1
|
Schumacher MA, Singh RR, Salinas R. Structure of the E. coli nucleoid-associated protein YejK reveals a novel DNA binding clamp. Nucleic Acids Res 2024; 52:7354-7366. [PMID: 38832628 PMCID: PMC11229321 DOI: 10.1093/nar/gkae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Rajiv R Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Van Gundy T, Patel D, Bowler BE, Rothfuss MT, Hall AJ, Davies C, Hall LS, Drecktrah D, Marconi RT, Samuels DS, Lybecker MC. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol Microbiol 2023; 119:711-727. [PMID: 37086029 PMCID: PMC10330241 DOI: 10.1111/mmi.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Taylor Van Gundy
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Allie J. Hall
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, Mobile, AL 36688, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - D. Scott Samuels
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C. Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Department of Biology, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs CO 80917, USA
| |
Collapse
|
3
|
Hohmann KF, Blümler A, Heckel A, Fürtig B. The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements. Nucleic Acids Res 2021; 49:11337-11349. [PMID: 34614185 PMCID: PMC8565331 DOI: 10.1093/nar/gkab876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
In bacteria RNA gene regulatory elements refold dependent on environmental clues between two or more long-lived conformational states each associated with a distinct regulatory state. The refolding kinetics are strongly temperature-dependent and especially at lower temperatures they reach timescales that are biologically not accessible. To overcome this problem, RNA chaperones have evolved. However, the precise molecular mechanism of how these proteins accelerate RNA refolding reactions remains enigmatic. Here we show how the RNA chaperone StpA of Escherichia coli leads to an acceleration of a bistable RNA's refolding kinetics through the selective destabilization of key base pairing interactions. We find in laser assisted real-time NMR experiments on photocaged bistable RNAs that the RNA chaperone leads to a two-fold increase in refolding rates at low temperatures due to reduced stability of ground state conformations. Further, we can show that upon interaction with StpA, base pairing interactions in the bistable RNA are modulated to favor refolding through the dominant pseudoknotted transition pathway. Our results shed light on the molecular mechanism of the interaction between RNA chaperones and bistable RNAs and are the first step into a functional classification of chaperones dependent on their biophysical mode of operation.
Collapse
Affiliation(s)
- Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
4
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00731-20. [PMID: 32385085 DOI: 10.1128/aem.00731-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Working mechanisms of CRISPR-Cas systems have been intensively studied. However, far less is known about how they are regulated. The histone-like nucleoid-structuring protein H-NS binds the promoter of cas genes (P cas ) and suppresses the type I-E CRISPR-Cas system in Escherichia coli Although the H-NS paralogue StpA also binds P cas , its role in regulating the CRISPR-Cas system remains unidentified. Our previous work established that E. coli is able to take up double-stranded DNA during natural transformation. Here, we investigated the function of StpA in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli We first documented that although the activated type I-E CRISPR-Cas system, due to hns deletion, interfered with CRISPR-Cas-targeted plasmid transfer, stpA inactivation restored the level of natural transformation. Second, we showed that inactivating stpA reduced the transcriptional activity of P cas Third, by comparing transcriptional activities of the intact P cas and the P cas with a disrupted H-NS binding site in the hns and hns stpA null deletion mutants, we demonstrated that StpA activated transcription of cas genes by binding to the same site as H-NS in P cas Fourth, by expressing StpA with an arabinose-inducible promoter, we confirmed that StpA expressed at a low level stimulated the activity of P cas Finally, by quantifying the level of mature CRISPR RNA (crRNA), we demonstrated that StpA was able to promote the amount of crRNA. Taken together, our work establishes that StpA serves as a transcriptional activator in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli IMPORTANCE StpA is normally considered a molecular backup of the nucleoid-structuring protein H-NS, which was reported as a transcriptional repressor of the type I-E CRISPR-Cas system in Escherichia coli However, the role of StpA in regulating the type I-E CRISPR-Cas system remains elusive. Our previous work uncovered a new route for double-stranded DNA (dsDNA) entry during natural transformation of E. coli In this study, we show that StpA plays a role opposite to that of its paralogue H-NS in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli Our work not only expands our knowledge on CRISPR-Cas-mediated adaptive immunity against extracellular nucleic acids but also sheds new light on understanding the complex regulation mechanism of the CRISPR-Cas system. Moreover, the finding that paralogues StpA and H-NS share a DNA binding site but play opposite roles in transcriptional regulation indicates that higher-order compaction of bacterial chromatin by histone-like proteins could switch prokaryotic transcriptional modes.
Collapse
|
6
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Rennella E, Sára T, Juen M, Wunderlich C, Imbert L, Solyom Z, Favier A, Ayala I, Weinhäupl K, Schanda P, Konrat R, Kreutz C, Brutscher B. RNA binding and chaperone activity of the E. coli cold-shock protein CspA. Nucleic Acids Res 2017; 45:4255-4268. [PMID: 28126922 PMCID: PMC5397153 DOI: 10.1093/nar/gkx044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/14/2022] Open
Abstract
Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they interact transiently and non-specifically with their RNA targets. So far, little is known about the mechanistic details of the RNA chaperone activity of these proteins. Prominent examples of RNA chaperones are bacterial cold shock proteins (Csp) that have been reported to bind single-stranded RNA and DNA. Here, we have used advanced NMR spectroscopy techniques to investigate at atomic resolution the RNA-melting activity of CspA, the major cold shock protein of Escherichia coli, upon binding to different RNA hairpins. Real-time NMR provides detailed information on the folding kinetics and folding pathways. Finally, comparison of wild-type CspA with single-point mutants and small peptides yields insights into the complementary roles of aromatic and positively charged amino-acid side chains for the RNA chaperone activity of the protein.
Collapse
Affiliation(s)
- Enrico Rennella
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Tomáš Sára
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus, Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Michael Juen
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Wunderlich
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lionel Imbert
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Zsofia Solyom
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Adrien Favier
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Katharina Weinhäupl
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Robert Konrat
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus, Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
8
|
Panja S, Schu DJ, Woodson SA. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 2013; 41:7536-46. [PMID: 23771143 PMCID: PMC3753642 DOI: 10.1093/nar/gkt521] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq’s chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq’s chaperone function.
Collapse
Affiliation(s)
- Subrata Panja
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA and Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-5430, USA
| | | | | |
Collapse
|
9
|
Stampfl S, Doetsch M, Beich-Frandsen M, Schroeder R. Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA. RNA Biol 2013; 10:149-56. [PMID: 23291905 PMCID: PMC3590231 DOI: 10.4161/rna.23475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CsdA is one of five E. coli DEAD-box helicases and as a cold-shock protein assists RNA structural remodeling at low temperatures. The helicase has been shown to catalyze duplex unwinding in an ATP-dependent way and accelerate annealing of complementary RNAs, but detailed kinetic analyses are missing. Therefore, we performed kinetic measurements using a coupled annealing and strand displacement assay with high temporal resolution to analyze how CsdA balances the two converse activities. We furthermore tested the hypothesis that the unwinding activity of DEAD-box helicases is largely determined by the substrate’s thermodynamic stability using full-length CsdA and a set of RNAs with constant length, but increasing GC content. The rate constants for strand displacement did indeed decrease with increasing duplex stability, with a calculated free energy between -31.3 and -40 kcal/mol being the limit for helix unwinding. Thus, our data generally support the above hypothesis, showing that for CsdA substrate thermal stability is an important rate limiting factor.
Collapse
Affiliation(s)
- Sabine Stampfl
- Max F. Perutz Laboratories, Department for Biochemistry, Vienna, Austria
| | | | | | | |
Collapse
|
10
|
Doetsch M, Stampfl S, Fürtig B, Beich-Frandsen M, Saxena K, Lybecker M, Schroeder R. Study of E. coli Hfq's RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents. Nucleic Acids Res 2012; 41:487-97. [PMID: 23104381 PMCID: PMC3592463 DOI: 10.1093/nar/gks942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq’s activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq’s strand displacement as well as its annealing activity are strongly dependent on the substrate’s GC-content. However, this is due to Hfq’s preferred binding of AU-rich sequences and not to the substrate’s thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq’s strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq’s thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other.
Collapse
Affiliation(s)
- Martina Doetsch
- Department for Biochemistry, Max F Perutz Laboratories, Dr-Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|