1
|
Soltani S, Fallah T, Shafiei M, Shahraki AH, Iranbakhsh A. Investigating the prevalence of CRISPR-Cas system and their association with antibiotic resistance genes and virulence factors in Enterococcus faecalis and Enterococcus faecium strains isolated from hospitalized patients. J Glob Antimicrob Resist 2025:S2213-7165(25)00096-7. [PMID: 40311759 DOI: 10.1016/j.jgar.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
OBJECTIVES Enterococcus faecalis and Enterococcus faecium are Gram-positive opportunistic pathogens that rank among the leading causes of nosocomial infections worldwide. This study investigates the prevalence and role of CRISPR-Cas systems in modulating antimicrobial resistance and virulence factors in clinical isolates of E. faecalis and E. faecium collected from patients in Tehran, Iran. METHODS A total of 75 clinical isolates of E. faecalis and E. faecium were collected from various hospitals in Tehran, Iran, between January and April 2023, from adult patients with urinary tract infections (n = 55), blood infections (n = 12), and wound infections (n = 8). Conventional bacteriology tests and PCR were used to isolate and identify Enterococcus species. Phenotypic antibiotic and genotypic resistance were assessed. CRISPR-Cas repeat-spacer array were screened using PCR, and the relationship between CRISPR-Cas systems and antibiotic resistance and virulence genes was statistically analyzed. Phylogenetic, structural, and conservation analyses were performed to assess the degree of conservation in CRISPR1-Cas csn1 and CRISPR3-Cas csn1 genes, identify potential mutations, and evaluate their possible impact on Cas9 protein function. RESULTS 86.6% of the isolates harbored CRISPR-Cas repeat-spacer array, with a significantly higher prevalence in E. faecalis than in E. faecium (100% vs. 66.6%, p = 0.0001). CRISPR1-Cas, CRISPR2, and CRISPR3-Cas loci were identified in 76%, 82.6%, and 64% of isolates, respectively. Notably, the prevalence of CRISPR-Cas systems was significantly reduced in extensively drug-resistant (XDR) isolates (32%) compared to multidrug-resistant (MDR) isolates (68%, p = 0.0001). Conservation analyses of CRISPR1-Cas csn1 and CRISPR3-Cas csn1 genes revealed conserved regions potentially linked to functional activity. Furthermore, CRISPR-Cas repeat-spacer array were correlated with specific antimicrobial resistance phenotypes and genotypes, as well as with virulence factors. CONCLUSIONS These findings suggest that CRISPR-Cas systems may influence the resistance and virulence profiles of clinical Enterococcus isolates, potentially impacting their pathogenicity and adaptability.
Collapse
Affiliation(s)
- Sepideh Soltani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tina Fallah
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Abdolrazagh Hashemi Shahraki
- Country Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, Florida, United States
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Front Cell Infect Microbiol 2021; 10:619763. [PMID: 33585286 PMCID: PMC7876343 DOI: 10.3389/fcimb.2020.619763] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine.
Collapse
Affiliation(s)
- Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Lindsie Martin
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
4
|
Öhrman C, Sahl JW, Sjödin A, Uneklint I, Ballard R, Karlsson L, McDonough RF, Sundell D, Soria K, Bäckman S, Chase K, Brindefalk B, Sozhamannan S, Vallesi A, Hägglund E, Ramirez-Paredes JG, Thelaus J, Colquhoun D, Myrtennäs K, Birdsell D, Johansson A, Wagner DM, Forsman M. Reorganized Genomic Taxonomy of Francisellaceae Enables Design of Robust Environmental PCR Assays for Detection of Francisella tularensis. Microorganisms 2021; 9:146. [PMID: 33440900 PMCID: PMC7826819 DOI: 10.3390/microorganisms9010146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, an increasing diversity of species has been recognized within the family Francisellaceae. Unfortunately, novel isolates are sometimes misnamed in initial publications or multiple sources propose different nomenclature for genetically highly similar isolates. Thus, unstructured and occasionally incorrect information can lead to confusion in the scientific community. Historically, detection of Francisella tularensis in environmental samples has been challenging due to the considerable and unknown genetic diversity within the family, which can result in false positive results. We have assembled a comprehensive collection of genome sequences representing most known Francisellaceae species/strains and restructured them according to a taxonomy that is based on phylogenetic structure. From this structured dataset, we identified a small number of genomic regions unique to F. tularensis that are putatively suitable for specific detection of this pathogen in environmental samples. We designed and validated specific PCR assays based on these genetic regions that can be used for the detection of F. tularensis in environmental samples, such as water and air filters.
Collapse
Affiliation(s)
- Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Ingrid Uneklint
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Rebecca Ballard
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Linda Karlsson
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - David Sundell
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Kathleen Soria
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Stina Bäckman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Kitty Chase
- US Army Medical Research Institute, Fort Detrick, MD 21702, USA;
| | - Björn Brindefalk
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Shanmuga Sozhamannan
- Logistics Management Institute supporting Defense Biological Product Assurance Office (DBPAO) Joint Project Lead, CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD 21702, USA;
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Emil Hägglund
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Jose Gustavo Ramirez-Paredes
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England RG20 6NE, UK;
| | - Johanna Thelaus
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Duncan Colquhoun
- Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Pb 750 Sentrum, 23 N-0106 Oslo, Norway;
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Dawn Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Anders Johansson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden;
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| |
Collapse
|
5
|
Guzina J, Chen WH, Stankovic T, Djordjevic M, Zdobnov E, Djordjevic M. In silico Analysis Suggests Common Appearance of scaRNAs in Type II Systems and Their Association With Bacterial Virulence. Front Genet 2018; 9:474. [PMID: 30386377 PMCID: PMC6199352 DOI: 10.3389/fgene.2018.00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
In addition to its well-established defense function, CRISPR/Cas can also exhibit crucial non-canonical activity through endogenous gene expression regulation, which was found to mainly affect bacterial virulence. These non-canonical functions depend on scaRNA, which is a small RNA encoded outside of CRISPR array, that is typically flanked by a transcription start site (TSS) and a terminator, and is in part complementary to another small CRISPR/Cas-associated RNA (tracrRNAs). Identification of scaRNAs is however largely complicated by the scarcity of RNA-Seq data across different bacteria, so that they were identified only in a relatively rare CRISPR/Cas subtype (IIB), and the possibility of finding them in other Type II systems is currently unclear. This study presents the first effort toward systematic detection of small CRISPR/Cas-associated regulatory RNAs, where obtained predictions can guide future experiments. The core of our approach is ab initio detection of small RNAs from bacterial genome, which is based on jointly predicting transcription signals - TSS and terminators - and homology to CRISPR array repeat. Particularly, we employ our improved approach for detecting bacterial TSS, since accurate TSS detection is the main limiting factor for accurate small RNA prediction. We also explore how our predictions match to available RNA-Seq data and analyze their conservation across related bacterial species. In Type IIB systems, our predictions are consistent with experimental data, and we systematically identify scaRNAs throughout this subtype. Furthermore, we identify scaRNA:tracrRNA pairs in a number of IIA/IIC systems, where the appearance of scaRNAs co-occurs with the strains being pathogenic. RNA-Seq and conservation analysis show that our method is well suited for predicting CRISPR/Cas-associated small RNAs. We also find possible existence of a modified mechanism of CRISPR-associated small RNA action, which, interestingly, closely resembles the setup employed in biotechnological applications. Overall, our findings indicate that scaRNA:tracrRNA pairs are present in all subtypes of Type II systems, and point to an underlying connection with bacterial virulence. In addition to formulating these hypotheses, careful manual curation that we performed, makes an important first step toward fully automated predictor of CRISPR/Cas-associated small RNAs, which will allow their large scale analysis across diverse bacterial genomes.
Collapse
Affiliation(s)
- Jelena Guzina
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Multidisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Wei-Hua Chen
- Swiss Institute of Bioinformatics and Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Tamara Stankovic
- Multidisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | | | - Evgeny Zdobnov
- Swiss Institute of Bioinformatics and Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marko Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Heidrich N, Hagmann A, Bauriedl S, Vogel J, Schoen C. The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA Biol 2018; 16:390-396. [PMID: 30059276 DOI: 10.1080/15476286.2018.1486660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Neisseria meningitidis, a commensal β-proteobacterium of the human nasopharynx, constitutes a worldwide leading cause of sepsis and epidemic meningitis. A recent genome-wide association study suggested an association of its type II-C CRISPR/Cas system with carriage and thus less invasive lineages. Here, we show that knock-out strains lacking the Cas9 protein are impaired in the adhesion to human nasopharyngeal cells which constitutes a central step in the pathogenesis of invasive meningococcal disease. Transcriptome sequencing data further suggest that meningococcal Cas9 does not affect the expression of surface adhesins but rather exerts its effect on cell adhesion in an indirect manner. Consequently, we speculate that the meningococcal CRISPR/Cas system exerts novel functions beyond its established role in defence against foreign DNA.
Collapse
Affiliation(s)
- Nadja Heidrich
- a Institute for Molecular Infection Biology (IMIB) , University of Würzburg , Würzburg , Germany
| | - Antony Hagmann
- b Institute for Hygiene and Microbiology (IHM) , University of Würzburg , Würzburg , Germany
| | - Saskia Bauriedl
- a Institute for Molecular Infection Biology (IMIB) , University of Würzburg , Würzburg , Germany.,b Institute for Hygiene and Microbiology (IHM) , University of Würzburg , Würzburg , Germany
| | - Jörg Vogel
- a Institute for Molecular Infection Biology (IMIB) , University of Würzburg , Würzburg , Germany.,c Helmholtz Institute for RNA-based Infection Biology (HIRI) , Würzburg , Germany
| | - Christoph Schoen
- b Institute for Hygiene and Microbiology (IHM) , University of Würzburg , Würzburg , Germany
| |
Collapse
|
7
|
Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and Ecology of CRISPR. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edze R. Westra
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Andrea J. Dowling
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Jenny M. Broniewski
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Stineke van Houte
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| |
Collapse
|
8
|
van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev 2016; 80:745-63. [PMID: 27412881 PMCID: PMC4981670 DOI: 10.1128/mmbr.00011-16] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.
Collapse
Affiliation(s)
- Stineke van Houte
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Angus Buckling
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Edze R Westra
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Kumar MS, Plotkin JB, Hannenhalli S. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution. PLoS Comput Biol 2015; 11:e1004603. [PMID: 26544847 PMCID: PMC4636164 DOI: 10.1371/journal.pcbi.1004603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. To counteract viral infections, bacteria and archaea have evolved a variety of defense systems. These can broadly be classified into either restriction or suicide mechanisms. The former enforces nicks in the invading DNA making it unusable for production of further infectious particles; the latter, by contrast, induces cell death whereby an infected cell activates specific host suicidal pathways that are otherwise strongly repressed, thus inhibiting further infection. Examples of the former class include restriction-modification (R-M) and the recently discovered CRISPR systems, while the latter class includes a variety of toxin/anti-toxin systems. CRISPRs, in contrast to R-Ms, adapt to target viral genomes by updating the database of target sites they recognize. The adverse side effect of such a mechanism, however, is that CRISPRs can target the host genome itself resulting in undesirable cell death (autoimmunity). The recent discovery of infection-induced activation of CRISPR systems suggests that these negative side effects may be limited to periods of infection. This led us to hypothesize that such regulatory control—similar to abortive infection mechanisms—can be advantageous by limiting viral spread through suicide of infected cells. To test this hypothesis, we mathematically model CRISPR induced prokaryote-phage coevolutionary dynamics in the presence of infection-regulated CRISPR activity. Our results indicate that, except in limited growth rates, regulated CRISPRs exploit both autoimmunity and target restriction and can therefore be considered a hybrid class that leverages both restriction and suicide mechanisms to limit phage infection.
Collapse
Affiliation(s)
- M. Senthil Kumar
- Graduate Program in Bioinformatics, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| |
Collapse
|
10
|
Identification and characterization of episomal forms of integrative genomic islands in the genus Francisella. Int J Med Microbiol 2015; 305:874-80. [PMID: 26358917 DOI: 10.1016/j.ijmm.2015.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/05/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
Recently, we identified a putative prophage on a genomic island (GI) within the genome sequence of Francisella hispaniensis isolate AS0-814 (Francisella tularensis subsp. novicida-like 3523) by the analysis of the CRISPR-Cas systems of Francisella. Various spacer DNAs within the CRISPR region of different F. tularensis subsp. novicida strains were found to be homologous to the putative prophage (Schunder et al., 2013, Int. J. Med. Microbiol. 303:51-60). Now we identified the GI (FhaGI-1) as a mobile element which is able to form a circular episomal structure. The circular episomal form of FhaGI-1 is generated by F. hispaniensis, and the excision of the island is an integrase-dependent and site-specific process. Furthermore, we could demonstrate that the excision of the island is also possible in other bacterial species (Escherichia coli). In addition, we could show that a genetically generated small variant of the island is also functional and, after its electroporation into strain F. tularensis subsp. holarctica LVS, the GI was stable and site-specifically integrated into the genome of the transformants. The integrase is sufficient for the integration and excision of the small variant into and from the DNA backbone, respectively. Thus, the element may be suitable to be used as a genetic tool in F. tularensis research. Furthermore, we identified the tRNA(Val) gene of Francisella as an integration site for GIs. Genomic island FphGI-1 was identified in Francisella philomiragia ATCC 25016. We were not able to detect the episomal form of this GI, probably due to a mutated attR site. However, we could demonstrate that integrative GIs are present in Francisella and that they may allow horizontal gene transfer between different Francisella species.
Collapse
|
11
|
Abstract
The discovery of CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems in prokaryotes has been one of the most exciting advances in microbiology in the past decade. Their role in host protection against mobile genetic elements is now well established, but there is mounting evidence that these systems modulate other processes, such as the genetic regulation of group behaviour and virulence, DNA repair and genome evolution. In this Progress article, we discuss recent studies that have provided insights into these unconventional CRISPR-Cas functions and consider their potential evolutionary implications. Understanding the role of CRISPR-Cas in these processes will improve our understanding of the evolution and maintenance of CRISPR-Cas systems in prokaryotic genomes.
Collapse
|
12
|
Sampson TR, Weiss DS. CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front Cell Infect Microbiol 2014; 4:37. [PMID: 24772391 PMCID: PMC3983513 DOI: 10.3389/fcimb.2014.00037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP). Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2), CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University School of Medicine Atlanta, GA, USA ; Emory Vaccine Center, Emory University School of Medicine Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University School of Medicine Atlanta, GA, USA
| | - David S Weiss
- Emory Vaccine Center, Emory University School of Medicine Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University School of Medicine Atlanta, GA, USA ; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
13
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|