our acquired knowledge and expanding it in enhancing the utilization of ncRNAs for a better prognosis, quicker diagnosis, and improved management of cancer. This review explores the prognosis of cancer and related mutations by scrutinizing small ncRNAs in the disease.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention and Vitality & Longevity Medical Science Commission, FEMTEC World Foundation, Milan, Italy
| | - N R Rajesh Kanna
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Fang He
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
13
|
He J, Wu F, Han Z, Hu M, Lin W, Li Y, Cao M. Biomarkers (mRNAs and Non-Coding RNAs) for the Diagnosis and Prognosis of Colorectal Cancer - From the Body Fluid to Tissue Level. Front Oncol 2021; 11:632834. [PMID: 33996548 PMCID: PMC8118670 DOI: 10.3389/fonc.2021.632834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the diagnosis and treatment of colorectal cancer (CRC) have been continuously improved, but the mortality rate continues to be high, especially in advanced patients. CRC patients usually have no obvious symptoms in the early stage and are already in the advanced stage when they are diagnosed. The 5-year survival rate is only 10%. The blood markers currently used to screen for CRC, such as carcinoembryonic antigen and carbohydrate antigen 19-9, have low sensitivity and specificity, whereas other methods are invasive or too expensive. As a result, recent research has shifted to the development of minimally invasive or noninvasive biomarkers in the form of body fluid biopsies. Non-coding RNA molecules are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, and circular RNAs, which have important roles in the occurrence and development of diseases and can be utilized for the early diagnosis and prognosis of tumors. In this review, we focus on the latest findings of mRNA-ncRNA as biomarkers for the diagnosis and prognosis of CRC, from fluid to tissue level.
Collapse
Affiliation(s)
- Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Feifeng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weida Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Shan S, Lu Y, Zhang X, Shi J, Li H, Li Z. Inhibitory effect of bound polyphenol from foxtail millet bran on miR-149 methylation increases the chemosensitivity of human colorectal cancer HCT-8/Fu cells. Mol Cell Biochem 2021; 476:513-523. [PMID: 33011952 DOI: 10.1007/s11010-020-03906-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Nature polyphenols widely present in plants and foods are promising candidates in cancer chemotherapy. Emerging evidence has shown that plant polyphenols regulate the expression of miRNAs to exert the anti-Multidrug resistance (MDR) activity, which partly attributes to their regulation on miRNAs methylation. Our previous study found that bound polyphenol from foxtail millet bran (BPIS) had potential as an anti-MDR agent for colorectal cancer (CRC), but its mechanism remains unclear. The present findings demonstrated that BPIS upregulated the expression of miR-149 by reducing the methylation of its CpG islands, which subsequently induced the cell cycle arrest in G2/M phase, resulting in enhancing the chemo-sensitivity of HCT-8/Fu cells. Mechanically, BPIS and its active components (FA and p-CA) reduced miR-149 methylation by inhibiting the expression levels of DNA methyltransferases, promoting a remarkable increase of miR-149 expression. Further, the increased miR-149 induced cell cycle arrest in G2/M phase by inhibiting the expression of Akt, Cyclin B1 and CDK1, thus increasing the chemosensitivity of HCT-8/Fu cells. Additionally, a strong inducer of DNA de-methylation (5-aza-dc) treatment markedly increased the chemosensitivity of CRC through elevating miR-149 expression, which indicates the hypermethylation of miR-149 may be the key cause of drug resistance in CRC. The study indicates that the enhanced chemosensitivity of BPIS on CRC is mainly attributed to the increase of miR-149 expression induced by methylation inhibition.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Yang Lu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaoli Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
15
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
16
|
Yao X, Watkins NH, Brown-Harding H, Bierbach U. A membrane transporter determines the spectrum of activity of a potent platinum-acridine hybrid anticancer agent. Sci Rep 2020; 10:15201. [PMID: 32939009 PMCID: PMC7494928 DOI: 10.1038/s41598-020-72099-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum-acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor of cancer cell chemosensitivity to the hybrid agent (Pearson correlation analysis, p < 10-5) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in lung adenocarcinoma cells (A549), which expresses high levels of the membrane transporter, using transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. Preliminary data also show that HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the drugs EPZ-6438 (tazemetostat) and EED226. Collectively, these results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum-acridines.
Collapse
Affiliation(s)
- Xiyuan Yao
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Noah H Watkins
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Heather Brown-Harding
- Department of Biology, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Forest Innovation Quarter, 455 Vine St., Winston-Salem, NC, 27101, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
17
|
Al-Lamki RS, Hudson NJ, Bradley JR, Warren AY, Eisen T, Welsh SJ, Riddick ACP, O’Mahony FC, Turnbull A, Powles T, SCOTRRCC Collaborative, Reverter A, Harrison DJ, Stewart GD. The Efficacy of Sunitinib Treatment of Renal Cancer Cells Is Associated with the Protein PHAX In Vitro. BIOLOGY 2020; 9:E74. [PMID: 32272660 PMCID: PMC7236799 DOI: 10.3390/biology9040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/02/2023]
Abstract
Anti-angiogenic agents, such as the multi-tyrosine kinase inhibitor sunitinib, are key first line therapies for metastatic clear cell renal cell carcinoma (ccRCC), but their mechanism of action is not fully understood. Here, we take steps towards validating a computational prediction based on differential transcriptome network analysis that phosphorylated adapter RNA export protein (PHAX) is associated with sunitinib drug treatment. The regulatory impact factor differential network algorithm run on patient tissue samples suggests PHAX is likely an important regulator through changes in genome-wide network connectivity. Immunofluorescence staining of patient tumours showed strong localisation of PHAX to the microvasculature consistent with the anti-angiogenic effect of sunitinib. In normal kidney tissue, PHAX protein abundance was low but increased with tumour grade (G1 vs. G3/4; p < 0.01), consistent with a possible role in cancer progression. In organ culture, ccRCC cells had higher levels of PHAX protein expression than normal kidney cells, and sunitinib increased PHAX protein expression in a dose dependent manner (untreated vs. 100 µM; p < 0.05). PHAX knockdown in a ccRCC organ culture model impacted the ability of sunitinib to cause cancer cell death (p < 0.0001 untreated vs. treated), suggesting a role for PHAX in mediating the efficacy of sunitinib.
Collapse
Affiliation(s)
- Rafia S. Al-Lamki
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK; (R.S.A.-L.); (J.R.B.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD 4343, Australia;
| | - John R. Bradley
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK; (R.S.A.-L.); (J.R.B.)
| | - Anne Y. Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (A.Y.W.); (T.E.); (S.J.W.); (A.C.P.R.)
| | - Tim Eisen
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (A.Y.W.); (T.E.); (S.J.W.); (A.C.P.R.)
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sarah J. Welsh
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (A.Y.W.); (T.E.); (S.J.W.); (A.C.P.R.)
| | - Antony C. P. Riddick
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (A.Y.W.); (T.E.); (S.J.W.); (A.C.P.R.)
| | - Fiach C. O’Mahony
- Scottish Collaboration on Translational Research into Renal Cell Cancer (SCOTRRCC); fiach.o' (F.C.O.); (A.T.); (D.J.H.)
| | - Arran Turnbull
- Scottish Collaboration on Translational Research into Renal Cell Cancer (SCOTRRCC); fiach.o' (F.C.O.); (A.T.); (D.J.H.)
| | - Thomas Powles
- Bart’s Cancer Institute, Charterhouse Square, London EC1M 6BE, UK;
| | - SCOTRRCC Collaborative
- Scottish Collaboration on Translational Research into Renal Cell Cancer (SCOTRRCC); fiach.o' (F.C.O.); (A.T.); (D.J.H.)
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia;
| | - David J. Harrison
- Scottish Collaboration on Translational Research into Renal Cell Cancer (SCOTRRCC); fiach.o' (F.C.O.); (A.T.); (D.J.H.)
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, UK
| | - Grant D. Stewart
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (A.Y.W.); (T.E.); (S.J.W.); (A.C.P.R.)
- Scottish Collaboration on Translational Research into Renal Cell Cancer (SCOTRRCC); fiach.o' (F.C.O.); (A.T.); (D.J.H.)
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
18
|
Zhao Y, Yan Y, Ma R, Lv X, Zhang L, Wang J, Zhu W, Zhao L, Jiang L, Zhao L, Wen L, Yang B, Chen Y, He M, Liu M, Wei M. Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med 2020; 24:2215-2228. [PMID: 31943775 PMCID: PMC7011154 DOI: 10.1111/jcmm.14886] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six‐snoRNA signature and divided patients into high‐risk or low‐risk groups. We found patients in high‐risk group had significantly shorter overall survival and recurrence‐free survival than those in low‐risk group in test series, validation series and entire series by Kaplan‐Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six‐snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six‐snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Rong Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Jinlong Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Wenjing Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lijie Wen
- Urology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Yang
- Urology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Constantinof A, Boureau L, Moisiadis VG, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Results in Changes in Gene Transcription and DNA Methylation in the Female Juvenile Guinea Pig Hippocampus Across Three Generations. Sci Rep 2019; 9:18211. [PMID: 31796763 PMCID: PMC6890750 DOI: 10.1038/s41598-019-54456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk for pre-term delivery, to mature the fetal lung and decrease neonatal morbidity. sGC also profoundly affect the fetal brain. The hippocampus expresses high levels of glucocorticoid (GR) and mineralocorticoid receptor (MR), and its development is affected by elevated fetal glucocorticoid levels. Antenatal sGC results in neuroendocrine and behavioral changes that persist in three generations of female guinea pig offspring of the paternal lineage. We hypothesized that antenatal sGC results in transgenerational changes in gene expression that correlate with changes in DNA methylation. We used RNASeq and capture probe bisulfite sequencing to investigate the transcriptomic and epigenomic effects of antenatal sGC exposure in the hippocampus of three generations of juvenile female offspring from the paternal lineage. Antenatal sGC exposure (F0 pregnancy) resulted in generation-specific changes in hippocampal gene transcription and DNA methylation. Significant changes in individual CpG methylation occurred in RNApol II binding regions of small non-coding RNA (snRNA) genes, which implicates alternative splicing as a mechanism involved in transgenerational transmission of the effects of antenatal sGC. This study provides novel perspectives on the mechanisms involved in transgenerational transmission and highlights the importance of human studies to determine the longer-term effects of antenatal sGC on hippocampal-related function.
Collapse
Affiliation(s)
- Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
20
|
McMahon M, Contreras A, Holm M, Uechi T, Forester CM, Pang X, Jackson C, Calvert ME, Chen B, Quigley DA, Luk JM, Kelley RK, Gordan JD, Gill RM, Blanchard SC, Ruggero D. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 2019; 8:48847. [PMID: 31478838 PMCID: PMC6776443 DOI: 10.7554/elife.48847] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA (rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs are differentially regulated during the earliest cellular response to oncogenic RASG12V expression. We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a clinical perspective, we further show that human HCCs with low SNORA24 expression display increased lipid content and are associated with poor patient survival. We next asked whether ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET) analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA) selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational miscoding and stop codon readthrough frequencies. These findings highlight a role for specific snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.
Collapse
Affiliation(s)
- Mary McMahon
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Adrian Contreras
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Tamayo Uechi
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Craig M Forester
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, University of California, San Francisco, San Francisco, United States
| | - Xiaming Pang
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Cody Jackson
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Meredith E Calvert
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, United States.,Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, United States
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - John M Luk
- Arbele Corporation, Seattle, United States
| | - R Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
21
|
Zhang D, Zhou J, Gao J, Wu RY, Huang YL, Jin QW, Chen JS, Tang WZ, Yan LH. Targeting snoRNAs as an emerging method of therapeutic development for cancer. Am J Cancer Res 2019; 9:1504-1516. [PMID: 31497339 PMCID: PMC6726984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/18/2019] [Indexed: 06/10/2023] Open
Abstract
The relevance of the dysregulation of snoRNAs in human cancer has been widely investigated and has challenged the view that snoRNAs merely function as house-keeping genes for the posttranscriptional modification of rRNAs. Accumulating evidence has shown the intimate connection between snoRNAs and proliferation, apoptosis, invasion and migration of tumor cells via manual intervention patterns of snoRNA expression. In this review, we focused on how snoRNAs are dysregulated and its regulation of the formation and development of cancer. We summarized the non-classical functions of snoRNAs in the context of their regulations of the signaling pathways involving PI3K-AKT and K-Ras and p53-dependant manner. Under these novel functions and characteristics, snoRNAs can act as potential and feasible biomarkers for diagnosis. Simultaneously, these promising therapeutic strategies should be considered to counteract the perturbations of snoRNAs.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan Zhou
- Department of Gynecological Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jie Gao
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ri-Ying Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ying-Long Huang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Wen Jin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Si Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms. Int J Mol Sci 2019; 20:ijms20092185. [PMID: 31052553 PMCID: PMC6539089 DOI: 10.3390/ijms20092185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/17/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a new type of functional small RNAs involved in the chemical modifications of rRNAs, tRNAs, and small nuclear RNAs. It is reported that they play important roles in tumorigenesis via various regulatory modes. snoRNAs can both participate in the regulation of methylation and pseudouridylation and regulate the expression pattern of their host genes. This research investigated the expression pattern of snoRNAs in eight major cancer types in TCGA via several machine learning algorithms. The expression levels of snoRNAs were first analyzed by a powerful feature selection method, Monte Carlo feature selection (MCFS). A feature list and some informative features were accessed. Then, the incremental feature selection (IFS) was applied to the feature list to extract optimal features/snoRNAs, which can make the support vector machine (SVM) yield best performance. The discriminative snoRNAs included HBII-52-14, HBII-336, SNORD123, HBII-85-29, HBII-420, U3, HBI-43, SNORD116, SNORA73B, SCARNA4, HBII-85-20, etc., on which the SVM can provide a Matthew’s correlation coefficient (MCC) of 0.881 for predicting these eight cancer types. On the other hand, the informative features were fed into the Johnson reducer and repeated incremental pruning to produce error reduction (RIPPER) algorithms to generate classification rules, which can clearly show different snoRNAs expression patterns in different cancer types. The analysis results indicated that extracted discriminative snoRNAs can be important for identifying cancer samples in different types and the expression pattern of snoRNAs in different cancer types can be partly uncovered by quantitative recognition rules.
Collapse
|
23
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
24
|
Wang XX, Zhang H, Li Y. Preliminary study on the role of miR‑148a and DNMT1 in the pathogenesis of acute myeloid leukemia. Mol Med Rep 2019; 19:2943-2952. [PMID: 30720097 DOI: 10.3892/mmr.2019.9913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/17/2019] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑148a is differentially expressed in numerous malignant tumors and it was identified to regulate tumor growth, cell proliferation, apoptosis, angiogenesis and drug resistance via the regulation of the expression levels of its target genes. However, the biological function of miR‑148a in acute myeloid leukemia (AML) and its molecular mechanisms of action remain unclear. In the present study, the expression levels of miR‑148a and DNA methyltransferase 1 (DNMT1) were detected using reverse transcription‑quantitative polymerase chain reaction (PCR) and western blotting. Methylation‑specific PCR was used to detect the methylation levels in the miR‑148a promoter. The effects of miR‑148a on cell proliferation and apoptosis were assessed by Cell Counting kit‑8 or flow cytometry assays, respectively. A dual‑luciferase reporter assay was performed to investigate the association between miR‑148a and DNMT1. Patients with AML exhibited an increased expression level of miR‑148a, whereas the expression level of DNMT1 was identified to be decreased compared with healthy control subjects. In AML cell lines, the methylation state of miR‑148 promoter was significantly increased compared with normal cells. Following knockdown of DNMT1 in U937 cells, the expression level of miR‑148a increased significantly, whereas the methylation level of the miR‑148a promoter decreased. The mRNA and protein expression levels of DNMT1 decreased following transfection with miR‑148a mimics in U937 cells. Conversely, transfection with miR‑148a inhibitor in Kasumi‑1 cells led to an increase in the expression level of DNMT. Dual‑luciferase reporter assays suggested that DNMT1 was one of the direct target genes of miR‑148a. Overexpression of miR‑148a inhibited cell proliferation and promoted apoptosis. Inhibition of DNMT1 led to a decreased methylation level of the 5'‑cytosine‑phosphate‑guanine‑3' islands in the miR‑148a promoter, thus increasing the expression level of miR‑148a. DNMT1 was identified to be a downstream target of miR‑148a, and was negatively regulated by miR‑148a in AML cell lines, suggesting that miR‑148a and DNMT1 form a mutual negative feedback loop.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Department of Hematology, The First Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Heyang Zhang
- Department of Hematology, The First Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of Hematology, The First Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget 2018; 9:29208-29219. [PMID: 30018746 PMCID: PMC6044373 DOI: 10.18632/oncotarget.25673] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs (lncRNAs), participate in cellular transformation. Work done in the last decade has also demonstrated that ncRNAs with growth-inhibitory functions can undergo promoter CpG island hypermethylation-associated silencing in tumorigenesis. Herein, we wondered whether circular RNAs (circRNAs), a type of RNA transcripts lacking 5′-3′ ends and forming closed loops that are gaining relevance in cancer biology, are also a target of epigenetic inactivation in tumors. To tackle this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in conjuction with circRNA expression microarrays. We have found that the loss of DNA methylation provokes a release of circRNA silencing. In particular, we have identified that promoter CpG island hypermethylation of the genes TUSC3 (tumor suppressor candidate 3), POMT1 (protein O-mannosyltransferase 1), ATRNL1 (attractin-like 1) and SAMD4A (sterile alpha motif domain containing 4A) is linked to the transcriptional downregulation of both linear mRNA and the hosted circRNA. Although some circRNAs regulate the linear transcript, we did not observe changes in TUSC3 mRNA levels upon TUSC3 circ104557 overexpression. Interestingly, we found circRNA-mediated regulation of target miRNAs and an in vivo growth inhibitory effect upon TUSC3 circ104557 transduction. Data mining for 5′-end CpG island methylation of TUSC3, ATRNL1, POMT1 and SAMD4A in cancer cell lines and primary tumors showed that the epigenetic defect was commonly observed among different tumor types in association with the diminished expression of the corresponding transcript. Our findings support a role for circRNA DNA methylation-associated loss in human cancer.
Collapse
|
26
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Yang Y, Zhang H, Xie Y, Zhang S, Zhu J, Yin G, Shu G, Zhang Y. Preliminary screening and identification of differentially expressed metastasis-related ncRNAs in ovarian cancer. Oncol Lett 2017; 15:368-374. [PMID: 29387224 PMCID: PMC5769367 DOI: 10.3892/ol.2017.7338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer (OC) is an aggressive disease with few valuable biomarkers and effective therapies. In this study, we aimed to elucidate biomarkers associated with OC metastasis into the omentum. We performed comprehensive screening of non-coding RNAs (ncRNAs) between matched primary OC and omental metastasis using the Agilent human lncRNA Array V3.0 microarray. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray results at the mRNA level. Microarray revealed 235 ncRNAs changes, and we validated the top four differential changed genes in an additional 27 paired samples with RT-qPCR. We found that myocardial infarction associated transcript (MIAT) expression increased in the omentum tissue, while small nucleolar RNA, C/D Box 114 cluster (SNORD114) family members SNORD114-10, SNORD114-2 and SNORD114-11 were downregulated when compared with OC tissue. However, there is no significant difference in SNORD114-2 and SNORD114-11 levels. We thus infer that differential expression of MIAT and SNORD114-10 could play an important role during OC metastasis. These ncRNAs might be useful as pre-diagnostic biomarkers at the early stage of cancer metastasis.
Collapse
Affiliation(s)
- Yu Yang
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Hui Zhang
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yajiao Xie
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shufen Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junyou Zhu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gang Yin
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guang Shu
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. ACTA ACUST UNITED AC 2017; 4:11-16. [PMID: 30167479 PMCID: PMC6112339 DOI: 10.1016/j.aninu.2017.08.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
Abstract
DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM) in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH), and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG) site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression.
Collapse
Affiliation(s)
- Naifeng Zhang
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081 Beijing, China
| |
Collapse
|
29
|
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8:73282-73295. [PMID: 29069869 PMCID: PMC5641212 DOI: 10.18632/oncotarget.19931] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
LncRNAs are emerging as integral functional and regulatory components of normal biological activities and are now considered as critically involved in the development of different diseases including cancer. In this review, we summarized recent findings on maternally expressed gene 3 (MEG3), a noncoding lncRNA, locates in the imprinted DLK1–MEG3 locus on human chromosome 14q32.3 region. MEG3 is expressed in normal tissues but is either lost or decreased in many human tumors and tumor derived cell lines. Studies have demonstrated that MEG3 is associated with cancer initiation, progression, metastasis and chemo-resistance. MEG3 may affect the activities of TP53, MDM2, GDF15, RB1 and some other key cell cycle regulators. In addition, the level of MEG3 showed good correlation with cancer clinicopathological grade. In summary, MEGs is an RNA-based tumor suppressor and is involved in the etiology, progression, and chemosensitivity of cancers. The alteration of MEG3 levels in various cancers suggested the possibility of using MEG3 level for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan 523808, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Yanhong Luo
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Biyu Liang
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Lei Ye
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Guangxing Lu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Weiming He
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
30
|
Non-coding RNAs as Biomarkers for Colorectal Cancer Screening and Early Detection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:153-70. [PMID: 27573899 DOI: 10.1007/978-3-319-42059-2_8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early detection of colorectal cancer (CRC) is the key for prevention and the ability to impact long-term survival of CRC patients. Current CRC screening modalities are inadequate for global application because of low sensitivity and specificity in case of conventional stool-based screening tests, and high costs and a low participation compliance in colonoscopy. An accurate stool- or blood-based screening test with use of innovative biomarkers is an appealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher compliance rates. Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various cancers, including CRC. The discovery that ncRNAs (mainly microRNAs) are stable in stool and in blood plasma and serum presents the opportunity to develop novel strategies taking advantage of circulating ncRNAs as early diagnostic biomarkers of CRC. This chapter is a comprehensive examination of aberrant ncRNAs expression levels in tumor tissue, stool and blood of CRC patients and a summary of the current findings on ncRNAs, including microRNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, circular RNAs and long ncRNAs in regards to their potential usage for screening or early detection of CRC.
Collapse
|
31
|
Yang X, Li Y, Li L, Liu J, Wu M, Ye M. SnoRNAs are involved in the progression of ulcerative colitis and colorectal cancer. Dig Liver Dis 2017; 49:545-551. [PMID: 28110922 DOI: 10.1016/j.dld.2016.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Emerging evidences indicate that small nucleolar RNAs (snoRNAs) are important regulatory molecules involved in various pathophysiological processes including inflammation and cancer. In the current study, we investigate whether snoRNAs dysregulate in colorectal cancer (CRC) and intestinal inflammation and contribute the pathogenesis of CRC. METHODS We analyzed the snoRNAs expression profile in CRC patients by GeneChipR Array and validated candidate snoRNAs expression in 44 CRC tissues, as well as in 28 ulcerative colitis (UC) and 28 healthy controls using reverse transcription quantitative polymerase chain reaction. Furthermore, we analyzed the correlation between snoRNAs expression and clinical characteristics of CRC and evaluated the diagnosis and differentiation efficiencies of the snoRNAs in CRC and UC. RESULTS The expression of snoRA15, snoRA41 displayed increased, whereas snoRD33 was down-regulated in CRC compared with matched non-cancerous tissues. When compared to healthy control, the three snoRNAs are all upregulated in lesion tissue of UC and CRC, which showed an increasingly trend from healthy control to UC and CRC. CONCLUSIONS The identified three snoRNAs might contribute the carcinogenesis of colorectal cancer and involve in the progress from chronic intestinal inflammation to malignant tumor.
Collapse
Affiliation(s)
- Xiao Yang
- Gastroenterology Division, Geriatrics Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yiming Li
- Gastroenterology Division, Geriatrics Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Lianyun Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Juan Liu
- Gastroenterology Division, Geriatrics Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Min Wu
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mei Ye
- Gastroenterology Division, Geriatrics Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
32
|
Antitumoral activity of 1,2-diaminocyclohexane derivatives in breast, colon and skin human cancer cells. Future Med Chem 2017; 9:293-302. [DOI: 10.4155/fmc-2016-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Cancer is among the leading causes of death worldwide. Medical interest has focused on macrocyclic polyamines because of their properties as antitumor agents. Results/Methodology: We have designed and synthesized a series of 1,2-diaminocyclohexane derivatives with notable in vitro antiproliferative activities against the MCF-7, HCT-116 and A375 cancer cell lines. Cell cycle and apoptosis analyses were also carried out. Our results show that all the compounds are potent cytotoxic agents, especially against the A375 cell line. Conclusion: The selective activity of the macrocyclic derivative against A375, via apoptosis, supposes a great advantage for future therapeutic use. This exemplifies the potential of 1,2-diaminocyclohexane derivatives to qualify as lead structures for future anticancer drug development due to their easy syntheses and noteworthy bioactivity.
Collapse
|
33
|
Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci U S A 2016; 113:E7535-E7544. [PMID: 27821766 DOI: 10.1073/pnas.1608585113] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.
Collapse
|
34
|
Murtha M, Esteller M. Extraordinary Cancer Epigenomics: Thinking Outside the Classical Coding and Promoter Box. Trends Cancer 2016; 2:572-584. [DOI: 10.1016/j.trecan.2016.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022]
|
35
|
Lakshminarasimhan R, Liang G. The Role of DNA Methylation in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:151-172. [PMID: 27826838 PMCID: PMC7409375 DOI: 10.1007/978-3-319-43624-1_7] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
| |
Collapse
|
36
|
Yang AN, Zhang HP, Sun Y, Yang XL, Wang N, Zhu G, Zhang H, Xu H, Ma SC, Zhang Y, Li GZ, Jia YX, Cao J, Jiang YD. High-methionine diets accelerate atherosclerosis by HHcy-mediated FABP4 gene demethylation pathway via DNMT1 in ApoE−/−
mice. FEBS Lett 2015; 589:3998-4009. [DOI: 10.1016/j.febslet.2015.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022]
|
37
|
Wang J, Song YX, Ma B, Wang JJ, Sun JX, Chen XW, Zhao JH, Yang YC, Wang ZN. Regulatory Roles of Non-Coding RNAs in Colorectal Cancer. Int J Mol Sci 2015; 16:19886-919. [PMID: 26307974 PMCID: PMC4581331 DOI: 10.3390/ijms160819886] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Bin Ma
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jia-Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yu-Chong Yang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
38
|
Crea F, Clermont PL, Parolia A, Wang Y, Helgason CD. The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis Rev 2015; 33:1-16. [PMID: 24346158 PMCID: PMC3988524 DOI: 10.1007/s10555-013-9455-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of microRNAs, non-coding RNAs (NC-RNAs) have increasingly attracted the attention of cancer investigators. Two classes of NC-RNAs are emerging as putative metastasis-related genes: long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs). LncRNAs orchestrate metastatic progression through several mechanisms, including the interaction with epigenetic effectors, splicing control and generation of microRNA-like molecules. In contrast, snoRNAs have been long considered “housekeeping” genes with no relevant function in cancer. However, recent evidence challenges this assumption, indicating that some snoRNAs are deregulated in cancer cells and may play a specific role in metastasis. Interestingly, snoRNAs and lncRNAs share several mechanisms of action, and might synergize with protein-coding genes to generate a specific cellular phenotype. This evidence suggests that the current paradigm of metastatic progression is incomplete. We propose that NC-RNAs are organized in complex interactive networks which orchestrate cellular phenotypic plasticity. Since plasticity is critical for cancer cell metastasis, we suggest that a molecular interactome composed by both NC-RNAs and proteins orchestrates cancer metastasis. Interestingly, expression of lncRNAs and snoRNAs can be detected in biological fluids, making them potentially useful biomarkers. NC-RNA expression profiles in human neoplasms have been associated with patients’ prognosis. SnoRNA and lncRNA silencing in pre-clinical models leads to cancer cell death and/or metastasis prevention, suggesting they can be investigated as novel therapeutic targets. Based on the literature to date, we critically discuss how the NC-RNA interactome can be explored and manipulated to generate more effective diagnostic, prognostic, and therapeutic strategies for metastatic neoplasms.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada,
| | | | | | | | | |
Collapse
|
39
|
Regulatory role of small nucleolar RNAs in human diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206849. [PMID: 26060813 PMCID: PMC4427830 DOI: 10.1155/2015/206849] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/08/2015] [Indexed: 12/29/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are appreciable players in gene expression regulation in human cells. The canonical function of box C/D and box H/ACA snoRNAs is posttranscriptional modification of ribosomal RNAs (rRNAs), namely, 2'-O-methylation and pseudouridylation, respectively. A series of independent studies demonstrated that snoRNAs, as well as other noncoding RNAs, serve as the source of various short regulatory RNAs. Some snoRNAs and their fragments can also participate in the regulation of alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression in human cells can affect numerous vital cellular processes. SnoRNA level in human cells, blood serum, and plasma presents a promising target for diagnostics and treatment of human pathologies. Here we discuss the relation between snoRNAs and oncological, neurodegenerative, and viral diseases and also describe changes in snoRNA level in response to artificial stress and some drugs.
Collapse
|
40
|
Kern AD, Barbash DA, Chang Mell J, Hupalo D, Jensen A. Highly constrained intergenic Drosophila ultraconserved elements are candidate ncRNAs. Genome Biol Evol 2015; 7:689-98. [PMID: 25618141 PMCID: PMC5322558 DOI: 10.1093/gbe/evv011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotes contain short (∼80-200 bp) regions that have few or no substitutions among species that represent hundreds of millions of years of evolutionary divergence. These ultraconserved elements (UCEs) are candidates for containing essential functions, but their biological roles remain largely unknown. Here, we report the discovery and characterization of UCEs from 12 sequenced Drosophila species. We identified 98 elements ≥80 bp long with very high conservation across the Drosophila phylogeny. Population genetic analyses reveal that these UCEs are not present in mutational cold spots. Instead we infer that they experience a level of selective constraint almost 10-fold higher compared with missense mutations in protein-coding sequences, which is substantially higher than that observed previously for human UCEs. About one-half of these Drosophila UCEs overlap the transcribed portion of genes, with many of those that are within coding sequences likely to correspond to sites of ADAR-dependent RNA editing. For the remaining UCEs that are in nongenic regions, we find that many are potentially capable of forming RNA secondary structures. Among ten chosen for further analysis, we discovered that the majority are transcribed in multiple tissues of Drosophila melanogaster. We conclude that Drosophila species are rich with UCEs and that many of them may correspond to novel noncoding RNAs.
Collapse
Affiliation(s)
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine
| | - Daniel Hupalo
- Department of Biology, Dartmouth College, Hanover, New Hampshire
| | - Amanda Jensen
- Department of Biology, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
41
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
42
|
Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, Wang W, Qi ZT. Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer 2014; 13:216. [PMID: 25217841 PMCID: PMC4169825 DOI: 10.1186/1476-4598-13-216] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests that small nucleolar RNAs (snoRNAs) are involved in tumorigenesis. The roles of small nucleolar RNA 113–1 (SNORD113-1) on the development of hepatocellular carcinoma (HCC) remain unknown. Methods The expression of SNORD113-1 was measured in 112 HCC tumor tissues using quantitative RT-PCR and compared with expression levels from with paired non-tumor tissues. The effects of SNORD113-1 on HCC tumorigenesis were investigated in HepG2 and Huh7 cells as well as a xenograft nude mouse model. CpG methylation within the promoter region of the SNORD113-1 gene was identified using Sodium bisulfite sequencing. Cancer pathway reporter investigate the mechanism by which SNORD113-1 suppressed tumorigenesis. Results SNORD113-1 expression was significantly downregulated in HCC tumors compared with adjacent non-tumor tissues, and downregulation of SNORD113-1 in HCC tumors was significantly associated with worse survival of patients. In addition, CpG methylation at the promoter region of the SNORD113-1 gene was higher in HCC tumors than adjacent non-tumor tissues. Functionally, SNORD113-1 suppressed cancer cell growth in HepG2 and Huh7 cells and in a xenograft nude mouse model. Furthermore, SNORD113-1 inactivated the phosphorylation of ERK1/2 and SMAD2/3 in MAPK/ERK and TGF-β pathways. Conclusions SNORD113-1 functions as a tumor suppressor role in HCC and may be important as a potential diagnostic and therapeutic target for HCC. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-216) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 XiangYin RD, Shanghai 200433, China.
| | | |
Collapse
|
43
|
Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 2014; 31:2467-76. [PMID: 24737381 PMCID: PMC4055305 DOI: 10.3892/or.2014.3142] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53.
Collapse
Affiliation(s)
- Hilda Jiménez-Wences
- Clinical Research Laboratory, Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Colonia Haciendita, Chilpancingo, Guerrero 39070, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center for Infectious Diseases, National Institute of Public Health, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Colonia Haciendita, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
44
|
Koestler DC, Li J, Baron JA, Tsongalis GJ, Butterly LF, Goodrich M, Lesseur C, Karagas MR, Marsit CJ, Moore JH, Andrew AS, Srivastava A. Distinct patterns of DNA methylation in conventional adenomas involving the right and left colon. Mod Pathol 2014; 27:145-55. [PMID: 23868178 PMCID: PMC3880603 DOI: 10.1038/modpathol.2013.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/05/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
Recent studies have shown two distinct non-CIMP methylation clusters in colorectal cancer, raising the possibility that DNA methylation, involving non-CIMP genes, may play a role in the conventional adenoma-carcinoma pathway. A total of 135 adenomas (65 left colon and 70 right colon) were profiled for epigenome-wide DNA methylation using the Illumina HumanMethylation450 BeadChip. A principal components analysis was performed to examine the association between variability in DNA methylation and adenoma location. Linear regression and linear mixed effects models were used to identify locus-specific differential DNA methylation in adenomas of right and left colon. A significant association was present between the first principal component and adenoma location (P=0.007), even after adjustment for subject age and gender (P=0.009). A total of 168 CpG sites were differentially methylated between right- and left-colon adenomas and these loci demonstrated enrichment of homeobox genes (P=3.0 × 10(-12)). None of the 168 probes were associated with CIMP genes. Among CpG loci with the largest difference in methylation between right- and left-colon adenomas, probes associated with PRAC (prostate cancer susceptibility candidate) gene showed hypermethylation in right-colon adenomas whereas those associated with CDX2 (caudal type homeobox transcription factor 2) showed hypermethylation in left-colon adenomas. A subgroup of left-colon adenomas enriched for current smokers (OR=6.1, P=0.004) exhibited a methylation profile similar to right-colon adenomas. In summary, our results indicate distinct patterns of DNA methylation, independent of CIMP genes, in adenomas of the right and left colon.
Collapse
Affiliation(s)
- Devin C Koestler
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Jing Li
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - John A Baron
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lynn F Butterly
- Department of Gastroenterology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Martha Goodrich
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Corina Lesseur
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA,Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jason H Moore
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA,Department of Genetics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Angeline S Andrew
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | | |
Collapse
|
45
|
Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:971-7. [PMID: 23757598 PMCID: PMC3733676 DOI: 10.1289/ehp.1205925] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/07/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND There is increasing epidemiologic evidence that arsenic exposure in utero, even at low levels found throughout much of the world, is associated with adverse reproductive outcomes and may contribute to long-term health effects. Animal models, in vitro studies, and human cancer data suggest that arsenic may induce epigenetic alterations, specifically by altering patterns of DNA methylation. OBJECTIVES In this study we aimed to identify differences in DNA methylation in cord blood samples of infants with in utero, low-level arsenic exposure. METHODS DNA methylation of cord-blood derived DNA from 134 infants involved in a prospective birth cohort in New Hampshire was profiled using the Illumina Infinium Methylation450K array. In utero arsenic exposure was estimated using maternal urine samples collected at 24-28 weeks gestation. We used a novel cell mixture deconvolution methodology for examining the association between inferred white blood cell mixtures in infant cord blood and in utero arsenic exposure; we also examined the association between methylation at individual CpG loci and arsenic exposure levels. RESULTS We found an association between urinary inorganic arsenic concentration and the estimated proportion of CD8+ T lymphocytes (1.18; 95% CI: 0.12, 2.23). Among the top 100 CpG loci with the lowest p-values based on their association with urinary arsenic levels, there was a statistically significant enrichment of these loci in CpG islands (p = 0.009). Of those in CpG islands (n = 44), most (75%) exhibited higher methylation levels in the highest exposed group compared with the lowest exposed group. Also, several CpG loci exhibited a linear dose-dependent relationship between methylation and arsenic exposure. CONCLUSIONS Our findings suggest that in utero exposure to low levels of arsenic may affect the epigenome. Long-term follow-up is planned to determine whether the observed changes are associated with health outcomes.
Collapse
Affiliation(s)
- Devin C Koestler
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
In the First German-Catalan Workshop on Epigenetics and Cancer held in Heidelberg, Germany (June 17-19, 2013), cutting-edge laboratories (PEBC, IMPPC, DKFZ, and the Collaborative Research Centre Medical Epigenetics of Freiburg) discussed the latest breakthroughs in the field. The importance of DNA demethylation, non-coding and imprinted genes, metabolic stress, and cell transdifferentiation processes in cancer and non-cancer diseases were addressed in several lectures in a very participative and dynamic atmosphere. The meeting brought together leading figures in the field of cancer epigenetics to present their research work from the last five years. Experts in different areas of oncology described important advances in colorectal, lung, neuroblastoma, leukemia, and lymphoma cancers. The workshop also provided an interesting forum for pediatrics, and focused on the need to improve the treatment of childhood tumors in order to avoid, as far as possible, brain damage and disruption of activity in areas of high plasticity. From the beginning, the relevance of "omics" and the advances in genome-wide analysis platforms, which allow cancer to be studied in a more comprehensive and inclusive way, was very clear. Modern "omics" offer the possibility of identifying metastases of uncertain origin and establishing epigenetic signatures linked to a specific cluster of patients with a particular prognosis. In this context, invited speakers described novel tumor-associated histone variants and DNA-specific methylation, highlighting their close connection with other processes such as cell-lineage commitment and stemness.
Collapse
Affiliation(s)
- Miguel Vizoso
- Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute (IDIBELL); Barcelona, Catalonia, Spain
| | | |
Collapse
|
47
|
Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. BIOCHEMISTRY (MOSCOW) 2013; 78:638-50. [DOI: 10.1134/s0006297913060096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Bellodi C, McMahon M, Contreras A, Juliano D, Kopmar N, Nakamura T, Maltby D, Burlingame A, Savage SA, Shimamura A, Ruggero D. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 2013; 3:1493-502. [PMID: 23707062 DOI: 10.1016/j.celrep.2013.04.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 01/01/2023] Open
Abstract
Noncoding RNAs control critical cellular processes, although their contribution to disease remains largely unexplored. Dyskerin associates with hundreds of H/ACA small RNAs to generate a multitude of functionally distinct ribonucleoproteins (RNPs). The DKC1 gene, encoding dyskerin, is mutated in the multisystem disorder X-linked dyskeratosis congenita (X-DC). A central question is whether DKC1 mutations affect the stability of H/ACA RNPs, including those modifying ribosomal RNA (rRNA). We carried out comprehensive profiling of dyskerin-associated H/ACA RNPs, revealing remarkable heterogeneity in the expression and function of subsets of H/ACA small RNAs in X-DC patient cells. Using a mass spectrometry approach, we uncovered single-nucleotide perturbations in dyskerin-guided rRNA modifications, providing functional readouts of small RNA dysfunction in X-DC. In addition, we identified that, strikingly, the catalytic activity of dyskerin is required for accurate hematopoietic stem cell differentiation. Altogether, these findings reveal that small noncoding RNA dysfunctions may contribute to the pleiotropic manifestation of human disease.
Collapse
Affiliation(s)
- Cristian Bellodi
- School of Medicine and Department of Urology, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA--novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 2013; 340:201-11. [PMID: 23376637 DOI: 10.1016/j.canlet.2012.11.058] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Over the recent years, Next Generation Sequencing (NGS) technologies targeting the microRNA transcriptome revealed the existence of many different RNA fragments derived from small RNA species other than microRNA. Although initially discarded as RNA turnover artifacts, accumulating evidence suggests that RNA fragments derived from small nucleolar RNA (snoRNA) and transfer RNA (tRNA) are not just random degradation products but rather stable entities, which may have functional activity in the normal and malignant cell. This review summarizes new findings describing the detection and alterations in expression of snoRNA-derived (sdRNA) and tRNA-derived (tRF) RNAs. We focus on the possible interactions of sdRNAs and tRFs with the canonical microRNA pathways in the cell and present current hypotheses on the function of these RNAs.
Collapse
|
50
|
Riedmann EM. Landes Highlights. Nucleus 2012. [PMCID: PMC3474657 DOI: 10.4161/nucl.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|