1
|
Hitti EG, Muazzen Z, Moghrabi W, Al-Yahya S, Khabar KSA. Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization. Immunology 2024; 173:511-519. [PMID: 39046234 DOI: 10.1111/imm.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The human innate immune system recognizes dsRNA as a pathogen-associated molecular pattern that induces a potent inflammatory response. The primary source of pathogenic dsRNA is cells infected with replicating viruses, but can also be released from uninfected necrotic cells. Here, we show that the dsRNA poly(I:C) challenge in human macrophages activates the p38 MAPK-MK2 signalling pathway and subsequently the phosphorylation of tristetraprolin (TTP/ZFP36). The latter is an mRNA decay-promoting protein that controls the stability of AU-rich mRNAs (AREs) that code for many inflammatory mediators. Hydroxychloroquine (HCQ), a common anti-malaria drug, is used to treat inflammatory and autoimmune disorders and, controversially, during acute COVID-19 disease. We found that HCQ reduced the dsRNA-dependent phosphorylation of p38 MAPK and its downstream kinase MK2. Subsequently, HCQ reduced the abundance and protein stability of the inactive (phosphorylated) form of TTP. HCQ reduced the levels and the mRNA stability of poly (I:C)-induced cytokines and inflammatory mRNAs like TNF, IL-6, COX-2, and IL-8 in THP-1 and primary blood monocytes. Our results demonstrate a new mechanism of the anti-inflammatory role of HCQ at post-transcriptional level (TTP phosphorylation) in a model of dsRNA activation, which usually occurs in viral infections or RNA release from necrotic tissue.
Collapse
Affiliation(s)
- Edward G Hitti
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zeyad Muazzen
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Suhad Al-Yahya
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
O'Reilly ME, Ho S, Coronel J, Zhu L, Liu W, Xue C, Kim E, Cynn E, Matias CV, Soni RK, Wang C, Ionita-Laza I, Bauer RC, Ross L, Zhang Y, Corvera S, Fried SK, Reilly MP. linc-ADAIN, a human adipose lincRNA, regulates adipogenesis by modulating KLF5 and IL-8 mRNA stability. Cell Rep 2024; 43:114240. [PMID: 38753486 PMCID: PMC11334222 DOI: 10.1016/j.celrep.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.
Collapse
Affiliation(s)
- Marcella E O'Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sebastian Ho
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Johana Coronel
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Lucie Zhu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wen Liu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eunyoung Kim
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Esther Cynn
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Chen Wang
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Leila Ross
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Muredach P Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA; Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3
|
Muangrerk C, Uchuwittayakul A, Srisapoome P. Identification, Expression and Antimicrobial Functional Analysis of Interleukin-8 (IL-8) in Response to Streptococcus iniae and Flavobacterium covae in Asian Seabass ( Lates calcarifer Bloch, 1790). Animals (Basel) 2024; 14:475. [PMID: 38338118 PMCID: PMC10854937 DOI: 10.3390/ani14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this research, the proinflammatory cytokine interleukin-8 (IL-8) was shown to play a key role in inflammatory responses in fish. This study involved the cloning of the gene that encodes IL-8 in Asian seabass (Lates calcarifer) as well as analyses of its expression and function in this fish. The expression levels of LcIL-8 indicated that it was broadly expressed in most analyzed tissues, with the most predominant expression in the whole blood 6 to 24 h after infection with S. iniae at concentrations of 105 colony-forming units (CFU)/fish (p < 0.05). After fish were immersed in F. covae, the LcIL-8 transcript was upregulated in the gills, liver and intestine, and the highest expression level was observed in the gills. However, LcIL-8 was downregulated in all the tested tissues at 48 and 96 h after infection with the two pathogenic strains, indicating that Lc-IL8 has a short half-life during the early immune responses to pathogens. Moreover, the MIC of the rLcIL-8 protein against S. iniae was 10.42 ± 3.61 µg/mL. Furthermore, functional analyses clearly demonstrated that 10 and 100 µg of the rLcIL-8 protein efficiently enhanced the phagocytic activity of Asian seabass phagocytes in vitro (p < 0.05). Additionally, in vivo injection of S. iniae following the rLcIL-8 protein indicated that 50 and 100 µg of rLc-IL-8 were highly effective in protecting fish from this pathogen (p < 0.001). The obtained results demonstrate that rLcIL-8 possesses a biological function in the defense against bacterial infections in Asian seabass.
Collapse
Affiliation(s)
- Chayanee Muangrerk
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Kämpfer AAM, Shah UK, Chu SL, Busch M, Büttner V, He R, Rothen-Rutishauser B, Schins RPF, Jenkins GJ. Interlaboratory comparison of an intestinal triple culture to confirm transferability and reproducibility. IN VITRO MODELS 2023; 2:89-97. [PMID: 39871998 PMCID: PMC11756443 DOI: 10.1007/s44164-022-00025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/29/2025]
Abstract
The development and improvement of advanced intestinal in vitro models has received increasing attention in recent years. While the availability of relevant in vitro models is pivotal to advance the replacement and reduction of animal use in research, their robustness is a crucial determinant for intra- and interlaboratory reproducibility. We have developed a standard protocol to build a triple culture model combining two types of human intestinal epithelial cells (Caco-2, HT29-MTX-E12) and macrophages (THP-1), which was tested for transferability and reproducibility between three laboratories. The epithelial tissue barrier development and triple culture stability were investigated as well as the models' responses to the non-steroidal anti-inflammatory drug diclofenac in terms of barrier integrity, cytotoxicity, and cytokine release. The results of two partner laboratories were compared to previously established benchmark results and quality criteria. For the epithelial co-cultures, the results were overall highly comparable between the laboratories. The addition of THP-1 cells resulted in increased variability and reduced reproducibility. While good correlation was achieved in several endpoints, others showed substantial response differences between the laboratories. Some variations may be addressed with training or demonstrations, whereas others might be related to fundamental differences in the cell lines introduced during routine cell culture and maintenance. Our results underline the importance of interlaboratory transfer studies using standardised experimental procedures, including defined quality criteria and benchmarks, as well as of training when newly establishing complex in vitro models in laboratories. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00025-w.
Collapse
Affiliation(s)
- Angela A. M. Kämpfer
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ume-Kulsoom Shah
- School of Medicine, Faculty of Medicine, Health and Life Science, Swansea, Wales UK
| | - Shui L. Chu
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Mathias Busch
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Veronika Büttner
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ruiwen He
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Roel P. F. Schins
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Gareth J. Jenkins
- School of Medicine, Faculty of Medicine, Health and Life Science, Swansea, Wales UK
| |
Collapse
|
5
|
The Formulation of the N-Acetylglucosamine as Nanoparticles Increases Its Anti-Inflammatory Activities: An In Vitro Study. Bioengineering (Basel) 2023; 10:bioengineering10030343. [PMID: 36978734 PMCID: PMC10045510 DOI: 10.3390/bioengineering10030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Nanomedicine can represent a new strategy to treat several types of diseases such as those with inflammatory aetiology. Through this strategy, it is possible to obtain nanoparticles with controlled shape, size, and eventually surface charge. Moreover, the use of molecules in nanoform may allow more effective delivery into the diseased cells and tissues, reducing toxicity and side effects of the used compounds. The aim of the present manuscript was the evaluation of the effects of N-acetylglucosamine in nanoform (GlcNAc NP) in an in vitro model of osteoarthritis (OA). Human primary chondrocytes were treated with Tumor Necrosis Factor (TNF)-α to simulate a low-grade inflammation and then treated with both GlcNAc and GlcNAc NP, in order to find the lowest concentrations able to counteract the inflammatory state of the cells and ensure a chondroprotective action. The findings showed that GlcNAc NP was able to decrease the pro-inflammatory mediators, IL-6 and IL-8, which are among the main effectors of inflammation; moreover, the nanoparticles downregulated the production of metalloprotease enzymes. GlcNAc NP was effective at a very low concentration compared to GlcNAc in its native form. Furthermore, GlcNAc NP stimulated an increase in collagen type II synthesis. In conclusion, the GlcNAc in nanoform showed better performance than GlcNAc, at concentrations lower than those reached in the joints after oral administration to patients of 1.5 g/die of glucosamine.
Collapse
|
6
|
Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles. Int J Mol Sci 2022; 23:ijms232315125. [PMID: 36499452 PMCID: PMC9739781 DOI: 10.3390/ijms232315125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (Mφ) and triggers the activation of signal transducer and activator of transcription 6 (STAT6). Since the IL4/STAT6 pathway reduces Mφ responsiveness to inflammation in a targeted and precise manner, IL4 delivery offers personalized possibilities to overcome inflammatory events. Despite its therapeutic potential, the limited success of IL4-targeted delivery is hampered by inefficient vehicles. Magnetically assisted technologies offer precise and tunable nanodevices for the delivery of cytokines by combining contactless modulation, high tissue penetration, imaging features, and low interference with the biological environment. Although superparamagnetic iron oxide nanoparticles (SPION) have shown clinical applicability in imaging, SPION-based approaches have rarely been explored for targeted delivery and cell programming. Herein, we hypothesized that SPION-based carriers assist in efficient IL4 delivery to Mφ, favoring a pro-regenerative phenotype (M2φ). Our results confirmed the efficiency of SPION-IL4 and Mφ responsiveness to SPION-IL4 with evidence of STAT6-mediated polarization. SPION-IL4-treated Mφ showed increased expression of M2φ associated-mediators (IL10, ARG1, CCL2, IL1Ra) when compared to the well-established soluble IL4. The ability of SPION-IL4 to direct Mφ polarization using sophisticated magnetic nanotools is valuable for resolving inflammation and assisting innovative strategies for chronic inflammatory conditions.
Collapse
|
7
|
Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022; 10:microorganisms10102087. [PMID: 36296363 PMCID: PMC9607601 DOI: 10.3390/microorganisms10102087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria modulate macrophage immune inflammatory responses, with functional cytokine responses determined by macrophage subset polarisation, stimulation and probiotic strain. Mucosal macrophages exhibit subset functional heterogeneity but are organised in a 3-dimensional tissue, over-laid by barrier epithelial cells. This study aimed to investigate the effects of the probiotic Lacticaseibacillus casei strain Shirota (LcS) on macrophage-epithelial cell cytokine responses, pattern recognition receptor (PRR) expression and LPS responses and the impacts on barrier integrity. THP-1-derived M1 and M2 subset macrophages were co-cultured in a transwell system with differentiated Caco-2 epithelial cells in the presence or absence of enteropathogenic LPS. Both Caco-2 cells in monoculture and macrophage co-culture were assayed for cytokines, PRR expression and barrier integrity (TEER and ZO-1) by RT-PCR, ELISA, IHC and electrical resistance. Caco-2 monocultures expressed distinct cytokine profiles (IL-6, IL-8, TNFα, endogenous IL-10), PRRs and barrier integrity, determined by inflammatory context (TNFα or IL-1β). In co-culture, LcS rescued ZO-1 and TEER in M2/Caco-2, but not M1/Caco-2. LcS suppressed TLR2, TLR4, MD2 expression in both co-cultures and differentially regulated NOD2, TLR9, Tollip and cytokine secretion. In conclusion, LcS selectively modulates epithelial barrier integrity, pathogen sensing and inflammatory cytokine profile; determined by macrophage subset and activation status.
Collapse
|
8
|
Extracellular Vesicles from Naegleria fowleri Induce IL-8 Response in THP-1 Macrophage. Pathogens 2022; 11:pathogens11060632. [PMID: 35745486 PMCID: PMC9231210 DOI: 10.3390/pathogens11060632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host–parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host–pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130–170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis.
Collapse
|
9
|
Adamič N, Prpar Mihevc S, Blagus R, Kramarič P, Krapež U, Majdič G, Viel L, Hoffman AM, Bienzle D, Vengust M. Effect of intrabronchial administration of autologous adipose-derived mesenchymal stem cells on severe equine asthma. Stem Cell Res Ther 2022; 13:23. [PMID: 35063028 PMCID: PMC8777441 DOI: 10.1186/s13287-022-02704-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe equine asthma (SEA) is a common chronic respiratory disease and a significant health and well-being problem in horses. Current therapeutic strategies improve pulmonary function and clinical signs in some horses, but in the long-term, return to full athletic function appears to be rare. The aim of this study was to assess the safety and the effect of intrabronchial administration of adipose-derived mesenchymal stem cells (AD-MSC) on pulmonary inflammatory and clinical parameters in horses with SEA. METHODS This was a randomized controlled trial. Twenty adult horses diagnosed with SEA were randomly divided into two groups (n = 10), and treated either with a single intrabronchial application of autologous AD-MSC or oral dexamethasone for three weeks. A targeted clinical examination with determination of clinical score, maximal change in pleural pressure during the breathing cycle, and an endoscopic examination of the airways were performed at baseline and three weeks after treatment. Bronchoalveolar lavage fluid was analyzed cytologically, and IL-1β, IL-4, IL-8, IL-17, TNFα and IFNγ mRNA and protein concentrations were measured at baseline and three weeks. The horses were then monitored over one year for recurrence of SEA. A non-inferiority analysis and a linear mixed-effects model were performed to assess differences between treatments. RESULTS The non-inferiority of AD-MSC treatment was not established. However, AD-MSC administration significantly ameliorated the clinical score (P = 0.01), decreased the expression of IL-17 mRNA (P = 0.05) and IL-1β (P ≤ 0.001), IL-4 (P ≤ 0.001), TNFα (P = 0.02) protein levels, and had a positive long-term effect on SEA-associated clinical signs (P = 0.02). CONCLUSIONS Intrabronchial administration of AD-MSC had limited short-term anti-inflammatory effects but improved the clinical signs of SEA at one year.
Collapse
Affiliation(s)
- Neža Adamič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Rok Blagus
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Petra Kramarič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Laurent Viel
- Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Andrew M Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Modest Vengust
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Lau B, Kerr K, Camiolo S, Nightingale K, Gu Q, Antrobus R, Suárez NM, Loney C, Stanton RJ, Weekes MP, Davison AJ. Human Cytomegalovirus RNA2.7 Is Required for Upregulating Multiple Cellular Genes To Promote Cell Motility and Viral Spread Late in Lytic Infection. J Virol 2021; 95:e0069821. [PMID: 34346763 PMCID: PMC8475523 DOI: 10.1128/jvi.00698-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) to cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the 10 most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts lived longer in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long noncoding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
11
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Zinke R, Appelhans D, Klajnert-Maculewicz B, Pułaski Ł. Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines. Biomacromolecules 2021; 22:3396-3407. [PMID: 34286584 PMCID: PMC8382243 DOI: 10.1021/acs.biomac.1c00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/06/2021] [Indexed: 12/22/2022]
Abstract
New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles.
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department
of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 281/289 Rzgowska Street, Lodz 93-338, Poland
- Polish
Mother’s Memorial Hospital Research Institute (PMMHRI), 281/289 Rzgowska Street, Lodz 93-338, Poland
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Michał Gorzkiewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Maciej Studzian
- Department
of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Robin Zinke
- Leibniz
Institute of Polymer Research Dresden, Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz
Institute of Polymer Research Dresden, Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
| | - Łukasz Pułaski
- Department
of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, Lodz 90-236, Poland
- Laboratory
of Transcriptional Regulation, Institute
of Medical Biology PAS, 106 Lodowa Street, Lodz 93-232, Poland
| |
Collapse
|
12
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
13
|
Fattahi N, Bahari A, Ramazani A, Koolivand D. In vitro immunobiological assays of methotrexate-stearic acid conjugate in human PBMCs. Immunobiology 2020; 225:151984. [DOI: 10.1016/j.imbio.2020.151984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
|
14
|
Kelly FL, Weinberg KE, Nagler AE, Nixon AB, Star MD, Todd JL, Brass DM, Palmer SM. EGFR-Dependent IL8 Production by Airway Epithelial Cells After Exposure to the Food Flavoring Chemical 2,3-Butanedione. Toxicol Sci 2020; 169:534-542. [PMID: 30851105 DOI: 10.1093/toxsci/kfz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
2,3-Butanedione (DA), a component of artificial butter flavoring, is associated with the development of occupational bronchiolitis obliterans (BO), a disease of progressive airway fibrosis resulting in lung function decline. Neutrophilic airway inflammation is a consistent feature of BO across a range of clinical contexts and may contribute to disease pathogenesis. Therefore, we sought to determine the importance of the neutrophil chemotactic cytokine interleukin-8 (IL-8) in DA-induced lung disease using in vivo and in vitro model systems. First, we demonstrated that levels of Cinc-1, the rat homolog of IL-8, are increased in the lung fluid and tissue compartment in a rat model of DA-induced BO. Next, we demonstrated that DA increased IL-8 production by the pulmonary epithelial cell line NCI-H292 and by primary human airway epithelial cells grown under physiologically relevant conditions at an air-liquid interface. We then tested the hypothesis that DA-induced epithelial IL-8 protein occurs in an epidermal growth factor receptor (EGFR)-dependent manner. In these in vitro experiments we demonstrated that epithelial IL-8 protein is blocked by the EGFR tyrosine kinase inhibitor AG1478 and by inhibition of tumor necrosis factor-alpha converting enzyme using the small molecule inhibitor, TAPI-1. Finally, we demonstrated that DA-induced IL-8 is dependent upon ERK1/2 and Mitogen activated protein kinase kinase activation downstream of EGFR signaling using the small molecule inhibitors AG1478 and PD98059. Together these novel in vivo and in vitro observations support that EGFR-dependent IL-8 production occurs in DA-induced BO. Further studies are warranted to determine the importance of IL-8 in BO pathogenesis.
Collapse
Affiliation(s)
- Francine L Kelly
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Kaitlyn E Weinberg
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew E Nagler
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew B Nixon
- Division of Oncology, Duke University Medical Center, Durham, NC 27710
| | - Mark D Star
- Division of Oncology, Duke University Medical Center, Durham, NC 27710
| | - Jamie L Todd
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - David M Brass
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Scott M Palmer
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
15
|
Mahmoud L, Moghrabi W, Khabar KSA, Hitti EG. Bi-phased regulation of the post-transcriptional inflammatory response by Tristetraprolin levels. RNA Biol 2019; 16:309-319. [PMID: 30664390 PMCID: PMC6380337 DOI: 10.1080/15476286.2019.1572437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AU-rich elements (AREs) are cis-acting instability and translation inhibition elements that are present in the 3ʹUTR of most inducible inflammatory mRNAs such as TNF and Cxcl2. mRNAs that contain AREs are, by default, repressed and only transiently expressed in response to stimuli. They are targeted by the inducible RNA-binding protein Tristetraprolin (TTP) which blocks their translation and facilitates their decay, thereby contributing to the quick termination of their expression. The exogenous over-expression of TTP in HEK293 cells can unexpectedly lead to the upregulation and extended expression of a nanoLuciferase reporter that contains the ARE of TNF. Here we show that, a moderate downregulation of the highly expressed endogenous TTP after LPS induction by siRNA in macrophages can lead to a reduction in the release of TNF and Cxcl2. We propose that, in contrast to their canonical function, very high levels of induced TTP at the onset of the inflammatory response can enhance the expression of ARE-mRNAs at the post-transcriptional level, independently of phosphorylation status. As the inflammatory response progresses, TTP levels diminish but they continuously regain their ability to reduce the expression of ARE-mRNAs to reach a turning point of ‘optimal TTP level’ with a maximum ability to repress ARE-mRNA expression. Below this level, a further reduction in TTP levels now leads to the loss of canonical-TTP function resulting in increased ARE-mRNA expression. These novel findings should contribute to the understanding of feedback loops that control the kinetics of the inflammatory response.
Collapse
Affiliation(s)
- Linah Mahmoud
- a Molecular BioMedicine Program , King Faisal Specialist Hospital & Research Centre , Riyadh , Saudi Arabia
| | - Walid Moghrabi
- a Molecular BioMedicine Program , King Faisal Specialist Hospital & Research Centre , Riyadh , Saudi Arabia
| | - Khalid S A Khabar
- a Molecular BioMedicine Program , King Faisal Specialist Hospital & Research Centre , Riyadh , Saudi Arabia
| | - Edward G Hitti
- a Molecular BioMedicine Program , King Faisal Specialist Hospital & Research Centre , Riyadh , Saudi Arabia
| |
Collapse
|
16
|
Zhang Y, Tada T, Ozono S, Yao W, Tanaka M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection. J Biol Chem 2019; 294:3397-3405. [PMID: 30630952 DOI: 10.1074/jbc.ac118.005907] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane-associated RING-CH 8 (MARCH8) is one of 11 members of the MARCH family of RING finger E3 ubiquitin ligases and down-regulates several membrane proteins (e.g. major histocompatibility complex II [MHC-II], CD86, and transferrin receptor). We recently reported that MARCH8 also targets HIV-1 envelope glycoproteins and acts as an antiviral factor. However, it remains unclear whether other family members might have antiviral functions similar to those of MARCH8. Here we show that MARCH1 and MARCH2 are MARCH family members that reduce virion incorporation of envelope glycoproteins. Infectivity assays revealed that MARCH1 and MARCH2 dose-dependently suppress viral infection. Treatment with type I interferon enhanced endogenous expression levels of MARCH1 and MARCH2 in monocyte-derived macrophages. Expression of these proteins in virus-producing cells decreased the efficiency of viral entry and down-regulated HIV-1 envelope glycoproteins from the cell surface, resulting in reduced incorporation of envelope glycoproteins into virions, as observed in MARCH8 expression. With the demonstration that MARCH1 and MARCH2 are antiviral MARCH family members as presented here, these two proteins join a growing list of host factors that inhibit HIV-1 infection.
Collapse
Affiliation(s)
- Yanzhao Zhang
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takuya Tada
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Seiya Ozono
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Weitong Yao
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Michiko Tanaka
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shoji Yamaoka
- the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Satoshi Kishigami
- the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hideaki Fujita
- the Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Kenzo Tokunaga
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan,
| |
Collapse
|
17
|
Kueck T, Cassella E, Holler J, Kim B, Bieniasz PD. The aryl hydrocarbon receptor and interferon gamma generate antiviral states via transcriptional repression. eLife 2018; 7:38867. [PMID: 30132758 PMCID: PMC6120754 DOI: 10.7554/elife.38867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activation induces the expression of numerous genes, with many effects on cells. However, AhR activation is not known to affect the replication of viruses. We show that AhR activation in macrophages causes a block to HIV-1 and HSV-1 replication. We find that AhR activation transcriptionally represses cyclin-dependent kinase (CDK)1/2 and their associated cyclins, thereby reducing SAMHD1 phosphorylation, cellular dNTP levels and both HIV-1 and HSV-1 replication. Remarkably, a different antiviral stimulus, interferon gamma (IFN-γ), that induces a largely non-overlapping set of genes, also transcriptionally represses CDK1, CDK2 and their associated cyclins, resulting in similar dNTP depletion and antiviral effects. Concordantly, the SIV Vpx protein provides complete and partial resistance to the antiviral effects of AhR and IFN-γ, respectively. Thus, distinct antiviral signaling pathways converge on CDK/cyclin repression, causing inhibition of viral DNA synthesis and replication.
Collapse
Affiliation(s)
- Tonya Kueck
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Elena Cassella
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Jessica Holler
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States
| | - Baek Kim
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States.,Department of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
18
|
Timani KA, Győrffy B, Liu Y, Mohammad KS, He JJ. Tip110/SART3 regulates IL-8 expression and predicts the clinical outcomes in melanoma. Mol Cancer 2018; 17:124. [PMID: 30119675 PMCID: PMC6098614 DOI: 10.1186/s12943-018-0868-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Tip110, an important regulator of several oncogenic proteins, was significantly downregulated in human metastatic melanoma cells exposed to a hypoxic condition. Therefore, in this study, we set to determine whether differential expression of Tip110 could be an important indicator for melanoma tumorigenesis and metastasis. We found that in melanoma, but not in other cancer types, Tip110 knockdown enhanced significant expression and secretion of IL-8 and melanoma cells invasions. This induction was further potentiated under hypoxia and by inflammatory cytokine and found independent of TNF-α autocrine signaling. We further showed that Tip110 knockdown-mediated IL-8 induction involved IL-8 mRNA stability. Furthermore, the transcriptomic profiling data and survival from 455 melanoma patients demonstrated that the correlation between Tip110 expression and the clinical outcomes in melanoma was stage-dependent. These findings uncover important roles of Tip110 in melanoma tumorigenesis and metastasis through regulation of IL-8 and hope to provide new clues for future therapeutic strategies.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, Budapest, 1117, Hungary.,Semmekweis University 2nd Department of Pediatrics, Tűzoltó utca 7-9, Budapest, 1094, Hungary
| | - Ying Liu
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Johnny J He
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| |
Collapse
|
19
|
The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:167-177. [PMID: 29413897 DOI: 10.1016/j.bbagrm.2017.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
Adenylate-uridylate (AU)-rich elements (AREs) are sequence instability elements that are known to be located in the 3' untranslated regions (UTR) in thousands of human transcripts. AREs regulate the expression of many genes at the post-transcriptional level, and they are essential for many normal cellular functions. We conducted a transcriptome-wide screen for AREs and found that they are most abundant in introns, with up to 25% of introns containing AREs corresponding to 58% of human genes. Clustering studies of ARE size, complexity, and distribution revealed that, in introns, longer AREs with two or more overlapping repeats are more abundant than in the 3'UTR, and only introns can contain very long AREs with 6-14 overlapping AUUUA pentamers. We found that intronic sites of the ARE binding proteins HuR/ELAVL1, ZFP36/TTP, AUF1, and BRF1/ZFP36L1 overlap with the intronic AREs with HuR being most abundant. Accordingly, RNA-IP experiments demonstrated a specific association of HuR with reporter and endogenous pre-mRNAs that contain intronic AREs. Moreover, HuR knockdown led to a significant general reduction in the mRNA levels of genes that contain intronic AREs and to a specific reduction in the expression of ARE-intronic reporters. The data represent bioinformatics analysis for key RNA-binding proteins interactions with intronic AREs and provide experimental evidence for HuR binding to AREs. The widespread distribution of intronic AREs and their particular association with HuR and HuR binding sites indicates that more than half of human genes can be regulated post-transcriptionally by AREs.
Collapse
|
20
|
Effects of α-conotoxin ImI on TNF-α, IL-8 and TGF-β expression by human macrophage-like cells derived from THP-1 pre-monocytic leukemic cells. Sci Rep 2017; 7:12742. [PMID: 28986583 PMCID: PMC5630575 DOI: 10.1038/s41598-017-11586-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are ubiquitous in the nervous system and ensure important neurophysiological functionality for many processes. However, they are also found in cells of the immune system, where their role has been less studied. Here we report the pro-inflammatory effect of ImI, a well characterized conotoxin that inhibits α7 nAChRs, on differentiated THP-1 pre-monocyte macrophages (MDM) obtained by phorbol 12-myristate 13 acetate (PMA) treatment. Enzyme-linked immunosorbent assay (ELISA) performed on supernatant fluids of LPS challenged MDM showed ImI-mediated upregulation of pro-inflammatory cytokine TNF-α in an ImI concentration-dependent manner from 0.5 to 5.0 µmol/L and for IL-8 up to 1.0 µmol/L. Levels of anti-inflammatory cytokine TGF-β remained practically unaffected in ImI treated MDMs. Nicotine at 10 µmol/L significantly downregulated the release of TNF-α, but showed a lesser effect on IL-8 secretion and no effect on TGF-β. Fluorescent competitive assays involving ImI, α-bungarotoxin and nicotine using MDM and the murine macrophage RAW 264.7 suggest a common binding site in the α7 receptor. This work extends the application of conotoxins as molecular probes to non-excitatory cells, such as macrophages and supports the involvement of the α7 nAChR in regulating the inflammatory response via the cholinergic anti-inflammatory pathway (CAP).
Collapse
|
21
|
Moncrieffe H, Bennett MF, Tsoras M, Luyrink LK, Johnson AL, Xu H, Dare J, Becker ML, Prahalad S, Rosenkranz M, O'Neil KM, Nigrovic PA, Griffin TA, Lovell DJ, Grom AA, Medvedovic M, Thompson SD. Transcriptional profiles of JIA patient blood with subsequent poor response to methotrexate. Rheumatology (Oxford) 2017; 56:1542-1551. [PMID: 28582527 DOI: 10.1093/rheumatology/kex206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
Objective The mechanisms that determine the efficacy or inefficacy of MTX in JIA are ill-defined. The objective of this study was to identify a gene expression transcriptional signature associated with poor response to MTX in patients with JIA. Methods RNA sequencing was used to measure gene expression in peripheral blood mononuclear cells collected from 47 patients with JIA prior to MTX treatment and 14 age-matched controls. Differentially expressed baseline genes between responders and non-responders were evaluated. Biological differences between all JIA patients and controls were explored by constructing a signature of differentially expressed genes. Unsupervised clustering and pathway analysis was performed. Results A signature of 99 differentially expressed genes (Bonferroni-corrected P < 0.05) capturing the biological differences between all JIA patients and controls was identified. Unsupervised clustering of samples based on this list of 99 genes produced subgroups enriched for MTX response status. Comparing this gene signature with reference signatures from sorted cell populations revealed high concordance between the expression signatures of monocytes and of MTX non-responders. CXCL8 (IL-8) was the most significantly differentially expressed gene transcript comparing all JIA patients with controls (Bonferroni-corrected P = 4.12 × 10-10). Conclusion Variability in clinical response to MTX in JIA patients is associated with differences in gene transcripts modulated in monocytes. These gene expression profiles may provide a basis for biomarkers predictive of treatment response.
Collapse
Affiliation(s)
- Halima Moncrieffe
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center.,Department of Pediatrics
| | - Mark F Bennett
- Department of Environmental Health, University of Cincinnati
| | - Monica Tsoras
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center
| | - Lorie K Luyrink
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center
| | - Anne L Johnson
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Huan Xu
- Department of Environmental Health, University of Cincinnati
| | - Jason Dare
- Pediatrics/Rheumatology, UAMS, Little Rock, AR
| | - Mara L Becker
- Pediatrics, Section of Rheumatology, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital.,Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA
| | | | - Daniel J Lovell
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Susan D Thompson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center.,Department of Pediatrics
| |
Collapse
|
22
|
Bener G, J. Félix A, Sánchez de Diego C, Pascual Fabregat I, Ciudad CJ, Noé V. Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunol 2016; 17:32. [PMID: 27671753 PMCID: PMC5037635 DOI: 10.1186/s12865-016-0170-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/19/2016] [Indexed: 03/13/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
23
|
Hervouet E, Claude-Taupin A, Gauthier T, Perez V, Fraichard A, Adami P, Despouy G, Monnien F, Algros MP, Jouvenot M, Delage-Mourroux R, Boyer-Guittaut M. The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer 2015; 15:729. [PMID: 26474850 PMCID: PMC4609056 DOI: 10.1186/s12885-015-1761-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023] Open
Abstract
Background The GABARAP family members (GABARAP, GABARAPL1/GEC1 and GABARAPL2 /GATE-16) are involved in the intracellular transport of receptors and the autophagy pathway. We previously reported that GABARAPL1 expression was frequently downregulated in cancer cells while a high GABARAPL1 expression is a good prognosis marker for patients with lymph node-positive breast cancer. Methods In this study, we asked using qRT-PCR, western blotting and epigenetic quantification whether the expression of the GABARAP family was regulated in breast cancer by epigenetic modifications. Results Our data demonstrated that a specific decrease of GABARAPL1 expression in breast cancers was associated with both DNA methylation and histone deacetylation and that CREB-1 recruitment on GABARAPL1 promoter was required for GABARAPL1 expression. Conclusions Our work strongly suggests that epigenetic inhibitors and CREB-1 modulators may be used in the future to regulate autophagy in breast cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1761-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Hervouet
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Aurore Claude-Taupin
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Thierry Gauthier
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Valérie Perez
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Annick Fraichard
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Pascale Adami
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Gilles Despouy
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Franck Monnien
- Department of Pathology, University Hospital Jean-Minjoz, 25030, Besançon, France.
| | - Marie-Paule Algros
- Department of Pathology, University Hospital Jean-Minjoz, 25030, Besançon, France.
| | - Michèle Jouvenot
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Régis Delage-Mourroux
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| | - Michaël Boyer-Guittaut
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 « Estrogènes, Expression Génique et Pathologies du Système Nerveux Central », SFR IBCT FED4234, UFR Sciences et Techniques, 16 route de Gray, 25030, Besançon Cedex, France.
| |
Collapse
|