1
|
Bridgers JB, Carlström A, Sherpa D, Couvillion MT, Rovšnik U, Gao J, Wan B, Shao S, Ott M, Churchman LS. Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634913. [PMID: 39896557 PMCID: PMC11785255 DOI: 10.1101/2025.01.26.634913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In the baker's yeast Saccharomyces cerevisiae , nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats (PPRs) using selective mitoribosome profiling and cryo-EM structural analysis. These analyses revealed that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA-mitoribosome footprints indicated that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA-TA complexes bound to post-initiation/pre-elongation-stalled mitoribosomes revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5' UTR of the client mRNA as well as to the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.
Collapse
|
2
|
Anikin M, Henry MF, Hodorova V, Houbaviy HB, Nosek J, Pestov DG, Markov DA. Mitochondrial mRNA and the small subunit rRNA in budding yeasts undergo 3'-end processing at conserved species-specific elements. RNA (NEW YORK, N.Y.) 2025; 31:208-223. [PMID: 39572231 PMCID: PMC11789488 DOI: 10.1261/rna.080254.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 01/24/2025]
Abstract
Respiration in eukaryotes depends on mitochondrial protein synthesis, which is performed by organelle-specific ribosomes translating organelle-encoded mRNAs. Although RNA maturation and stability are central events controlling mitochondrial gene expression, many of the molecular details in this pathway remain elusive. These include cis- and trans-regulatory factors that generate and protect the 3' ends. Here, we mapped the 3' ends of mitochondrial mRNAs of yeasts classified into multiple families of the subphylum Saccharomycotina. We found that the processing of mitochondrial 15S rRNA and mRNAs involves species-specific sequence elements, which we term 3'-end RNA processing elements (3'-RPEs). In Saccharomyces cerevisiae, the 3'-RPE has long been recognized as a conserved dodecamer sequence, which recent studies have shown specifically interacts with the nuclear genome-encoded pentatricopeptide repeat protein Rmd9. We also demonstrate that, analogous to Rmd9 in S. cerevisiae, two Rmd9 orthologs from the Debaryomycetaceae family interact with their respective 3'-RPEs found in mRNAs and 15S rRNA. Thus, Rmd9-dependent processing of mitochondrial RNA precursors may be a common mechanism among the families of the Saccharomycotina subphylum. Surprisingly, we observed that 3'-RPEs often occur upstream of stop codons in complex I subunit mRNAs from yeasts of the CUG-Ser1 clade. We examined two of these mature mRNAs and found that their stop codons are indeed removed. Thus, translation of these stop-codon-less transcripts would require a noncanonical termination mechanism. Our findings highlight Rmd9 as a key evolutionarily conserved factor in both mitochondrial mRNA metabolism and mitoribosome biogenesis in a variety of yeasts.
Collapse
Affiliation(s)
- Michael Anikin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Michael F Henry
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Viktoria Hodorova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Hristo B Houbaviy
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava 84215, Slovakia
| | - Dimitri G Pestov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| | - Dmitriy A Markov
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey 08084, USA
| |
Collapse
|
3
|
Wenda JM, Drzewicka K, Mulica P, Tetaud E, di Rago JP, Golik P, Łabędzka-Dmoch K. Candida albicans PPR proteins are required for the expression of respiratory Complex I subunits. Genetics 2024; 228:iyae124. [PMID: 39073444 PMCID: PMC11630760 DOI: 10.1093/genetics/iyae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Pentatricopeptide repeat (PPR) proteins bind RNA and are present in mitochondria and chloroplasts of Eukaryota. In fungi, they are responsible for controlling mitochondrial genome expression, mainly on the posttranscriptional level. Candida albicans is a human opportunistic pathogen with a facultative anaerobic metabolism which, unlike the model yeast Saccharomyces cerevisiae, possesses mitochondrially encoded respiratory Complex I (CI) subunits and does not tolerate loss of mtDNA. We characterized the function of 4 PPR proteins of C. albicans that lack orthologs in S. cerevisiae and found that they are required for the expression of mitochondrially encoded CI subunits. We demonstrated that these proteins localize to mitochondria and are essential to maintain the respiratory capacity of cells. Deletion of genes encoding these PPR proteins results in changes in steady-state levels of mitochondrial RNAs and proteins. We demonstrated that C. albicans cells lacking CaPpr4, CaPpr11, and CaPpr13 proteins show no CI assembly, whereas the lack of CaPpr7p results in a decreased CI activity. CaPpr13p is required to maintain the bicistronic NAD4L-NAD5 mRNA, whereas the other 3 PPR proteins are likely involved in translation-related assembly of mitochondrially encoded CI subunits. In addition, we show that CaAep3p, which is an ortholog of ScAep3p, performs the evolutionary conserved function of controlling expression of the ATP8-ATP6 mRNA. We also show that C. albicans cells lacking PPR proteins express a higher level of the inducible alternative oxidase (AOX2) which likely rescues respiratory defects and compensates for oxidative stress.
Collapse
Affiliation(s)
- Joanna Maria Wenda
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Katarzyna Drzewicka
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Patrycja Mulica
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Emmanuel Tetaud
- IBGC, Univ. Bordeaux, CNRS, UMR 5095, F-33000, Bordeaux, France
- MFP, Univ. Bordeaux, CNRS, UMR 5234, F-33000, Bordeaux, France
| | | | - Paweł Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw 00-901, Poland
| | - Karolina Łabędzka-Dmoch
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| |
Collapse
|
4
|
Dinh N, Bonnefoy N. Schizosaccharomyces pombe as a fundamental model for research on mitochondrial gene expression: Progress, achievements and outlooks. IUBMB Life 2024; 76:397-419. [PMID: 38117001 DOI: 10.1002/iub.2801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.
Collapse
Affiliation(s)
- Nhu Dinh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
5
|
Wang Y, Feng G, Huang Y. The Schizosaccharomyces pombe DEAD-box protein Mss116 is required for mitoribosome assembly and mitochondrial translation. Mitochondrion 2024; 76:101881. [PMID: 38604460 DOI: 10.1016/j.mito.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
6
|
Liu Z, Jin T, Qin B, Li R, Shang J, Huang Y. The deletion of ppr2 interferes iron sensing and leads to oxidative stress response in Schizosaccharomyces pombe. Mitochondrion 2024; 76:101875. [PMID: 38499131 DOI: 10.1016/j.mito.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.
Collapse
Affiliation(s)
- Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingxin Qin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rongrong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang Y, Jin T, Huang Y. Sls1 and Mtf2 mediate the assembly of the Mrh5C complex required for activation of cox1 mRNA translation. J Biol Chem 2024; 300:107176. [PMID: 38499152 PMCID: PMC11015131 DOI: 10.1016/j.jbc.2024.107176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Mitochondrial translation depends on mRNA-specific activators. In Schizosaccharomyces pombe, DEAD-box protein Mrh5, pentatricopeptide repeat (PPR) protein Ppr4, Mtf2, and Sls1 form a stable complex (designated Mrh5C) required for translation of mitochondrial DNA (mtDNA)-encoded cox1 mRNA, the largest subunit of the cytochrome c oxidase complex. However, how Mrh5C is formed and what role Mrh5C plays in cox1 mRNA translation have not been reported. To address these questions, we investigated the role of individual Mrh5C subunits in the assembly and function of Mrh5C. Our results revealed that Mtf2 and Sls1 form a subcomplex that serves as a scaffold to bring Mrh5 and Ppr4 together. Mrh5C binds to the small subunit of the mitoribosome (mtSSU), but each subunit could not bind to the mtSSU independently. Importantly, Mrh5C is required for the association of cox1 mRNA with the mtSSU. Finally, we investigated the importance of the signature DEAD-box in Mrh5. We found that the DEAD-box of Mrh5 is required for the association of Mrh5C and cox1 mRNA with the mtSSU. Unexpectedly, this motif is also required for the interaction of Mrh5 with other Mrh5C subunits. Altogether, our results suggest that Mrh5 and Ppr4 cooperate in activating the translation of cox1 mRNA. Our results also suggest that Mrh5C activates the translation of cox1 mRNA by promoting the recruitment of cox1 mRNA to the mtSSU.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, China
| | - Ting Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
8
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Mitochondrial RNA maturation. RNA Biol 2024; 21:28-39. [PMID: 39385590 PMCID: PMC11469412 DOI: 10.1080/15476286.2024.2414157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.
Collapse
Affiliation(s)
- Zofia M. Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N. Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Harper NJ, Burnside C, Klinge S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023; 614:175-181. [PMID: 36482135 PMCID: PMC9892005 DOI: 10.1038/s41586-022-05621-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- Nathan J Harper
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Chloe Burnside
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Hu Y, Luo Y, Yin D, Zhao L, Wang Y, Yao R, Zhang P, Wu X, Li M, Hidalgo E, Huang Y. Schizosaccharomyces pombe MAP kinase Sty1 promotes survival of Δppr10 cells with defective mitochondrial protein synthesis. Int J Biochem Cell Biol 2022; 152:106308. [PMID: 36174923 DOI: 10.1016/j.biocel.2022.106308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Deletion of the Schizosaccharomyces pombe pentatricopeptide repeat gene ppr10 severely impairs mitochondrial translation, resulting in defective oxidative phosphorylation (OXPHOS). ppr10 deletion also induces iron starvation response, resulting in increased reactive oxygen species (ROS) production and reduced viability under fermentative conditions. S. pombe has two principal stress-response pathways, which are mediated by the mitogen-activated protein kinase Sty1 and the basic leucine zipper transcription factor Pap1, respectively. In this study, we examined the roles of Sty1 and Pap1 in the cellular response to the mitochondrial translation defect caused by ppr10 deletion. We found that ppr10 deletion resulted in two waves of stress protein activation. The early response occurred in exponential phase and resulted in the expression of a subset of stress proteins including Gst2 and Obr1. The upregulation of some of these stress proteins in Δppr10 cells in early response is dependent on the basal nuclear levels of Sty1 or Pap1. The late response occurred in early stationary phase and coincided with the stable localization of Sty1 and Pap1 in the nucleus, presumably resulting in persistent activation of a large set of stress proteins. Deletion of sty1 in Δppr10 cells caused severe defects in cell division and growth, and further impaired cell viability. Deletion of the mitochondrial superoxide dismutase gene sod2 whose expression is controlled by Sty1 severely inhibited the growth of Δppr10 cells. Overexpression of sod2 improves the viability of Δppr10 cells. Our results support an important role for Sty1 in counteracting stress induced by ppr10 deletion under fermentative growth conditions.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Yin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Minjie Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
13
|
Wang Y, Luo Y, Huang Y. Schizosaccharomyces pombe
Sls1 is primarily required for
cox1
mRNA translation. Yeast 2022; 39:521-534. [DOI: 10.1002/yea.3813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| |
Collapse
|
14
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
15
|
Luo Y, Wang Y, Huang Y. Schizosaccharomyces pombe Ppr10 and Mpa1 together mediate mitochondrial translational initiation. J Biol Chem 2021; 297:100869. [PMID: 34119521 PMCID: PMC8258696 DOI: 10.1016/j.jbc.2021.100869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of proteins that act primarily at different posttranscriptional steps of organellar gene expression. We have previously found that the Schizosaccharomyces pombe PPR protein mpal10 interacts with mitochondrial translational activator Mpa1, and both are essential for mitochondrial protein synthesis. However, it is unclear how these two proteins function in mitochondrial protein synthesis in S. pombe. In this study, we further investigated the role of Ppr10 and Mpa1 in mitochondrial protein synthesis. Mitochondrial translational initiation requires two initiation factors, Mti2 and Mti3, which bind to the small subunit of the mitochondrial ribosome (mt-SSU) during the formation of the mitochondrial translational initiation complex. Using sucrose gradient sedimentation analysis, we found that disruption of ppr10, mpa1, or the PPR motifs in Ppr10 impairs the association of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10 and Mpa1 may be required for the interaction of Mti2 and Mti3 with the mt-SSU during the assembly of mitochondrial translational initiation complex. Loss of Ppr10 perturbs the association of mitochondrially encoded cytochrome b (cob1) and cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled mitochondrial ribosomes. Proteomic analysis revealed that a fraction of Ppr10 and Mpa1 copurified with a subset of mitoribosomal proteins. The PPR motifs of Ppr10 are necessary for its interaction with Mpa1 and that disruption of these PPR motifs impairs mitochondrial protein synthesis. Our results suggest that Ppr10 and Mpa1 function together to mediate mitochondrial translational initiation.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
16
|
The pentatricopeptide repeat protein Rmd9 recognizes the dodecameric element in the 3'-UTRs of yeast mitochondrial mRNAs. Proc Natl Acad Sci U S A 2021; 118:2009329118. [PMID: 33876744 DOI: 10.1073/pnas.2009329118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3'-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.
Collapse
|
17
|
Wang L, Xie S, Zhang Y, Kang R, Zhang M, Wang M, Li H, Chen L, Yuan H, Ding S, Liang S, Li H. The FpPPR1 Gene Encodes a Pentatricopeptide Repeat Protein That Is Essential for Asexual Development, Sporulation, and Pathogenesis in Fusarium pseudograminearum. Front Genet 2021; 11:535622. [PMID: 33584782 PMCID: PMC7874006 DOI: 10.3389/fgene.2020.535622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fusarium crown rot (FCR) and Fusarium head blight (FHB) are caused by Fusarium pseudograminearum and are newly emerging diseases of wheat in China. In this study, we characterized FpPPR1, a gene that encodes a protein with 12 pentatricopeptide repeat (PPR) motifs. The radial growth rate of the ΔFpppr1 deletion mutant was significantly slower than the wild type strain WZ-8A on potato dextrose agar plates and exhibited significantly smaller colonies with sector mutations. The aerial mycelium of the mutant was almost absent in culture tubes. The ΔFpppr1 mutant was able to produce spores, but spores of abnormal size and altered conidium septum shape were produced with a significant reduction in sporulation compared to wild type. ΔFpppr1 failed to cause disease on wheat coleoptiles and barley leaves using mycelia plugs or spore suspensions. The mutant phenotypes were successfully restored to the wild type levels in complemented strains. FpPpr1-GFP signals in spores and mycelia predominantly overlapped with Mito-tracker signals, which substantiated the mitochondria targeting signal prediction of FpPpr1. RNAseq revealed significant transcriptional changes in the ΔFpppr1 mutant with 1,367 genes down-regulated and 1,333 genes up-regulated. NAD-binding proteins, thioredoxin, 2Fe-2S iron-sulfur cluster binding domain proteins, and cytochrome P450 genes were significantly down-regulated in ΔFpppr1, implying the dysfunction of mitochondria-mediated reductase redox stress in the mutant. The mating type idiomorphic alleles MAT1-1-1, MAT1-1-2, and MAT1-1-3 in F. pseudograminearum were also down-regulated after deletion of FpPPR1 and validated by real-time quantitative PCR. Additionally, 21 genes encoding putative heterokaryon incompatibility proteins were down-regulated. The yellow pigmentation of the mutant was correlated with reduced expression of PKS12 cluster genes. Taken together, our findings on FpPpr1 indicate that this PPR protein has multiple functions in fungal asexual development, regulation of heterokaryon formation, mating-type, and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunpei Xie
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China.,Xuchang Vocational Technical College, Xuchang, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Haiyang Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
18
|
Durand S, Ricou A, Simon M, Dehaene N, Budar F, Camilleri C. A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:124-135. [PMID: 33098690 DOI: 10.1111/tpj.15045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large family of proteins targeted to organelles, where they post-transcriptionally modulate gene expression through binding to specific RNA sequences. Among them, the mitochondria-targeted restorer-of-fertility (Rf) PPRs inhibit peculiar mitochondrial genes that are detrimental to male gametes and cause cytoplasmic male sterility (CMS). Here, we revealed three nuclear loci involved in CMS in a cross between two distant Arabidopsis thaliana strains, Sha and Cvi-0. We identified the causal gene at one of these loci as RFL24, a conserved gene encoding a PPR protein related to known Rf PPRs. By analysing fertile revertants obtained in a male sterile background, we demonstrate that RFL24 promotes pollen abortion, in contrast with the previously described Rf PPRs, which allow pollen to survive in the presence of a sterilizing cytoplasm. We show that the sterility caused by the RFL24 Cvi-0 allele results from higher expression of the gene during early pollen development. Finally, we predict a binding site for RFL24 upstream of two mitochondrial genes, the CMS gene and the important gene cob. These results suggest that the conservation of RFL24 is linked to a primary role of ensuring a proper functioning of mitochondria, and that it was subsequently diverted by the CMS gene to its benefit.
Collapse
Affiliation(s)
- Stéphanie Durand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Anthony Ricou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Matthieu Simon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Noémie Dehaene
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Christine Camilleri
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
19
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
20
|
Liu Z, Li Y, Xie W, Huang Y. Schizosaccharomyces pombe Ppr10 is required for mitochondrial translation. FEMS Microbiol Lett 2020; 367:5922721. [PMID: 33049028 DOI: 10.1093/femsle/fnaa170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial genome encodes key components of the oxidative phosphorylation (OXPHOS) system, whose expression is essential for mitochondrial functions. We have previously shown that deletion of the Schizosaccharomyces pombe ppr10 encoding a pentatricopeptide repeat protein severely reduces the mature levels of intron-containing mitochondrial transcripts cox1 and cob1, and severely impairs mitochondrial translation. In this study, we examined the possibility that the reduced levels of Cox1 and Cob1 proteins in cells were due to lowered levels of cox1 and cob1 mRNAs. We found that deletion of ppr10 did not affect the levels of mature cox1 and cob1 mRNAs in a mitochondrial intronless background. However, synthesis of Cox1 and Cob1 proteins were still severely affected by deletion of ppr10 in a mitochondrial intronless background. Consistent with this, we found that deletion of mitochondrial introns could not rescue the respiratory growth defect of Δppr10 cells. Our results reveal that Ppr10 is not required for the stability of cox1 and cob1 mRNAs, and provide further support for the idea that Ppr10 plays a critical role in mitochondrial translation.
Collapse
Affiliation(s)
- Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| |
Collapse
|
21
|
Piątkowski J, Golik P. Yeast pentatricopeptide protein Dmr1 (Ccm1) binds a repetitive AU-rich motif in the small subunit mitochondrial ribosomal RNA. RNA (NEW YORK, N.Y.) 2020; 26:1268-1282. [PMID: 32467310 PMCID: PMC7430664 DOI: 10.1261/rna.074880.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
PPR proteins are a diverse family of RNA binding factors found in all Eukaryotic lineages. They perform multiple functions in the expression of organellar genes, mostly on the post-transcriptional level. PPR proteins are also significant determinants of evolutionary nucleo-organellar compatibility. Plant PPR proteins recognize their RNA substrates using a simple modular code. No target sequences recognized by animal or yeast PPR proteins were identified prior to the present study, making it impossible to assess whether this plant PPR code is conserved in other organisms. Dmr1p (Ccm1p, Ygr150cp) is a S. cerevisiae PPR protein essential for mitochondrial gene expression and involved in the stability of 15S ribosomal RNA. We demonstrate that in vitro Dmr1p specifically binds a motif composed of multiple AUA repeats occurring twice in the 15S rRNA sequence as the minimal 14 nt (AUA)4AU or longer (AUA)7 variant. Short RNA fragments containing this motif are protected by Dmr1p from exoribonucleolytic activity in vitro. Presence of the identified motif in mtDNA of different yeast species correlates with the compatibility between their Dmr1p orthologs and S. cerevisiae mtDNA. RNA recognition by Dmr1p is likely based on a rudimentary form of a PPR code specifying U at every third position, and depends on other factors, like RNA structure.
Collapse
Affiliation(s)
- Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
22
|
Bertgen L, Mühlhaus T, Herrmann JM. Clingy genes: Why were genes for ribosomal proteins retained in many mitochondrial genomes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148275. [PMID: 32712152 DOI: 10.1016/j.bbabio.2020.148275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Why mitochondria still retain their own genome is a puzzle given the enormous effort to maintain a mitochondrial translation machinery. Most mitochondrially encoded proteins are membrane-embedded subunits of the respiratory chain. Their hydrophobicity presumably impedes their import into mitochondria. However, many mitochondrial genomes also encode protein subunits of the mitochondrial ribosome. These proteins lack transmembrane domains and hydrophobicity cannot explain why their genes remained in mitochondria. In this review, we provide an overview about mitochondrially encoded subunits of mitochondrial ribosomes of fungi, plants and protists. Moreover, we discuss and evaluate different hypotheses which were put forward to explain why (ribosomal) proteins remained mitochondrially encoded. It seems likely that the synthesis of ribosomal proteins in the mitochondrial matrix is used to regulate the assembly of the mitochondrial ribosome within mitochondria and to avoid problems that mitochondrial proteins might pose for cytosolic proteostasis and for the assembly of cytosolic ribosomes.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 23, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
23
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
24
|
Waltz F, Giegé P. Striking Diversity of Mitochondria-Specific Translation Processes across Eukaryotes. Trends Biochem Sci 2019; 45:149-162. [PMID: 31780199 DOI: 10.1016/j.tibs.2019.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential organelles that act as energy conversion powerhouses and metabolic hubs. Their gene expression machineries combine traits inherited from prokaryote ancestors and specific features acquired during eukaryote evolution. Mitochondrial research has wide implications ranging from human health to agronomy. We highlight recent advances in mitochondrial translation. Functional, biochemical, and structural data have revealed an unexpected diversity of mitochondrial translation systems, particularly of their key players, the mitochondrial ribosomes (mitoribosomes). Ribosome assembly and translation mechanisms, such as initiation, are discussed and put in perspective with the prevalence of eukaryote-specific families of mitochondrial translation factors such as pentatricopeptide repeat (PPR) proteins.
Collapse
Affiliation(s)
- Florent Waltz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Institut Européen de Chimie et de Biologie, l'Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
25
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
26
|
Su Y, Chen J, Huang Y. Disruption of ppr3, ppr4, ppr6 or ppr10 induces flocculation and filamentous growth in Schizosaccharomyces pombe. FEMS Microbiol Lett 2019; 365:5033677. [PMID: 29878109 DOI: 10.1093/femsle/fny141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 11/14/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are major players in mitochondrial and chloroplast RNA metabolism, which is essential for normal organellar function. The fission yeast Schizosaccharomyces pombe has 10 PPR proteins. We have previously reported that loss of ppr3, ppr4, ppr6 or ppr10 perturbs iron homeostasis leading to accumulation of reactive oxygen species and apoptotic cell death. In the present study, we show that loss of ppr3, ppr4, ppr6 or ppr10 can cause non-sexual flocculation and filamentous growth of cells. Furthermore, expression of a number of genes encoding cell-surface flocculins and cell wall-remodeling enzymes are induced in these ppr-deletion mutants. We also show that Δppr10 cells, and, to a lesser extent, Δppr4 and Δppr6 cells, exhibited increased tolerance to H2O2 toxicity compared with the wild-type strain. Finally, we found that overexpression of genes involved in iron uptake and/or iron homeostasis could cause the flocculation of wild-type cells. Our findings suggest that an elevated level of intracellular iron in the mutant caused by loss of ppr3, ppr4, ppr6 or ppr10 may result in flocculation and filamentous growth in S. pombe.
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jie Chen
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
27
|
Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front Physiol 2019; 10:595. [PMID: 31178748 PMCID: PMC6543908 DOI: 10.3389/fphys.2019.00595] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
The pentatricopeptide repeat (PPR) family plays a major role in RNA stability, regulation, processing, splicing, translation, and editing. Leucine-rich PPR-motif-containing protein (LRPPRC), a member of the PPR family, is a known gene mutation that causes Leigh syndrome French-Canadian. Recently, growing evidence has pointed out that LRPPRC dysregulation is related to various diseases ranging from tumors to viral infections. This review presents available published data on the LRPPRC protein function and its role in tumors and other diseases. As a multi-functional protein, LRPPRC regulates a myriad of biological processes, including energy metabolism and maturation and the export of nuclear mRNA. Overexpression of LRPPRC has been observed in various human tumors and is associated with poor prognosis. Downregulation of LRPPRC inhibits growth and invasion, induces apoptosis, and overcomes drug resistance in tumor cells. In addition, LRPPRC plays a potential role in Parkinson's disease, neurofibromatosis 1, viral infections, and venous thromboembolism. Further investigating these new functions of LRPPRC should provide novel opportunities for a better understanding of its pathological role in diseases from tumors to viral infections and as a potential biomarker and molecular target for disease treatment.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Li Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Xiaoyue Ren
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Hongyi Zhang
- College of General Practitioners, Xi'an Medical University, Xi'an, China.,Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
28
|
Jones JL, Hofmann KB, Cowan AT, Temiakov D, Cramer P, Anikin M. Yeast mitochondrial protein Pet111p binds directly to two distinct targets in COX2 mRNA, suggesting a mechanism of translational activation. J Biol Chem 2019; 294:7528-7536. [PMID: 30910813 DOI: 10.1074/jbc.ra118.005355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in vitro analyses to characterize the interactions of one of these translational activators, the pentatricopeptide repeat protein Pet111p, with its presumed target, COX2 mRNA, which encodes subunit II of cytochrome c oxidase. Using photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation analysis, we found that Pet111p binds directly and specifically to a 5'-end proximal region of the COX2 transcript. Further, we applied in vitro RNase footprinting and mapped two binding targets of the protein, of which one is located in the 5'-untranslated leader and the other is within the coding sequence. Combined with the available genetic data, these results suggest a plausible mechanism of translational activation, in which binding of Pet111p may prevent inhibitory secondary structures from forming in the translation initiation region, thus rendering the mRNA available for interaction with the ribosome.
Collapse
Affiliation(s)
- Julia L Jones
- From the Graduate Program in Cell and Molecular Biology, Graduate School of Biomedical Sciences and.,the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Katharina B Hofmann
- the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Andrew T Cowan
- the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- the Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Patrick Cramer
- the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Michael Anikin
- the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084,
| |
Collapse
|
29
|
Franco LVR, Moda BS, Soares MAKM, Barros MH. Msc6p is required for mitochondrial translation initiation in the absence of formylated Met-tRNA fMet. FEBS J 2019; 286:1407-1419. [PMID: 30767393 DOI: 10.1111/febs.14785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/27/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Abstract
Mitochondrial translation normally requires formylation of the initiator tRNA-met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non-formylated methionyl-tRNA. Yeast synthetic respiratory-deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non-formylated methionyl-tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA-binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF-2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull-down assays showing that it transiently interacts with mIF-2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF-2-dependent formation of the initiation complex.
Collapse
Affiliation(s)
| | - Bruno S Moda
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Maria A K M Soares
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
30
|
Waltz F, Nguyen TT, Arrivé M, Bochler A, Chicher J, Hammann P, Kuhn L, Quadrado M, Mireau H, Hashem Y, Giegé P. Small is big in Arabidopsis mitochondrial ribosome. NATURE PLANTS 2019; 5:106-117. [PMID: 30626926 DOI: 10.1038/s41477-018-0339-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/27/2018] [Indexed: 05/24/2023]
Abstract
Mitochondria are responsible for energy production through aerobic respiration, and represent the powerhouse of eukaryotic cells. Their metabolism and gene expression processes combine bacterial-like features and traits that evolved in eukaryotes. Among mitochondrial gene expression processes, translation remains the most elusive. In plants, while numerous pentatricopeptide repeat (PPR) proteins are involved in all steps of gene expression, their function in mitochondrial translation remains unclear. Here we present the biochemical characterization of Arabidopsis mitochondrial ribosomes and identify their protein subunit composition. Complementary biochemical approaches identified 19 plant-specific mitoribosome proteins, of which ten are PPR proteins. The knockout mutations of ribosomal PPR (rPPR) genes result in distinct macroscopic phenotypes, including lethality and severe growth delay. The molecular analysis of rppr1 mutants using ribosome profiling, as well as the analysis of mitochondrial protein levels, demonstrate rPPR1 to be a generic translation factor that is a novel function for PPR proteins. Finally, single-particle cryo-electron microscopy (cryo-EM) reveals the unique structural architecture of Arabidopsis mitoribosomes, characterized by a very large small ribosomal subunit, larger than the large subunit, bearing an additional RNA domain grafted onto the head. Overall, our results show that Arabidopsis mitoribosomes are substantially divergent from bacterial and other eukaryote mitoribosomes, in terms of both structure and protein content.
Collapse
Affiliation(s)
- Florent Waltz
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Tan-Trung Nguyen
- Institut Jean-Pierre Bourgin INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Mathilde Arrivé
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Bochler
- Institut Européen de Chimie et Biologie U1212 Inserm, Université de Bordeaux, Pessac, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie U1212 Inserm, Université de Bordeaux, Pessac, France.
| | - Philippe Giegé
- Institut de biologie de moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
31
|
Shang J, Yang Y, Wu L, Zou M, Huang Y. The S. pombe mitochondrial transcriptome. RNA (NEW YORK, N.Y.) 2018; 24:1241-1254. [PMID: 29954949 PMCID: PMC6097661 DOI: 10.1261/rna.064477.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/26/2018] [Indexed: 05/22/2023]
Abstract
Mitochondrial gene expression is largely controlled through post-transcriptional processes including mitochondrial RNA (mt-RNA) processing, modification, decay, and quality control. Defective mitochondrial gene expression results in mitochondrial oxidative phosphorylation (OXPHOS) deficiency and has been implicated in human disease. To fully understand mitochondrial transcription and RNA processing, we performed RNA-seq analyses of mt-RNAs from the fission yeast Schizosaccharomyces pombe RNA-seq analyses show that the abundance of mt-RNAs vary greatly. Analysis of data also reveals mt-RNA processing sites including an unusual RNA cleavage event by mitochondrial tRNA (mt-tRNA) 5'-end processing enzyme RNase P. Additionally, this analysis reveals previously unknown mitochondrial transcripts including the rnpB-derived fragment, mitochondrial small RNAs (mitosRNAs) such as mt-tRNA-derived fragments (mt-tRFs) and mt-tRNA halves, and mt-tRNAs marked with 3'-CCACCA/CCACC in S. pombe Finally, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNA 3'-end processing enzyme globally impairs mt-tRNA 3'-end processing, inhibits mt-mRNA 5'-end processing, and causes accumulation of unprocessed transcripts, demonstrating the feasibility of using RNA-seq to examine the protein known or predicted to be involved in mt-RNA processing in S. pombe Our work uncovers the complexity of a fungal mitochondrial transcriptome and provides a framework for future studies of mitochondrial gene expression using S. pombe as a model system.
Collapse
Affiliation(s)
- Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
32
|
Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017; 45:3323-3340. [PMID: 28334955 PMCID: PMC5389468 DOI: 10.1093/nar/gkx127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingzhen Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuting Ma
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Juan Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Minghui Su
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
33
|
Matsushima Y, Hirofuji Y, Aihara M, Yue S, Uchiumi T, Kaguni LS, Kang D. Drosophila protease ClpXP specifically degrades DmLRPPRC1 controlling mitochondrial mRNA and translation. Sci Rep 2017; 7:8315. [PMID: 28814717 PMCID: PMC5559520 DOI: 10.1038/s41598-017-08088-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
ClpXP is the major protease in the mitochondrial matrix in eukaryotes, and is well conserved among species. ClpXP is composed of a proteolytic subunit, ClpP, and a chaperone-like subunit, ClpX. Although it has been proposed that ClpXP is required for the mitochondrial unfolded protein response, additional roles for ClpXP in mitochondrial biogenesis are unclear. Here, we found that Drosophila leucine-rich pentatricopeptide repeat domain-containing protein 1 (DmLRPPRC1) is a specific substrate of ClpXP. Depletion or introduction of catalytically inactive mutation of ClpP increases DmLRPPRC1 and causes non-uniform increases of mitochondrial mRNAs, accumulation of some unprocessed mitochondrial transcripts, and modest repression of mitochondrial translation in Drosophila Schneider S2 cells. Moreover, DmLRPPRC1 over-expression induces the phenotypes similar to those observed when ClpP is depleted. Taken together, ClpXP regulates mitochondrial gene expression by changing the protein level of DmLRPPRC1 in Drosophila Schneider S2 cells.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing Michigan, 48824-1319, USA.
| | - Yuta Hirofuji
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamune Aihara
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Song Yue
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing Michigan, 48824-1319, USA.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
34
|
Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. FEBS J 2017; 284:324-337. [PMID: 27886462 DOI: 10.1111/febs.13978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins characterized by tandem arrays of a degenerate 35-amino-acid repeat belong to a large family of RNA-binding proteins that are involved in post-transcriptional control of organelle gene expression. PPR proteins are ubiquitous in eukaryotes, and particularly prevalent in higher plants. Schizosaccharomyces pombe has 10 PPR proteins. Among them, ppr3, ppr4, ppr6, and ppr10 participate in mitochondrial post-transcriptional processes and are required for mitochondrial electron transport chain (ETC) function. In the present work, we showed that deletion of ppr3, ppr4, ppr6, or ppr10 led to apoptotic cell death, as revealed by DAPI and Annexin V-FITC staining. These mutants also exhibited elevated levels of reactive oxygen species (ROS). RNA sequencing (RNA-seq) and quantitative RT-PCR analyses revealed that deletion of ppr10 affected critical biological processes. In particular, a core set of genes involved in iron uptake and/or iron homeostasis was elevated in the Δppr10 mutant, suggesting an elevated level of intracellular iron in the mutant. Consistent with this notion, Δppr3, Δppr4, Δppr6, and Δppr10 mutants exhibited increased sensitivity to iron. Furthermore, the iron chelator, bathophenanthroline disulfonic acid, but not the calcium chelator EGTA, nearly restored the viabilities of Δppr3, Δppr4, Δppr6, and Δppr10 mutants, and reduced ROS levels in the mutants. These results show for the first time that deletion of a ppr gene leads to perturbation of iron homeostasis. Our results also suggest that disrupted iron homeostasis in Δppr3, Δppr4, Δppr6, and Δppr10 mutants may lead to an increase in the level of ROS and induction of apoptotic cell death in S. pombe. DATABASE The RNA-seq data have been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession number SRP091623) and Gene Expression Omnibus (GEO) database (accession number GSE90144).
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
35
|
Jhuang HY, Lee HY, Leu JY. Mitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins. EMBO Rep 2016; 18:87-101. [PMID: 27920033 DOI: 10.15252/embr.201643311] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial-nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial-nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat-containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus S. bayanus-Ccm1 has reduced binding affinity for S. cerevisiae-15S rRNA, leading to respiratory defects in hybrid cells. This incompatibility can be rescued by single mutations on several individual PPR motifs, demonstrating the highly evolvable nature of PPR proteins. When we examined other PPR proteins in the closely related Saccharomyces sensu stricto yeasts, about two-thirds of them showed detectable incompatibility. Our results suggest that fast co-evolution between flexible PPR proteins and their mitochondrial RNA substrates may be a common driving force in the development of mitochondrial-nuclear hybrid incompatibility.
Collapse
Affiliation(s)
- Han-Ying Jhuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Kruszewski J, Golik P. Pentatricopeptide Motifs in the N-Terminal Extension Domain of Yeast Mitochondrial RNA Polymerase Rpo41p Are Not Essential for Its Function. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1101-1110. [PMID: 27908235 DOI: 10.1134/s0006297916100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The core mitochondrial RNA polymerase is a single-subunit enzyme that in yeast Saccharomyces cerevisiae is encoded by the nuclear RPO41 gene. It is an evolutionary descendant of the bacteriophage RNA polymerases, but it includes an additional unconserved N-terminal extension (NTE) domain that is unique to the organellar enzymes. This domain mediates interactions between the polymerase and accessory regulatory factors, such as yeast Sls1p and Nam1p. Previous studies demonstrated that deletion of the entire NTE domain results only in a temperature-dependent respiratory deficiency. Several sequences related to the pentatricopeptide (PPR) motifs were identified in silico in Rpo41p, three of which are located in the NTE domain. PPR repeat proteins are a large family of organellar RNA-binding factors, mostly involved in posttranscriptional gene expression mechanisms. To study their function, we analyzed the phenotype of strains bearing Rpo41p variants where each of these motifs was deleted. We found that deletion of any of the three PPR motifs in the NTE domain does not affect respiratory growth at normal temperature, and it results in a moderate decrease in mtDNA stability. Steady-state levels of COX1 and COX2 mRNAs are also moderately affected. Only the deletion of the second motif results in a partial respiratory deficiency, manifested only at elevated temperature. Our results thus indicate that the PPR motifs do not play an essential role in the function of the NTE domain of the mitochondrial RNA polymerase.
Collapse
Affiliation(s)
- J Kruszewski
- University of Warsaw, Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw, 02-106, Poland.
| | | |
Collapse
|
37
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
38
|
Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p. Curr Genet 2016; 62:607-17. [PMID: 26780366 DOI: 10.1007/s00294-016-0566-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.
Collapse
|
39
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
40
|
Baggio F, Bratic A, Mourier A, Kauppila TES, Tain LS, Kukat C, Habermann B, Partridge L, Larsson NG. Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. Nucleic Acids Res 2014; 42:13920-38. [PMID: 25428350 PMCID: PMC4267620 DOI: 10.1093/nar/gku1132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the pentatricopeptide repeat domain (PPR) protein family bind RNA and are important for post-transcriptional control of organelle gene expression in unicellular eukaryotes, metazoans and plants. They also have a role in human pathology, as mutations in the leucine-rich PPR-containing (LRPPRC) gene cause severe neurodegeneration. We have previously shown that the mammalian LRPPRC protein and its Drosophila melanogaster homolog DmLRPPRC1 (also known as bicoid stability factor) are necessary for mitochondrial translation by controlling stability and polyadenylation of mRNAs. We here report characterization of DmLRPPRC2, a second fruit fly homolog of LRPPRC, and show that it has a predominant mitochondrial localization and interacts with a stem-loop interacting RNA binding protein (DmSLIRP2). Ubiquitous downregulation of DmLrpprc2 expression causes respiratory chain dysfunction, developmental delay and shortened lifespan. Unexpectedly, decreased DmLRPPRC2 expression does not globally affect steady-state levels or polyadenylation of mitochondrial transcripts. However, some mitochondrial transcripts abnormally associate with the mitochondrial ribosomes and some products are dramatically overproduced and other ones decreased, which, in turn, results in severe deficiency of respiratory chain complexes. The function of DmLRPPRC2 thus seems to be to ensure that mitochondrial transcripts are presented to the mitochondrial ribosomes in an orderly fashion to avoid poorly coordinated translation.
Collapse
Affiliation(s)
- Francesca Baggio
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Luke S Tain
- Department of the Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Christian Kukat
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Bianca Habermann
- Department of Computational Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Linda Partridge
- Department of the Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany Department of Laboratory Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
41
|
Ostojić J, Glatigny A, Herbert CJ, Dujardin G, Bonnefoy N. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae? Biochimie 2013; 100:27-37. [PMID: 24262604 DOI: 10.1016/j.biochi.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Glatigny
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christopher J Herbert
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
42
|
Kazama T, Yagi Y, Toriyama K, Nakamura T. Heterogeneity of the 5'-end in plant mRNA may be involved in mitochondrial translation. FRONTIERS IN PLANT SCIENCE 2013; 4:517. [PMID: 24381580 PMCID: PMC3865367 DOI: 10.3389/fpls.2013.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 05/04/2023]
Affiliation(s)
- Tomohiko Kazama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Yusuke Yagi
- Faculty of Agriculture, Kyushu UniversityFukuoka, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Kyushu UniversityFukuoka, Japan
- *Correspondence:
| |
Collapse
|