1
|
Nandi S, Chakrabarty S, Bandopadhyay P, Azaharuddin M, Pal A, Das A, Basu T. Synthesis of terbium-labelled tetracycline-loaded calcium phosphate nanoparticle and its mode of action on multi-drug-resistant pathogenic bacteria Escherichia coli and Salmonella kentucky. Biochem Biophys Res Commun 2025; 764:151842. [PMID: 40253911 DOI: 10.1016/j.bbrc.2025.151842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
This study dealt with synthesis of a luminescent nano-form of tetracycline, characterization of its important physico-chemical properties, and molecular mechanism of its antibacterial action on tetracycline-resistant bacterial species. Nanonization was done by entrapping tetracycline (Tet) molecules within calcium phosphate nanoparticles (CPNPs) and doping them with fluorescent terbium (Tb) ions. To characterize the particles, techniques like AFM, SEM, TEM, DLS, absorption-fluorescence-FTIR spectrometry and dialysis were used and to investigate their antibacterial potency and mechanism of action, techniques of agar plating, Ni2+-NTA chromatography, absorption-fluorescence-CD spectroscopy, gel electrophoresis and NS-TEM were used. Tet-Tb-CPNPs, prepared as colloidal suspension, were highly mono-dispersed, moderately stable, spherical in shape, ∼30 nm in size and ∼220 kDa in MW; entrapment efficiency of tetracycline within the nanocomposite particles was about 55 % and its release from them was sustained, bringing out above 95 % of entrapped tetracycline over seven days. The bactericidal concentration of Tet-Tb-CPNP on diarrhoea-causing MDR (including tetracycline) bacteria E. coli and S. kentucky was about 40-45 μg/mL. Binding of Tet-Tb-CPNPs with bacterial ribosome resulted in disruption and degradation of ribosomal proteins and RNAs; such ribosomal degradation was the root cause of its antibacterial action. Moreover, the nanonized tetracycline had no significant toxicity on human neuroblastoma SH-SY5Y cells at its antibacterial dose. Therefore, further pharmacological and clinical investigations are utmost important before commercializing Tet-Tb-CPNP as a potential nano-antibiotic.
Collapse
Affiliation(s)
- Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
2
|
Kotaka Y, Nagai T, Tominaga K, Kurata T, Iwasaki W, Nobe Y, Taoka M, Asano T, Kato JI. Involvement of Escherichia coli unconventional G protein, YchF, in cell growth at the stationary phase. Genes Genet Syst 2025:24-00218. [PMID: 40128973 DOI: 10.1266/ggs.24-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
YchF is a universally conserved unconventional G protein. It is known to be involved in the translation of leaderless mRNA. However, leaderless mRNA is rare in E. coli under normal culture conditions, so we analyzed E. coli YchF to clarify its function in vivo. First, bioinformatics analysis was performed, and then the growth and survival of the ychF mutant were investigated. The results suggest that the functional domains and important amino acid residues of YchF are conserved. We next found that the E. coli ychF mutant exhibits delayed re-growth in late stationary phase in the presence of oxidative stress. And the growth inhibition by catalase overexpression was suggested to be caused by oxidase activity. We found that the E. coli ychF mutant exhibits reduced growth in early stationary phase and that is associated with decreased ribosomal 70S subunit. In the ychF mutant, we also found that overproduction of the ribosomal protein S18 inhibited growth, which was further suppressed by overproduction of S11. YchF of E. coli is involved in the regulation of ribosomal 70S levels possibly through interaction with ribosomal proteins S18 and S11 as well as IF-3, suggesting that YchF is important for growth and survival in the early and late stationary phase of growth.
Collapse
Affiliation(s)
- Yuto Kotaka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Bacteriology I, National Institute of Infectious Diseases
| | - Takahiro Nagai
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
| | - Tatsuaki Kurata
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
- Department of Experimental Medicine, Lund University
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo
- Atmosphere and Ocean Research Institute, the University of Tokyo
- Institute for Quantitative Biosciences, the University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University
| | - Tsunaki Asano
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| | - Jun-Ichi Kato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan Uni-versity
| |
Collapse
|
3
|
Yu T, Li X, Dong W, Zhou Q, Li Q, Du Z, Zeng F. Conserved GTPase OLA1 promotes efficient translation on D/E-rich mRNA. Nat Commun 2025; 16:1549. [PMID: 39934121 PMCID: PMC11814078 DOI: 10.1038/s41467-025-56797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The TRAFAC (translation factors) GTPase OLA1 plays a critical role in various stress responses and is implicated in the regulation of tumor progression. It is conserved from bacteria to eukaryotes and regulates the translation through binding to the ribosome. Here, we report the cryo-electron microscopy structure of its Escherichia coli homolog, YchF, with the 50S subunit. In this structure, YchF is positioned at the side of the 50S subunit by engaging with uL14, bL19, and rRNA helix H62 through its helical and ATPase domains. We further demonstrate that the helical domain is essential for OLA1/YchF to function. A comprehensive analysis of the structure and Ribo-seq data points out that OLA1/YchF promotes the splitting of ribosomes into subunits on D/E-rich mRNA. Our findings provide crucial structural insights into the molecular mechanism of OLA1/YchF-associated translation-stalling regulation, which maintains the translation of genes involved in stress response and tumor progression.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qixin Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qingrong Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Zisuo Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
4
|
Nandi S, Chakrabarty S, Bandopadhyay P, Mandal D, Azaharuddin M, Das A, Pal A, Ghosh S, Nandy S, Sett U, Basu T. Molecular mechanism of action of tetracycline-loaded calcium phosphate nanoparticle to kill multi-drug resistant bacteria. Biochim Biophys Acta Gen Subj 2025; 1869:130733. [PMID: 39645152 DOI: 10.1016/j.bbagen.2024.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND In earlier communications we reported about nanonization of the antibiotic tetracycline (Tet) by entrapping it within the biocompatible and highly membrane penetrating nano-carrier molecule - calcium phosphate nanoparticle (CPNP). The synthesized Tet-CPNP killed different Tet-resistant bacteria in vitro as well as in vivo (in mice). Moreover, such nanonized tetracycline had bactericidal mode of action, in contrast to bacteriostatic mode of action of bulk tetracycline. The present study unveils the molecular mechanism of action of Tet-CPNP. METHODS This study was conducted to investigate the mode of interaction of Tet-CPNP/Tet with intact 70S bacterial ribosome by the techniques of spectrophotometry, spectrofluorimetry, circular dichroism, gel electrophoresis and transmission electron microscopy. RESULTS Experimental observations revealed that (i) binding affinity of Tet-CPNP was higher than that of only tetracycline with ribosome and (ii) binding of Tet-CPNP, but not of tetracycline, loosened ribosome conformation, finally disrupting and degrading ribosome. CONCLUSION Bactericidal action of Tet-CPNP was rooted from degradation of cellular ribosomes and thereby blockage of protein translation phenomenon. Therefore, the problem of obsolescence of tetracycline, a cheap, first-generation, broad-spectrum antibiotic, due to generation of huge tetracycline-resistant bacteria, can be removed by the Tet-CPNP.
Collapse
Affiliation(s)
- Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Dipanwita Mandal
- Molecular Biophysics Unit, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Sourav Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Sanchita Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Upasana Sett
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741 235, West Bengal, India.
| |
Collapse
|
5
|
Jiang H, Milanov M, Jüngert G, Angebauer L, Flender C, Smudde E, Gather F, Vogel T, Jessen HJ, Koch HG. Control of a chemical chaperone by a universally conserved ATPase. iScience 2024; 27:110215. [PMID: 38993675 PMCID: PMC11237923 DOI: 10.1016/j.isci.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriela Jüngert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Clara Flender
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Smudde
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fabian Gather
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute for Organic Chemistry, Faculty of Chemistry and Pharmacy, University Freiburg 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Li D, Chen X, Wang Y, Huang W, Wang Y, Zhao X, Song X, Cao X. Panoptic elucidation of algicidal mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT quantitative proteomics. CHEMOSPHERE 2024; 352:141287. [PMID: 38272139 DOI: 10.1016/j.chemosphere.2024.141287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Lin Z, Li R, Han Z, Liu Y, Gao L, Huang S, Miao Y, Miao R. The Universally Conserved Unconventional G Protein YchF Is Critical for Growth and Stress Response. Life (Basel) 2023; 13:life13041058. [PMID: 37109587 PMCID: PMC10144078 DOI: 10.3390/life13041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The ancient guanine nucleotide-binding (G) proteins are a group of critical regulatory and signal transduction proteins, widely involved in diverse cellular processes of all kingdoms of life. YchF is a kind of universally conserved novel unconventional G protein that appears to be crucial for growth and stress response in eukaryotes and bacteria. YchF is able to bind and hydrolyze both adenine nucleoside triphosphate (ATP) and guanosine nucleoside triphosphate (GTP), unlike other members of the P-loop GTPases. Hence, it can transduce signals and mediate multiple biological functions by using either ATP or GTP. YchF is not only a nucleotide-dependent translational factor associated with the ribosomal particles and proteasomal subunits, potentially bridging protein biosynthesis and degradation, but also sensitive to reactive oxygen species (ROS), probably recruiting many partner proteins in response to environmental stress. In this review, we summarize the latest insights into how YchF is associated with protein translation and ubiquitin-dependent protein degradation to regulate growth and maintain proteostasis under stress conditions.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongfang Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Han
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suchang Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Luo M, Han Z, Huang G, Li R, Liu Y, Lu J, Liu L, Miao R. Structural comparison of unconventional G protein YchF with heterotrimeric G protein and small G protein. PLANT SIGNALING & BEHAVIOR 2022; 17:2024405. [PMID: 35135414 PMCID: PMC8959515 DOI: 10.1080/15592324.2021.2024405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Guanine nucleotide-binding (G) proteins, namely, phosphate-binding (P) loop GTPases, play a critical role in life processes among different species. Based on the structural characteristics, G proteins can be divided into heterotrimeric G proteins, small G proteins and multiple unique unconventional G proteins. The highly conserved unconventional G protein YchF is composed of a core G domain, an inserted coiled-coil domain, and a TGS domain from the N-terminus to the C-terminus. In this review, we compared the structural characteristics of the G domain in rice OsYchF1 with those of Rattus norvegicus heterotrimeric G protein α-subunit and human small G protein Ras-related G protein C and analyzed the binding modes of these G proteins with GTP or ATP by performing molecular dynamics simulations. In summary, it will provide new insights into the enormous diversity of biological function of G proteins.
Collapse
Affiliation(s)
- Maozhen Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Han
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoye Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongfang Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Miao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CONTACT Rui Miao College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou350002, China
| |
Collapse
|
9
|
Roberts L, Wieden HJ. The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1. Nucleic Acids Res 2022; 50:9355-9367. [PMID: 36039756 PMCID: PMC9458429 DOI: 10.1093/nar/gkac697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Internal ribosome entry sites (IRESs) are RNA elements capable of initiating translation on an internal portion of a messenger RNA. The intergenic region (IGR) IRES of the Dicistroviridae virus family folds into a triple pseudoknot tertiary structure, allowing it to recruit the ribosome and initiate translation in a structure dependent manner. This IRES has also been reported to drive translation in Escherichia coli and to date is the only described translation initiation signal that functions across domains of life. Here we show that unlike in the eukaryotic context the tertiary structure of the IGR IRES is not required for prokaryotic ribosome recruitment. In E. coli IGR IRES translation efficiency is dependent on ribosomal protein S1 in conjunction with an AG-rich Shine-Dalgarno-like element, supporting a model where the translational activity of the IGR IRESs is due to S1-mediated canonical prokaryotic translation.
Collapse
Affiliation(s)
- Luc Roberts
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
10
|
Chen T, Yeh HW, Chen PP, Huang WT, Wu CY, Liao TC, Lin SL, Chen YY, Lin KT, Hsu STD, Cheng HC. BARD1 is an ATPase activating protein for OLA1. Biochim Biophys Acta Gen Subj 2022; 1866:130099. [DOI: 10.1016/j.bbagen.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
11
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
12
|
Landwehr V, Milanov M, Angebauer L, Hong J, Jüngert G, Hiersemenzel A, Siebler A, Schmit F, Öztürk Y, Dannenmaier S, Drepper F, Warscheid B, Koch HG. The Universally Conserved ATPase YchF Regulates Translation of Leaderless mRNA in Response to Stress Conditions. Front Mol Biosci 2021; 8:643696. [PMID: 34026826 PMCID: PMC8138138 DOI: 10.3389/fmolb.2021.643696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The universally conserved P-loop GTPases control diverse cellular processes, like signal transduction, ribosome assembly, cell motility, and intracellular transport and translation. YchF belongs to the Obg-family of P-loop GTPases and is one of the least characterized member of this family. It is unique because it preferentially hydrolyses ATP rather than GTP, but its physiological role is largely unknown. Studies in different organisms including humans suggest a possible role of YchF in regulating the cellular adaptation to stress conditions. In the current study, we explored the role of YchF in the model organism Escherichia coli. By western blot and promoter fusion experiments, we demonstrate that YchF levels decrease during stress conditions or when cells enter stationary phase. The decline in YchF levels trigger increased stress resistance and cells lacking YchF are resistant to multiple stress conditions, like oxidative stress, replication stress, or translational stress. By in vivo site directed cross-linking we demonstrate that YchF interacts with the translation initiation factor 3 (IF3) and with multiple ribosomal proteins at the surface of the small ribosomal subunit. The absence of YchF enhances the anti-association activity of IF3, stimulates the translation of leaderless mRNAs, and increases the resistance against the endoribonuclease MazF, which generates leaderless mRNAs during stress conditions. In summary, our data identify YchF as a stress-responsive regulator of leaderless mRNA translation.
Collapse
Affiliation(s)
- Victoria Landwehr
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Larissa Angebauer
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jiang Hong
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Gabriela Jüngert
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Anna Hiersemenzel
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ariane Siebler
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fränk Schmit
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
High Throughput Proteomic Exploration of Hypothermic Preservation Reveals Active Processes within the Cell Associated with Cold Ischemia Kinetic. Int J Mol Sci 2021; 22:ijms22052384. [PMID: 33673561 PMCID: PMC7956856 DOI: 10.3390/ijms22052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a-during the first 3 h, central proteins were upregulated within these pathways; b-the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c-after that time, the overall decrease in protein expression was observed; d-at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Collapse
|
14
|
Pellowe G, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry 2020; 59:2764-2775. [PMID: 32627541 PMCID: PMC7551657 DOI: 10.1021/acs.biochem.0c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.
Collapse
Affiliation(s)
- Grant
A. Pellowe
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Heather E. Findlay
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Karen Lee
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Tim M. Gemeinhardt
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Laura R. Blackholly
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Eamonn Reading
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Paula J. Booth
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
15
|
Functional Analysis of BipA in E. coli Reveals the Natural Plasticity of 50S Subunit Assembly. J Mol Biol 2020; 432:5259-5272. [PMID: 32710983 DOI: 10.1016/j.jmb.2020.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BipA is a conserved translational GTPase of bacteria recently implicated in ribosome biogenesis. Here we show that Escherichia coli ΔbipA cells grown at suboptimal temperature accumulate immature large subunit particles missing several proteins. These include L17 and L17-dependent binders, suggesting that structural block 3 of the subunit folds late in the assembly process. Parallel analysis of the control strain revealed accumulation of nearly identical intermediates, albeit at lower levels, suggesting qualitatively similar routes of assembly. This came as a surprise, because earlier analogous studies of wild-type E. coli showed early binding of L17. Further investigation showed that the main path of 50S assembly differs depending on conditions of growth. Either supplementation of the media with lysine and arginine or suboptimal temperature appears to delay block 3 folding, demonstrating the flexible nature of the assembly process. We also show that the variant BipA-H78A fails to rescue phenotypes of the ΔbipA strain, indicating a critical role for GTP hydrolysis in BipA function. In fact, BipA-H78A confers a dominant negative phenotype in wild-type cells. Controlled production of BipA-H78A causes accumulation of 70S monosomes at the expense of polysomes, suggesting that the growth defect stems from a shutdown of translation.
Collapse
|
16
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP 2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP 2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP 2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D. Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
18
|
Balasingam N, Brandon HE, Ross JA, Wieden HJ, Thakor N. Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Biochem Cell Biol 2019; 98:1-11. [PMID: 30742486 DOI: 10.1139/bcb-2018-0353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.
Collapse
Affiliation(s)
- Nirujah Balasingam
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Harland E Brandon
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Joseph A Ross
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Nehal Thakor
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
19
|
Cheung MY, Li X, Miao R, Fong YH, Li KP, Yung YL, Yu MH, Wong KB, Chen Z, Lam HM. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proc Natl Acad Sci U S A 2016; 113:2648-53. [PMID: 26912459 PMCID: PMC4791026 DOI: 10.1073/pnas.1522966113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein's ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure-function relationships of the YchF subfamily of G proteins in all kingdoms of life.
Collapse
Affiliation(s)
- Ming-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Rui Miao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Yu-Hang Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Protein Sciences and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Kwan-Pok Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Yuk-Lin Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Mei-Hui Yu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Kam-Bo Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Protein Sciences and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China;
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR;
| |
Collapse
|
20
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
21
|
OLA1 regulates protein synthesis and integrated stress response by inhibiting eIF2 ternary complex formation. Sci Rep 2015; 5:13241. [PMID: 26283179 PMCID: PMC4539610 DOI: 10.1038/srep13241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/10/2015] [Indexed: 01/06/2023] Open
Abstract
Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.
Collapse
|
22
|
Rosler KS, Mercier E, Andrews IC, Wieden HJ. Histidine 114 Is Critical for ATP Hydrolysis by the Universally Conserved ATPase YchF. J Biol Chem 2015; 290:18650-61. [PMID: 26018081 DOI: 10.1074/jbc.m114.598227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/06/2022] Open
Abstract
GTPases perform a wide range of functions, ranging from protein synthesis to cell signaling. Of all known GTPases, only eight are conserved across all three domains of life. YchF is one of these eight universally conserved GTPases; however, its cellular function and enzymatic properties are poorly understood. YchF differs from the classical GTPases in that it has a higher affinity for ATP than for GTP and is a functional ATPase. As a hydrophobic amino acid-substituted ATPase, YchF does not possess the canonical catalytic Gln required for nucleotide hydrolysis. To elucidate the catalytic mechanism of ATP hydrolysis by YchF, we have taken a two-pronged approach combining classical biochemical and in silico techniques. The use of molecular dynamics simulations allowed us to complement our biochemical findings with information about the structural dynamics of YchF. We have thereby identified the highly conserved His-114 as critical for the ATPase activity of YchF from Escherichia coli. His-114 is located in a flexible loop of the G-domain, which undergoes nucleotide-dependent conformational changes. The use of a catalytic His is also observed in the hydrophobic amino acid-substituted GTPase RbgA and is an identifier of the translational GTPase family.
Collapse
Affiliation(s)
- Kirsten S Rosler
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ian C Andrews
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Byrgazov K, Grishkovskaya I, Arenz S, Coudevylle N, Temmel H, Wilson DN, Djinovic-Carugo K, Moll I. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. Nucleic Acids Res 2015; 43:661-73. [PMID: 25510494 PMCID: PMC4288201 DOI: 10.1093/nar/gku1314] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the 'ribosome puzzle', namely the detailed molecular insight into the topology of the S1-ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome.
Collapse
Affiliation(s)
- Konstantin Byrgazov
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Stefan Arenz
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Nicolas Coudevylle
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Hannes Temmel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Daniel N Wilson
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre for Molecular Biology, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
24
|
Jeyabal PVS, Rubio V, Chen H, Zhang J, Shi ZZ. Regulation of cell-matrix adhesion by OLA1, the Obg-like ATPase 1. Biochem Biophys Res Commun 2014; 444:568-74. [PMID: 24486488 DOI: 10.1016/j.bbrc.2014.01.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
Abstract
Attachment of cells to the extracellular matrix induces clustering of membrane receptor integrins which in turn triggers the formation of focal adhesions (FAs). The adaptor/scaffold proteins in FAs provide linkage to actin cytoskeleton, whereas focal adhesion kinase (FAK) and other FA-associated kinases and phosphatases transduce integrin-mediated signaling cascades, promoting actin polymerization and progression of cell spreading. In this study, we explored the role of OLA1, a newly identified member of Obg-like ATPases, in regulating cell adhesion processes. We showed that in multiple human cell lines RNAi-mediated downregulation of OLA1 significantly accelerated cell adhesion and spreading, and conversely overexpression of OLA1 by gene transfection resulted in delayed cell adhesion and spreading. We further found that OLA1-deficient cells had elevated levels of FAK protein and decreased Ser3 phosphorylation of cofilin, an actin-binding protein and key regulator of actin filament dynamics, while OLA1-overexpressing cells exhibited the opposite molecular alterations in FAK and cofilin. These findings suggest that OLA1 plays an important negative role in cell adhesion and spreading, in part through the regulation of FAK expression and cofilin phosphorylation, and manipulation of OLA1 may lead to significant changes in cell adhesion and the associated phenotypes.
Collapse
Affiliation(s)
- Prince V S Jeyabal
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Valentina Rubio
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Huarong Chen
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jiawei Zhang
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zheng-Zheng Shi
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Pérez-Arellano I, Spínola-Amilibia M, Bravo J. Human Drg1 is a potassium-dependent GTPase enhanced by Lerepo4. FEBS J 2013; 280:3647-57. [PMID: 23711155 DOI: 10.1111/febs.12356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
Human Drg1, a guanine nucleotide binding protein conserved in archaea and eukaryotes, is regulated by Lerepo4. Together they form a complex which interacts with translating ribosomes. Here we have purified and characterized the GTPase activity of Drg1 and three variants, a shortened mutant depleted of the TGS domain, a phosphomimicking mutant and a construct with the two combined mutations. Our data reveal that potassium strongly stimulates the GTPase activity, without changing the monomeric status of Drg1 and that this activity is notably reduced in the mutants. The nature of Lerepo4 association has also been investigated. Dissecting the role of the different domains revealed that Dfrp domain is the sole responsible for the Drg1 increase in thermal stability and the four fold stimulation over its catalytic activity. Lerepo4 action leaves Drg1 affinity for nucleotides unaffected, feasibly favoring a switch I reorientation, mainly via the TGS domain. Drg1 displayed a high temperature optimum of activity at 42°C, suggesting the ability of being active under possible heat stress conditions.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|