1
|
Alperovich NY, Vasilyeva OB, Schaffter SW. Prevention of ribozyme catalysis through cDNA synthesis enables accurate RT-qPCR measurements of context-dependent ribozyme activity. RNA (NEW YORK, N.Y.) 2025; 31:633-645. [PMID: 40050070 PMCID: PMC12001966 DOI: 10.1261/rna.080243.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Self-cleaving ribozymes are important tools in synthetic biology, biomanufacturing, and nucleic acid therapeutics. These broad applications deploy ribozymes in many genetic and environmental contexts, which can influence activity. Thus, accurate measurements of ribozyme activity across diverse contexts are crucial for validating new ribozyme sequences and ribozyme-based biotechnologies. Ribozyme activity measurements that rely on RNA extraction, such as RNA sequencing or reverse transcription-quantitative polymerase chain reaction (RT-qPCR), are generalizable to most applications and have high sensitivity. However, the activity measurement is indirect, taking place after RNA is isolated from the environment of interest and copied to DNA. Thus, these measurements may not accurately reflect the activity in the original context. Here, we develop and validate an RT-qPCR method for measuring context-dependent ribozyme activity using a set of self-cleaving RNAs for which context-dependent ribozyme cleavage is known in vitro. We find that RNA extraction and reverse transcription conditions can induce substantial ribozyme cleavage, resulting in incorrect activity measurements with RT-qPCR. To restore the accuracy of the RT-qPCR measurements, we introduce an oligonucleotide into the sample preparation workflow that inhibits ribozyme activity. We then apply our method to measure ribozyme cleavage of RNAs produced in Escherichia coli These results have broad implications for many ribozyme measurements and technologies.
Collapse
Affiliation(s)
- Nina Y Alperovich
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Olga B Vasilyeva
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
2
|
Watkins RR, Kavoor A, Musier-Forsyth K. Strategies for detecting aminoacylation and aminoacyl-tRNA editing in vitro and in cells. Isr J Chem 2024; 64:e202400009. [PMID: 40066018 PMCID: PMC11892019 DOI: 10.1002/ijch.202400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 03/14/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) maintain translational fidelity by ensuring the formation of correct aminoacyl-tRNA pairs. Numerous point mutations in human aaRSs have been linked to disease phenotypes. Structural studies of aaRSs from human pathogens encoding unique domains support these enzymes as potential candidates for therapeutics. Studies have shown that the identity of tRNA pools in cells changes between different cell types and under stress conditions. While traditional radioactive aminoacylation analyses can determine the effect of disease-causing mutations on aaRS function, these assays are not amenable to drug discovery campaigns and do not take into account the variability of the intracellular tRNA pools. Here, we review modern techniques to characterize aaRS activity in vitro and in cells. The cell-based approaches analyse the aminoacyl-tRNA pool to observe trends in aaRS activity and fidelity. Taken together, these approaches allow high-throughput drug screening of aaRS inhibitors and systems-level analyses of the dynamic tRNA population under a variety of conditions and disease states.
Collapse
Affiliation(s)
- Rylan R. Watkins
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel RKO. Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages. Nat Commun 2024; 15:1559. [PMID: 38378708 PMCID: PMC10879173 DOI: 10.1038/s41467-024-45653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages.
Collapse
Affiliation(s)
- Kasimir Kienbeck
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Silke Johannsen
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
4
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
5
|
Nemteanu R, Clim A, Hincu CE, Gheorghe L, Ciortescu I, Plesa A. Interferon-Free Regimens and Direct-Acting Antiviral Agents for Delta Hepatitis: Are We There Yet? Curr Issues Mol Biol 2023; 45:7878-7890. [PMID: 37886941 PMCID: PMC10605217 DOI: 10.3390/cimb45100498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Chronic delta hepatitis is a global health problem. Although a smaller percentage of chronic HBV-infected patients are coinfected with the hepatitis delta virus, these patients have a higher risk of an accelerated progression to fulminant "delta hepatitis", cirrhosis, hepatic decompensation, and hepatocellular carcinoma, putting a financial strain on the healthcare system and increasing the need for a liver transplant. Since its discovery, tremendous efforts have been directed toward understanding the intricate pathogenic mechanisms, discovering the complex viral replication process, the essential replicative intermediates, and cell division-mediated viral spread, which enables virion viability. The consideration of the interaction between HBV and HDV is crucial in the process of developing novel pharmaceuticals. Until just recently, interferon-based therapy was the only treatment available worldwide. This review aims to present the recent advancements in understanding the life cycle of HDV, which have consequently facilitated the development of innovative drug classes. Additionally, we will examine the antiviral strategies currently in phases II and III of development, including bulevirtide (an entry inhibitor), lonafarnib (a prenylation inhibitor), and REP 2139 (an HBsAg release inhibitor).
Collapse
Affiliation(s)
- Roxana Nemteanu
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
| | - Corina Elena Hincu
- Department of Radiology, “Sfantul Spiridon” Hospital, 700111 Iasi, Romania;
| | - Liliana Gheorghe
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Department of Radiology, “Sfantul Spiridon” Hospital, 700111 Iasi, Romania;
| | - Irina Ciortescu
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alina Plesa
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy, 700100 Iasi, Romania; (A.C.); (L.G.); (A.P.)
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
6
|
Mirauti A, Tran PT, Citovsky V. Restriction-ligation-independent production of a TVCV infectious clone and a TVCV-based gene expression vector. Heliyon 2023; 9:e19855. [PMID: 37810018 PMCID: PMC10559237 DOI: 10.1016/j.heliyon.2023.e19855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Transgenic expression of proteins in plants is central to research and biotechnology, and, often, it is desirable to obtain this expression without altering the nuclear or plastid genomes. Thus, expression vectors based on plant viruses that infect multiple cells are useful; furthermore, they are also advantageous for studies of the life cycle of the virus itself. Here, we report the development of an expression vector based on a Turnip vein-clearing virus (TVCV), a tobamovirus known to easily infect two model plants, Nicotiana benthamiana, and Arabidopsis thaliana. Avoiding restriction digestion, we utilized a restriction-ligation-independent cloning approach to construct an infectious cDNA clone of TVCV from the viral RNA and then to convert this clone to a gene expression vector adapted for Gateway-based recombination cloning for transgene insertion. The functionality of the resulting vector, designated pTVCV-DEST, was validated by the expression of an autofluorescent reporter transgene following agroinoculation of the target plant.
Collapse
Affiliation(s)
- Andrea Mirauti
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Phu-Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
7
|
Li W, Xu Y, Zhang Y, Li P, Zhu X, Feng C. Cell-Free Biosensing Genetic Circuit Coupled with Ribozyme Cleavage Reaction for Rapid and Sensitive Detection of Small Molecules. ACS Synth Biol 2023; 12:1657-1666. [PMID: 37196142 DOI: 10.1021/acssynbio.3c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Synthetic biological systems have been utilized to develop a wide range of genetic circuits and components that enhance the performance of biosensing systems. Among them, cell-free systems are emerging as important platforms for synthetic biology applications. Genetic circuits play an essential role in cell-free systems, mainly consisting of sensing modules, regulation modules, and signal output modules. Currently, fluorescent proteins and aptamers are commonly used as signal outputs. However, these signal output modes cannot simultaneously achieve faster signal output, more accurate and reliable performance, and signal amplification. Ribozyme is a highly structured and catalytic RNA molecule that can specifically recognize and cut specific substrate sequences. Here, by adopting ribozyme as the signal output, we developed a cell-free biosensing genetic circuit coupled with the ribozyme cleavage reaction, enabling rapid and sensitive detection of small molecules. More importantly, we have also successfully constructed a 3D-printed sensor array and thereby achieved high-throughput analysis of an inhibitory drug. Furthermore, our method will help expand the application range of ribozyme in the field of synthetic biology and also optimize the signal output system of cell-free biosensing, thus promoting the development of cell-free synthetic biology in biomedical research, clinical diagnosis, environmental monitoring, and food inspection.
Collapse
Affiliation(s)
- Wenxing Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Yiming Xu
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Pengfei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
- Shaoxing Institute of Shanghai University, Shaoxing 312071, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy TW, Wood MA, Lupták A. Inhibition of CPEB3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs, and enhances object location memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543953. [PMID: 37333407 PMCID: PMC10274809 DOI: 10.1101/2023.06.07.543953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Carlene A. Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Jacob S. Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Mehran Nikan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Marie Myszka
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, Irvine, California 92697, United States
| | - Luiz F. M. Passalacqua
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Timothy W. Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States
| |
Collapse
|
9
|
Kauffman SA, Lehman N. Mixed anhydrides at the intersection between peptide and RNA autocatalytic sets: evolution of biological coding. Interface Focus 2023; 13:20230009. [PMID: 37213924 PMCID: PMC10198252 DOI: 10.1098/rsfs.2023.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 05/23/2023] Open
Abstract
We present a scenario for the origin of biological coding, a semiotic relationship between chemical information stored in one location that links to chemical information stored in a separate location. Coding originated from cooperation between two, originally separate, collectively autocatalytic sets (CASs), one for nucleic acids and one for peptides. Upon interaction, a series of RNA folding-directed processes led to their joint cooperativity. The aminoacyl adenylate was the first covalent association made by these two CASs and solidified their interdependence, and is a palimpsest of this era, a relic of the original semiotic relationship between RNA and proteins. Coding was driven by selection pressure to eliminate waste in CASs. Eventually a 1 : 1 relationship between single amino acids and short RNA pieces was established, i.e. the 'genetic code'. The two classes of aaRS enzymes are remnants of the complementary information in two RNA strands, as postulated by Rodin and Ohno. Every stage in the evolution of coding was driven by the downward selection on the components of a system to satisfy the Kantian whole. Coding was engendered because there were two chemically distinct classes of polymers needed for open-ended evolution; systems with only one polymer cannot exhibit this characteristic. Coding is thus synonymous with life as we know it.
Collapse
Affiliation(s)
- S A Kauffman
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - N Lehman
- EDAC Research, 11845 SE 26th Avenue, Milwaukie, OR 97222, USA
| |
Collapse
|
10
|
Schaffter SW, Wintenberg ME, Murphy TM, Strychalski EA. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits. ACS Synth Biol 2023; 12:1546-1561. [PMID: 37134273 DOI: 10.1021/acssynbio.3c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.
Collapse
Affiliation(s)
- Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Molly E Wintenberg
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Terence M Murphy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
11
|
Tong XK, Li H, Yang L, Xie SZ, Xie S, Gong Y, Peng C, Gao XX, Shi ZL, Yang XL, Zuo JP. Multiplication of defective Ebola virus in a complementary permissive cell line. Antiviral Res 2023; 209:105491. [PMID: 36526073 DOI: 10.1016/j.antiviral.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.
Collapse
Affiliation(s)
- Xian-Kun Tong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Heng Li
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Zhe Xie
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Xie
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Gong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
12
|
Bahoussi AN, Wang PH, Guo YY, Rabbani N, Wu C, Xing L. Global Distribution and Natural Recombination of Hepatitis D Virus: Implication of Kyrgyzstan Emerging HDVs in the Clinical Outcomes. Viruses 2022; 14:v14071467. [PMID: 35891448 PMCID: PMC9323457 DOI: 10.3390/v14071467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Discrepancies in human hepatitis delta virus (HDV) genotypes impact the virus’ biological behavior, clinical manifestation, and treatment response. Herein, this report aims to explore the role of recombination in the worldwide genotypic distribution and genetic diversity of HDV. Three-hundred-forty-eight human HDV full-length genomic sequences of ~1678 nt in length, isolated in twenty-eight countries worldwide between 1986 and 2018, were analysed. Similarity analysis and recombination mapping were performed, and forty-eight recombination events were identified, twenty-nine of which were isolated from Kyrgyzstan and determined to be involved in the diversity and extension of HDV sub-genotypes. HDV recombination occurred only between the genetically close genotypes (genotype 5 and genotype 2) or mainly within genotype 1, suggesting the complex replicative molecular mechanisms of HDV-RNA. The global distribution and classification of HDV genotypes have been updated, indicating that HDV recombination is one of the driving forces behind the biodiversity and the evolution of human HDV genomes. The outcome analysis suggests that the expansion of HDV sub-genotypes and the complex recombination networks might be related to the genomic character of Kyrgyzstan circulating strains and extensive mobility within countries and across borders. These findings will be of great importance in formulating more effective public health HDV surveillance strategies and guiding future molecular and epidemiological research to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Nighat Rabbani
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-351-701-025
| |
Collapse
|
13
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
14
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
15
|
Akiyama BM, Graham ME, O′Donoghue Z, Beckham J, Kieft J. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res 2021; 49:7122-7138. [PMID: 34133732 PMCID: PMC8266583 DOI: 10.1093/nar/gkab462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Monica E Graham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - Zoe O′Donoghue
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - J David Beckham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
- Department of Medicine Division of Infectious Diseases, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Bendixsen DP, Pollock TB, Peri G, Hayden EJ. Experimental Resurrection of Ancestral Mammalian CPEB3 Ribozymes Reveals Deep Functional Conservation. Mol Biol Evol 2021; 38:2843-2853. [PMID: 33720319 PMCID: PMC8233481 DOI: 10.1093/molbev/msab074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Self-cleaving ribozymes are genetic elements found in all domains of life, but their evolution remains poorly understood. A ribozyme located in the second intron of the cytoplasmic polyadenylation binding protein 3 gene (CPEB3) shows high sequence conservation in mammals, but little is known about the functional conservation of self-cleaving ribozyme activity across the mammalian tree of life or during the course of mammalian evolution. Here, we use a phylogenetic approach to design a mutational library and a deep sequencing assay to evaluate the in vitro self-cleavage activity of numerous extant and resurrected CPEB3 ribozymes that span over 100 My of mammalian evolution. We found that the predicted sequence at the divergence of placentals and marsupials is highly active, and this activity has been conserved in most lineages. A reduction in ribozyme activity appears to have occurred multiple different times throughout the mammalian tree of life. The in vitro activity data allow an evaluation of the predicted mutational pathways leading to extant ribozyme as well as the mutational landscape surrounding these ribozymes. The results demonstrate that in addition to sequence conservation, the self-cleavage activity of the CPEB3 ribozyme has persisted over millions of years of mammalian evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Tanner B. Pollock
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Gianluca Peri
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Eric J. Hayden
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| |
Collapse
|
17
|
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol 2021; 12:652962. [PMID: 34234753 PMCID: PMC8256844 DOI: 10.3389/fmicb.2021.652962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.
Collapse
Affiliation(s)
- Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Marilou H Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots. Methods Mol Biol 2021; 2167:113-143. [PMID: 32712918 DOI: 10.1007/978-1-0716-0716-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ribozymes are RNAs that catalyze reactions. They occur in nature, and can also be evolved in vitro to catalyze novel reactions. This chapter provides detailed protocols for using inverse folding software to design a ribozyme sequence that will fold to a known ribozyme secondary structure and for testing the catalytic activity of the sequence experimentally. This protocol is able to design sequences that include pseudoknots, which is important as all naturally occurring full-length ribozymes have pseudoknots. The starting point is the known pseudoknot-containing secondary structure of the ribozyme and knowledge of any nucleotides whose identity is required for function. The output of the protocol is a set of sequences that have been tested for function. Using this protocol, we were previously successful at designing highly active double-pseudoknotted HDV ribozymes.
Collapse
|
19
|
Passalacqua LFM, Dingilian AI, Lupták A. Single-pass transcription by T7 RNA polymerase. RNA (NEW YORK, N.Y.) 2020; 26:2062-2071. [PMID: 32958559 PMCID: PMC7668259 DOI: 10.1261/rna.076778.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules can be conveniently synthesized in vitro by the T7 RNA polymerase (T7 RNAP). In some experiments, such as cotranscriptional biochemical analyses, continuous synthesis of RNA is not desired. Here, we propose a method for a single-pass transcription that yields a single transcript per template DNA molecule using the T7 RNAP system. We hypothesized that stalling the polymerase downstream from the promoter region and subsequent cleavage of the promoter by a restriction enzyme (to prevent promoter binding by another polymerase) would allow synchronized production of a single transcript per template. The single-pass transcription was verified in two different scenarios: a short self-cleaving ribozyme and a long mRNA. The results show that a controlled single-pass transcription using T7 RNAP allows precise measurement of cotranscriptional ribozyme activity, and this approach will facilitate the study of other kinetic events.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| | - Armine I Dingilian
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
20
|
The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020; 17:618-634. [PMID: 32467580 DOI: 10.1038/s41575-020-0296-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
The global burden of hepatitis B virus (HBV) is enormous, with 257 million persons chronically infected, resulting in more than 880,000 deaths per year worldwide. HBV exists as nine different genotypes, which differ in disease progression, natural history and response to therapy. HBV is an ancient virus, with the latest reports greatly expanding the host range of the Hepadnaviridae (to include fish and reptiles) and casting new light on the origins and evolution of this viral family. Although there is an effective preventive vaccine, there is no cure for chronic hepatitis B, largely owing to the persistence of a viral minichromosome that is not targeted by current therapies. HBV persistence is also facilitated through aberrant host immune responses, possibly due to the diverse intra-host viral populations that can respond to host-mounted and therapeutic selection pressures. This Review summarizes current knowledge on the influence of HBV diversity on disease progression and treatment response and the potential effect on new HBV therapies in the pipeline. The mechanisms by which HBV diversity can occur both within the individual host and at a population level are also discussed.
Collapse
|
21
|
Synak J, Rybarczyk A, Blazewicz J. Multi-agent approach to sequence structure simulation in the RNA World hypothesis. PLoS One 2020; 15:e0238253. [PMID: 32857812 PMCID: PMC7455006 DOI: 10.1371/journal.pone.0238253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
The origins of life on Earth have been the subject of inquiry since the early days of philosophical thought and are still intensively investigated by the researchers around the world. One of the theories explaining the life emergence, that gained the most attention recently is the RNA World hypothesis, which assumes that life on Earth was sparked by replicating RNA chains. Since wet lab analysis is time-consuming, many mathematical and computational approaches have been proposed that try to explain the origins of life. Recently proposed one, based on the work by Takeuchi and Hogeweg, addresses the problem of interplay between RNA replicases and RNA parasitic species, which is crucial for understanding the first steps of prebiotic evolution. In this paper, the aforementioned model has been extended and modified by introducing RNA sequence (structure) information and mutation rate close to real one. It allowed to observe the simple evolution mechanisms, which could have led to the more complicated systems and eventually, to the formation of the first cells. The main goal of this study was to determine the conditions that allowed the spontaneous emergence and evolution of the prebiotic replicases equipped with simple functional domains within a large population. Here we show that polymerase ribozymes could have appeared randomly and then quickly started to copy themselves in order for the system to reach equilibrium. It has been shown that evolutionary selection works even in the simplest systems.
Collapse
Affiliation(s)
- Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Center for Bioinformatics and Genomics, Poznan, Poland
- * E-mail: (JB); (AR)
| |
Collapse
|
22
|
Mammalian deltavirus without hepadnavirus coinfection in the neotropical rodent Proechimys semispinosus. Proc Natl Acad Sci U S A 2020; 117:17977-17983. [PMID: 32651267 PMCID: PMC7395443 DOI: 10.1073/pnas.2006750117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.
Collapse
|
23
|
Yamagami R, Kayedkhordeh M, Mathews DH, Bevilacqua PC. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study. Nucleic Acids Res 2019; 47:29-42. [PMID: 30462314 PMCID: PMC6326823 DOI: 10.1093/nar/gky1118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/24/2018] [Indexed: 01/02/2023] Open
Abstract
Design of RNA sequences that adopt functional folds establishes principles of RNA folding and applications in biotechnology. Inverse folding for RNAs, which allows computational design of sequences that adopt specific structures, can be utilized for unveiling RNA functions and developing genetic tools in synthetic biology. Although many algorithms for inverse RNA folding have been developed, the pseudoknot, which plays a key role in folding of ribozymes and riboswitches, is not addressed in most algorithms. For the few algorithms that attempt to predict pseudoknot-containing ribozymes, self-cleavage activity has not been tested. Herein, we design double-pseudoknot HDV ribozymes using an inverse RNA folding algorithm and test their kinetic mechanisms experimentally. More than 90% of the positively designed ribozymes possess self-cleaving activity, whereas more than 70% of negative control ribozymes, which are predicted to fold to the necessary structure but with low fidelity, do not possess it. Kinetic and mutation analyses reveal that these RNAs cleave site-specifically and with the same mechanism as the WT ribozyme. Most ribozymes react just 50- to 80-fold slower than the WT ribozyme, and this rate can be improved to near WT by modification of a junction. Thus, fast-cleaving functional ribozymes with multiple pseudoknots can be designed computationally.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mohammad Kayedkhordeh
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA.,Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Herrera-Carrillo E, Gao Z, Berkhout B. Influence of a 3' Terminal Ribozyme on AgoshRNA Biogenesis and Activity. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:452-462. [PMID: 31048184 PMCID: PMC6488825 DOI: 10.1016/j.omtn.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
Short hairpin RNAs (shRNAs) can induce gene silencing via the RNA interference (RNAi) mechanism. We designed an alternative shRNA molecule with a relatively short base-paired stem that bypasses Dicer and instead is processed by the Argonaute 2 (Ago2) protein into a single guide RNA strand that effectively induces RNAi. We called these molecules AgoshRNAs. Active anti-HIV AgoshRNAs were developed, but their RNAi activity was generally reduced compared with the matching shRNAs. In an attempt to further optimize the AgoshRNA design, we inserted several self-cleaving ribozymes at the 3′ terminus of the transcribed AgoshRNA and evaluated the impact on AgoshRNA processing and activity. The hepatitis delta virus (HDV) ribozyme is efficiently removed from the transcribed AgoshRNAs and generates a uniform 3′ overhang, which translates into the enhanced antiviral activity of these molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Abstract
Hepatitis D virus (HDV) forms the genus Deltavirus unassigned to any virus family. HDV is a satellite virus and needs hepatitis B virus (HBV) to make infectious particles. Deltaviruses are thought to have evolved in humans, since for a long time, they had not been identified elsewhere. Herein we report, prompted by the recent discovery of an HDV-like agent in birds, the identification of a deltavirus in snakes (Boa constrictor) designated snake HDV (sHDV). The circular 1,711-nt RNA genome of sHDV resembles human HDV (hHDV) in its coding strategy and size. We discovered sHDV during a metatranscriptomic study of brain samples of a Boa constrictor breeding pair with central nervous system signs. Applying next-generation sequencing (NGS) to brain, blood, and liver samples from both snakes, we did not find reads matching hepadnaviruses. Sequence comparison showed the snake delta antigen (sHDAg) to be 55% and 37% identical to its human and avian counterparts. Antiserum raised against recombinant sHDAg was used in immunohistology and demonstrated a broad viral target cell spectrum, including neurons, epithelial cells, and leukocytes. Using RT-PCR, we also detected sHDV RNA in two juvenile offspring and in a water python (Liasis mackloti savuensis) in the same snake colony, potentially indicating vertical and horizontal transmission. Screening of 20 randomly selected boas from another breeder by RT-PCR revealed sHDV infection in three additional snakes. The observed broad tissue tropism and the failure to detect accompanying hepadnavirus suggest that sHDV could be a satellite virus of a currently unknown enveloped virus.IMPORTANCE So far, the only known example of deltaviruses is the hepatitis delta virus (HDV). HDV is speculated to have evolved in humans, since deltaviruses were until very recently found only in humans. Using a metatranscriptomic sequencing approach, we found a circular RNA, which resembles that of HDV in size and coding strategy, in a snake. The identification of similar deltaviruses in distantly related species other than humans indicates that the previously suggested hypotheses on the origins of deltaviruses need to be updated. It is still possible that the ancestor of deltaviruses emerged from cellular RNAs; however, it likely would have happened much earlier in evolution than previously thought. These findings open up completely new avenues in evolution and pathogenesis studies of deltaviruses.
Collapse
|
26
|
Maurel MC, Leclerc F, Vergne J, Zaccai G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019; 11:E283. [PMID: 30901893 PMCID: PMC6466107 DOI: 10.3390/v11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Current cellular facts allow us to follow the link from chemical to biochemical metabolites, from the ancient to the modern world. In this context, the "RNA world" hypothesis proposes that early in the evolution of life, the ribozyme was responsible for the storage and transfer of genetic information and for the catalysis of biochemical reactions. Accordingly, the hammerhead ribozyme (HHR) and the hairpin ribozyme belong to a family of endonucleolytic RNAs performing self-cleavage that might occur during replication. Furthermore, regarding the widespread occurrence of HHRs in several genomes of modern organisms (from mammals to small parasites and elsewhere), these small ribozymes have been regarded as living fossils of a primitive RNA world. They fold into 3D structures that generally require long-range intramolecular interactions to adopt the catalytically active conformation under specific physicochemical conditions. By studying viroids as plausible remains of ancient RNA, we recently demonstrated that they replicate in non-specific hosts, emphasizing their adaptability to different environments, which enhanced their survival probability over the ages. All these results exemplify ubiquitous features of life. Those are the structural and functional versatility of small RNAs, ribozymes, and viroids, as well as their diversity and adaptability to various extreme conditions. All these traits must have originated in early life to generate novel RNA populations.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
| | - Jacques Vergne
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Giuseppe Zaccai
- Institut de Biologie Structurale CNRS-CEA-UGA, F-380447 Grenoble, France, and Institut Laue Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France.
| |
Collapse
|
27
|
Nakano SI, Yamashita H, Tanabe K, Sugimoto N. Bulky cations greatly increase the turnover of a native hammerhead ribozyme. RSC Adv 2019; 9:35820-35824. [PMID: 35528091 PMCID: PMC9074697 DOI: 10.1039/c9ra06797c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Methods to facilitate the catalytic turnover of ribozymes are required for advancing oligonucleotide-based technologies. This study examined tetraalkylammonium ions for their ability to increase the efficiency of catalytic turnover of a native hammerhead ribozyme. Kinetic analysis showed that large tetraalkylammonium ions significantly increased the turnover rate of the ribozyme and was much more effective than poly(ethylene glycol) (PEG) and urea. The magnitude of the rate increase depended on the concentrations of Mg2+ and tetrapentylammonium ions, and the rate was enhanced by more than 180-fold at the optimal concentrations of these salts. The results provide physical insights into interactions of ribozymes with large cationic molecules through electrostatic forces and steric hindrance. Large tetraalkylammonium ions increase the turnover rate of the ribozyme derived from an intronic ribozyme in the human genome. The rate can be enhanced by more than a hundred-fold at the optimal concentrations of Mg2+ and TPeA ions.![]()
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Hirofumi Yamashita
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Kazuya Tanabe
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| |
Collapse
|
28
|
Wille M, Netter HJ, Littlejohn M, Yuen L, Shi M, Eden JS, Klaassen M, Holmes EC, Hurt AC. A Divergent Hepatitis D-Like Agent in Birds. Viruses 2018; 10:E720. [PMID: 30562970 PMCID: PMC6315422 DOI: 10.3390/v10120720] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is currently only found in humans and is a satellite virus that depends on hepatitis B virus (HBV) envelope proteins for assembly, release, and entry. Using meta-transcriptomics, we identified the genome of a novel HDV-like agent in ducks. Sequence analysis revealed secondary structures that were shared with HDV, including self-complementarity and ribozyme features. The predicted viral protein shares 32% amino acid similarity to the small delta antigen of HDV and comprises a divergent phylogenetic lineage. The discovery of an avian HDV-like agent has important implications for the understanding of the origins of HDV and sub-viral agents.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Hans J Netter
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3220, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
29
|
Rouet R, de Oñate L, Li J, Murthy N, Wilson RC. Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. CRISPR J 2018; 1:367-378. [DOI: 10.1089/crispr.2018.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, UNSW Medicine Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Lorena de Oñate
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Jie Li
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Ross C. Wilson
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| |
Collapse
|
30
|
Dong X, Chaisiri K, Xia D, Armstrong SD, Fang Y, Donnelly MJ, Kadowaki T, McGarry JW, Darby AC, Makepeace BL. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience 2018; 7:5160133. [PMID: 30445460 PMCID: PMC6275457 DOI: 10.1093/gigascience/giy127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.,Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Kittipong Chaisiri
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,Faculty of Tropical Medicine, Mahidol University, Ratchathewi Bangkok 10400, Thailand
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Yongxiang Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - John W McGarry
- Institute of Veterinary Science, University of Liverpool, Liverpool L3 5RP, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| |
Collapse
|
31
|
Hartwick EW, Costantino DA, MacFadden A, Nix JC, Tian S, Das R, Kieft JS. Ribosome-induced RNA conformational changes in a viral 3'-UTR sense and regulate translation levels. Nat Commun 2018; 9:5074. [PMID: 30498211 PMCID: PMC6265322 DOI: 10.1038/s41467-018-07542-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
Structured RNA elements, programmed RNA conformational changes, and interactions between different RNA domains underlie many modes of regulating gene expression, mandating studies to understand the foundational principles that govern these phenomena. Exploring the structured 3' untranslated region (UTR) of a viral RNA, we discovered that different contexts of the 3'-UTR confer different abilities to enhance translation of an associated open reading frame. In one context, ribosome-induced conformational changes in a 'sensor' RNA domain affect a separate RNA 'functional' domain, altering translation efficiency. The structure of the entire 3'-UTR reveals that structurally distinct domains use a spine of continuously stacked bases and a strut-like linker to create a conduit for communication within the higher-order architecture. Thus, this 3'-UTR RNA illustrates how RNA can use programmed conformational changes to sense the translation status of an upstream open reading frame, then create a tuned functional response by communicating that information to other RNA elements.
Collapse
Affiliation(s)
- Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA.,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - David A Costantino
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA. .,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
32
|
A Drosophila CRISPR/Cas9 Toolkit for Conditionally Manipulating Gene Expression in the Prothoracic Gland as a Test Case for Polytene Tissues. G3-GENES GENOMES GENETICS 2018; 8:3593-3605. [PMID: 30213867 PMCID: PMC6222582 DOI: 10.1534/g3.118.200539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Targeting gene function with spatial or temporal specificity is a key goal in molecular genetics. CRISPR-Cas9 has greatly facilitated this strategy, but some standard approaches are problematic. For instance, simple tissue-specific or global overexpression of Cas9 can cause significant lethality or developmental delays even in the absence of gRNAs. In particular, we found that Gal4-mediated expression of UAS-Cas9 in the Drosophila prothoracic gland (PG) was not a suitable strategy to disrupt gene expression, since Cas9 alone caused widespread lethality. The PG is widely used for studying endocrine gland function during animal development, but tools validating PG-specific RNAi phenotypes are lacking. Here, we present a collection of modular gateway-compatible CRISPR-Cas9 tools that allow precise modulation of target gene activity with temporal and spatial specificity. We also demonstrate that Cas9 fused to the progesterone ligand-binding domain can be used to activate gene expression via RU486. Using these approaches, we were able to avoid the lethality associated with simple GAL4-mediated overexpression of Cas9 in the PG. Given that the PG is a polytene tissue, we conclude that these tools work effectively in endoreplicating cells where Cas9 has to target multiple copies of the same locus. Our toolkit can be easily adapted for other tissues and can be used both for gain- and loss-of-function studies.
Collapse
|
33
|
Kobori S, Yokobayashi Y. Analyzing and Tuning Ribozyme Activity by Deep Sequencing To Modulate Gene Expression Level in Mammalian Cells. ACS Synth Biol 2018; 7:371-376. [PMID: 29343061 DOI: 10.1021/acssynbio.7b00367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Self-cleaving ribozymes, in combination with aptamers and various classes of RNAs, have been heavily engineered to create RNA devices to control gene expression. Although understanding of sequence-function relationships of ribozymes is critical for such efforts, our current knowledge of self-cleaving ribozymes is mostly limited to the results from small scale mutational studies performed under different conditions, or qualitative results of mutate-and-select experiments that may contain experimental biases. Here, we applied our strategy based on deep sequencing to comprehensively assay a large number of mutants to systematically examine the effect of the P4 stem sequence on the activity of an HDV-like ribozyme. We discovered that the ribozyme activity is highly sensitive to the sequence and the apparent stability of the varied positions. Furthermore, we demonstrated that the collection of the ribozyme variants with different activities can be used as a convenient device to fine-tune the level of gene expression in mammalian cells.
Collapse
Affiliation(s)
- Shungo Kobori
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
34
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
35
|
Ren A, Micura R, Patel DJ. Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Curr Opin Chem Biol 2017; 41:71-83. [PMID: 29107885 PMCID: PMC7955703 DOI: 10.1016/j.cbpa.2017.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Small self-cleaving ribozymes are widely distributed in nature and are essential for rolling-circle-based replication of satellite and pathogenic RNAs. Earlier structure-function studies on the hammerhead, hairpin, glmS, hepatitis delta virus and Varkud satellite ribozymes have provided insights into their overall architecture, their catalytic active site organization, and the role of nearby nucleobases and hydrated divalent cations in facilitating general acid-base and electrostatic-mediated catalysis. This review focuses on recent structure-function research on active site alignments and catalytic mechanisms of the Rzb hammerhead ribozyme, as well as newly-identified pistol, twister and twister-sister ribozymes. In contrast to an agreed upon mechanistic understanding of self-cleavage by Rzb hammerhead and pistol ribozymes, there exists a divergence of views as to the cleavage site alignments and catalytic mechanisms adopted by twister and twister-sister ribozymes. One approach to resolving this conundrum would be to extend the structural studies from currently available pre-catalytic conformations to their transition state mimic vanadate counterparts for both ribozymes.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck A6020, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
36
|
Passalacqua LFM, Jimenez RM, Fong JY, Lupták A. Allosteric Modulation of the Faecalibacterium prausnitzii Hepatitis Delta Virus-like Ribozyme by Glucosamine 6-Phosphate: The Substrate of the Adjacent Gene Product. Biochemistry 2017; 56:6006-6014. [PMID: 29045794 DOI: 10.1021/acs.biochem.7b00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago and have been found throughout nature, from bacteria to animals, but little is known about their biological functions and regulation, particularly how cofactors and metabolites alter their activity. A hepatitis delta virus-like self-cleaving ribozyme maps upstream of a phosphoglucosamine mutase (glmM) open reading frame in the genome of the human gut bacterium Faecalibacterium prausnitzii. The presence of a ribozyme in the untranslated region of glmM suggests a regulation mechanism of gene expression. In the bacterial hexosamine biosynthesis pathway, the enzyme glmM catalyzes the isomerization of glucosamine 6-phosphate into glucosamine 1-phosphate. In this study, we investigated the effect of these metabolites on the co-transcriptional self-cleavage rate of the ribozyme. Our results suggest that glucosamine 6-phosphate, but not glucosamine 1-phosphate, is an allosteric ligand that increases the self-cleavage rate of drz-Fpra-1, providing the first known example of allosteric modulation of a self-cleaving ribozyme by the substrate of the adjacent gene product. Given that the ribozyme is activated by the glmM substrate, but not the product, this allosteric modulation may represent a potential feed-forward mechanism of gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Jennifer Y Fong
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States.,Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States.,Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
37
|
Li S, Breaker RR. Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. BMC Genomics 2017; 18:785. [PMID: 29029611 PMCID: PMC5640933 DOI: 10.1186/s12864-017-4171-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND With the development of rapid and inexpensive DNA sequencing, the genome sequences of more than 100 fungal species have been made available. This dataset provides an excellent resource for comparative genomics analyses, which can be used to discover genetic elements, including noncoding RNAs (ncRNAs). Bioinformatics tools similar to those used to uncover novel ncRNAs in bacteria, likewise, should be useful for searching fungal genomic sequences, and the relative ease of genetic experiments with some model fungal species could facilitate experimental validation studies. RESULTS We have adapted a bioinformatics pipeline for discovering bacterial ncRNAs to systematically analyze many fungal genomes. This comparative genomics pipeline integrates information on conserved RNA sequence and structural features with alternative splicing information to reveal fungal RNA motifs that are candidate regulatory domains, or that might have other possible functions. A total of 15 prominent classes of structured ncRNA candidates were identified, including variant HDV self-cleaving ribozyme representatives, atypical snoRNA candidates, and possible structured antisense RNA motifs. Candidate regulatory motifs were also found associated with genes for ribosomal proteins, S-adenosylmethionine decarboxylase (SDC), amidase, and HexA protein involved in Woronin body formation. We experimentally confirm that the variant HDV ribozymes undergo rapid self-cleavage, and we demonstrate that the SDC RNA motif reduces the expression of SAM decarboxylase by translational repression. Furthermore, we provide evidence that several other motifs discovered in this study are likely to be functional ncRNA elements. CONCLUSIONS Systematic screening of fungal genomes using a computational discovery pipeline has revealed the existence of a variety of novel structured ncRNAs. Genome contexts and similarities to known ncRNA motifs provide strong evidence for the biological and biochemical functions of some newly found ncRNA motifs. Although initial examinations of several motifs provide evidence for their likely functions, other motifs will require more in-depth analysis to reveal their functions.
Collapse
Affiliation(s)
- Sanshu Li
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 China
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| |
Collapse
|
38
|
Cheng H, Zhang Y, Wang H, Sun N, Liu M, Chen H, Pei R. Regulation of MAP4K4 gene expression by RNA interference through an engineered theophylline-dependent hepatitis delta virus ribozyme switch. MOLECULAR BIOSYSTEMS 2017; 12:3370-3376. [PMID: 27754501 DOI: 10.1039/c6mb00540c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Riboswitches are functional non-coding RNA regulatory components that play an important role in the regulation of gene expression in diverse organisms. In particular, using riboswitches to modulate RNA interference (RNAi) enables temporal and spatial control of gene expression in mammalian cells. Herein, a ribozyme gene switch to activate RNAi was fabricated for the artificial regulation of versatile gene silencing through the interaction of an RNA aptamer with small molecules. The device comprised an allosteric HDV ribozyme with an embedded theophylline aptamer and a primary miRNA (pri-miRNA) to silence the MAP4K4 gene in hepatic (HepG2) cells, aiming to achieve dose-dependent control of the activation of RNAi, and then the regulation of the MAP4K4 gene by theophylline. Finally, we demonstrated the feasibility and applicability of utilizing HDV ribozyme switches to activate RNAi for regulating an endogenous gene in mammalian cells.
Collapse
Affiliation(s)
- Hui Cheng
- College of Life Sciences, Shanghai University, Shanghai 200444, China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuanyuan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongyan Wang
- College of Life Sciences, Shanghai University, Shanghai 200444, China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Na Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Min Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongxia Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
39
|
Zhang Y, Wang J, Cheng H, Sun N, Liu M, Wu Z, Pei R. Inducible Bcl-2 gene RNA interference mediated by aptamer-integrated HDV ribozyme switch. Integr Biol (Camb) 2017; 9:619-626. [PMID: 28548675 DOI: 10.1039/c7ib00029d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The regulation of RNA interference (RNAi) could be a powerful method for the study of temporal and dose dependent effects of gene expression. In this study, we designed the hepatitis delta virus (HDV) ribozyme with an embedded theophylline aptamer as the sensor domain and the pri-miRNA of endogenous gene Bcl-2 as the effector domain to engineer an RNAi-regulatory device in MCF-7 cells. The system allowed us to control gene expression by adding theophylline into the culture media in a dose dependent fashion. This is the pioneering application of ribozyme switches to activate RNAi for modulating endogenous genes in mammalian cells. The platform sets the stage for investigations of other endogenous genes that regulate various biological functions such as differentiation, cell division or cell death, and provides a promising interface with other universal RNAi-based decision-making circuits that operate in mammalian cells. It can be used to study more genes associated with cancer and screen for potential drug targets for gene therapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei 230032, China and CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. and CAS Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hui Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Na Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhengyan Wu
- CAS Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
40
|
Eggert F, Kulikov K, Domnick C, Leifels P, Kath-Schorr S. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods 2017; 120:17-27. [PMID: 28454775 DOI: 10.1016/j.ymeth.2017.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022] Open
Abstract
The synthesis of sequence-specifically modified long RNA molecules, which cannot entirely be prepared via solid phase synthesis methods is experimentally challenging. We are using a new approach based on an expanded genetic alphabet preparing site-specifically modified RNA molecules via standard in vitro transcription. In this report, the site-specific labeling of functional RNAs, in particular ribozymes and a long non-coding RNA with cyclopropene moieties, is presented. We provide detailed instructions for RNA labeling via in vitro transcription and include required analytical methods to verify production and identity of the transcript. We further present post-transcriptional inverse electron demand Diels-Alder cycloaddition reactions on the cyclopropene-modified sequences and discuss applications of the genetic alphabet expansion transcription for in vitro preparation of labeled functional RNAs with complex foldings. In detail, the glmS and CPEB3 ribozymes were site-specifically decorated with methyl cyclopropene moieties using the unnatural TPT3CP triphosphate and were proven to be still functional. In addition, the structurally complex A region of the Xist lncRNA (401nt) was site-specifically modified with methyl cyclopropene and detected by fluorescence after cycloaddition reaction with a tetrazine-BODIPY conjugate.
Collapse
Affiliation(s)
- Frank Eggert
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Katharina Kulikov
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Christof Domnick
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Philipp Leifels
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
41
|
Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 2016; 354:1148-1152. [PMID: 27934765 PMCID: PMC5476369 DOI: 10.1126/science.aah3963] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce noncoding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exonuclease via structured RNAs called xrRNAs. We found that ZIKV-infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formation during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Hannah M Laurence
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- Howard Hughes Medical Institute (HHMI), University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Aaron R Massey
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - David A Costantino
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yujiao Yang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
42
|
Gebetsberger J, Micura R. Unwinding the twister ribozyme: from structure to mechanism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863022 PMCID: PMC5408937 DOI: 10.1002/wrna.1402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022]
Abstract
The twister ribozyme motif has been identified by bioinformatic means very recently. Currently, four crystal structures with ordered active sites together with a series of chemical and biochemical data provide insights into how this RNA accomplishes its efficient self‐cleavage. Of particular interest for a mechanistic proposal are structural distinctions observed in the active sites that concern the conformation of the U‐A cleavage site dinucleotide (in‐line alignment of the attacking 2′‐O nucleophile to the to‐be‐cleaved P—O5′ bond versus suboptimal alignments) as well as the presence/absence of Mg2+ ions at the scissile phosphate. All structures support the notion that an active site guanine and the conserved adenine at the cleavage site are important contributors to cleavage chemistry, likely being involved in general acid base catalysis. Evidence for innersphere coordination of a Mg2+ ion to the pro‐S nonbridging oxygen of the scissile phosphate stems from two of the four crystal structures. Together with the finding of thio/rescue effects for phosphorothioate substrates, this suggests the participation of divalent ions in the overall catalytic strategy employed by twister ribozymes. In this context, it is notable that twister retains wild‐type activity when the phylogenetically conserved stem P1 is deleted, able to cleave a single nucleotide only. WIREs RNA 2017, 8:e1402. doi: 10.1002/wrna.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| |
Collapse
|
43
|
Ren A, Vušurović N, Gebetsberger J, Gao P, Juen M, Kreutz C, Micura R, Patel DJ. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nat Chem Biol 2016; 12:702-8. [PMID: 27398999 PMCID: PMC4990474 DOI: 10.1038/nchembio.2125] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Nikola Vušurović
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Pu Gao
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| | - Michael Juen
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck, Austria
- Center of Molecular Biosciences (CMBI), Innsbruck, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer, New York, New York, USA
| |
Collapse
|
44
|
Cervera A, Urbina D, de la Peña M. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biol 2016; 17:135. [PMID: 27339130 PMCID: PMC4918200 DOI: 10.1186/s13059-016-1002-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Catalytic RNAs, or ribozymes, are regarded as fossils of a prebiotic RNA world that have remained in the genomes of modern organisms. The simplest ribozymes are the small self-cleaving RNAs, like the hammerhead ribozyme, which have been historically considered biological oddities restricted to some RNA pathogens. Recent data, however, indicate that small self-cleaving ribozymes are widespread in genomes, although their functions are still unknown. Results We reveal that hammerhead ribozyme sequences in plant genomes form part of a new family of small non-autonomous retrotransposons with hammerhead ribozymes, referred to as retrozymes. These elements contain two long terminal repeats of approximately 350 bp, each harbouring a hammerhead ribozyme that delimitates a variable region of 600–1000 bp with no coding capacity. Retrozymes are actively transcribed, which gives rise to heterogeneous linear and circular RNAs that accumulate differentially depending on the tissue or developmental stage of the plant. Genomic and transcriptomic retrozyme sequences are highly heterogeneous and share almost no sequence homology among species except the hammerhead ribozyme motif and two small conserved domains typical of Ty3-gypsy long terminal repeat retrotransposons. Moreover, we detected the presence of RNAs of both retrozyme polarities, which suggests events of independent RNA-RNA rolling-circle replication and evolution, similarly to that of infectious circular RNAs like viroids and viral satellite RNAs. Conclusions Our work reveals that circular RNAs with hammerhead ribozymes are frequently occurring molecules in plant and, most likely, metazoan transcriptomes, which explains the ubiquity of these genomic ribozymes and suggests a feasible source for the emergence of circular RNA plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1002-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia Cervera
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Denisse Urbina
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Marcos de la Peña
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
45
|
Rampášek L, Jimenez RM, Lupták A, Vinař T, Brejová B. RNA motif search with data-driven element ordering. BMC Bioinformatics 2016; 17:216. [PMID: 27188396 PMCID: PMC4870747 DOI: 10.1186/s12859-016-1074-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/07/2016] [Indexed: 01/30/2023] Open
Abstract
Background In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. Results We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. Conclusions We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1074-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Rampášek
- Department of Computer Science, University of Toronto, Toronto, M5R 3G4, ON, Canada.,Department of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 2141 Natural Sciences 2, Irvine, 92697, CA, USA.,Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, Bratislava, 842 48, Slovakia
| | - Randi M Jimenez
- Department of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 2141 Natural Sciences 2, Irvine, 92697, CA, USA
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 2141 Natural Sciences 2, Irvine, 92697, CA, USA.
| | - Tomáš Vinař
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, Bratislava, 842 48, Slovakia
| | - Broňa Brejová
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, Bratislava, 842 48, Slovakia.
| |
Collapse
|
46
|
Skilandat M, Rowinska-Zyrek M, Sigel RKO. Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. RNA (NEW YORK, N.Y.) 2016; 22:750-763. [PMID: 26966151 PMCID: PMC4836649 DOI: 10.1261/rna.053843.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg(2+), the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb(3+)-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg(2+)ions. Up to eight Mg(2+)ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%-90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg(2+)promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg(2+)binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg(2+)for the nested double pseudoknot structure.
Collapse
Affiliation(s)
- Miriam Skilandat
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
47
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
48
|
Lee CH, Han SR, Lee SW. Therapeutic Applications of Aptamer-Based Riboswitches. Nucleic Acid Ther 2015; 26:44-51. [PMID: 26539634 DOI: 10.1089/nat.2015.0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aptamers bind to their targets with high affinity and specificity through structure-based complementarity, instead of sequence complementarity that is used by most of the oligonucleotide-based therapeutics. This property has been exploited in using aptamers as multifunctional therapeutic units, by attaching them to therapeutic drugs, nanoparticles, or imaging agents, or as direct molecular decoys for inducing loss-of-function or gain-of-function of targets. One of the most interesting fields of aptamer application is their development as molecular sensors to regulate artificial riboswitches. Naturally, the riboswitches sense small-molecule metabolites and respond by regulating the expression of the corresponding metabolic genes. Riboswitches are cis-acting RNA structures that consist of the sensing (aptamer) and the regulating (expression platform) domains. In principle, diverse riboswitches can be engineered and applied to control different steps of gene expression in bacterial species as well as eukaryotes, by simply replacing aptamers against various endogenous and/or exogenous targets. Although these engineered aptamer-based riboswitches are recently gaining attention, it is clear that aptamer-based riboswitches have a potential for next-generation therapeutics against various diseases because of their controllability, specificity, and modularity in regulating gene expression through various cellular processes, including transcription, splicing, stability, RNA interference, and translation. In this review, we provide a summary of the recently developed and engineered aptamer-based riboswitches focusing on their therapeutic availability and further discuss their clinical potential.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| |
Collapse
|
49
|
Li S, Lünse CE, Harris KA, Breaker RR. Biochemical analysis of hatchet self-cleaving ribozymes. RNA (NEW YORK, N.Y.) 2015; 21:1845-1851. [PMID: 26385510 PMCID: PMC4604424 DOI: 10.1261/rna.052522.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/22/2015] [Indexed: 06/01/2023]
Abstract
Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg(2+) to promote RNA strand scission with a maximum rate constant of ∼4 min(-1). As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2'-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer.
Collapse
Affiliation(s)
- Sanshu Li
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Christina E Lünse
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Kimberly A Harris
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
50
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|