1
|
Greaves SA, Peterson JN, Strauch P, Torres RM, Pelanda R. Active PI3K abrogates central tolerance in high-avidity autoreactive B cells. J Exp Med 2019; 216:1135-1153. [PMID: 30948496 PMCID: PMC6504226 DOI: 10.1084/jem.20181652] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023] Open
Abstract
High-avidity autoreactive B cells are typically removed by central tolerance mechanisms in the bone marrow. Greaves et al. demonstrate that B cell–intrinsic expression of active PI3Kα prevents central tolerance and effectively promotes differentiation and activation of high-avidity autoreactive B cells in the periphery. Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO.,Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO .,Department of Biomedical Research, National Jewish Health, Denver, CO
| |
Collapse
|
2
|
Noto FK, Adjan-Steffey V, Tong M, Ravichandran K, Zhang W, Arey A, McClain CB, Ostertag E, Mazhar S, Sangodkar J, DiFeo A, Crawford J, Narla G, Jamling TY. Sprague Dawley Rag2-Null Rats Created from Engineered Spermatogonial Stem Cells Are Immunodeficient and Permissive to Human Xenografts. Mol Cancer Ther 2018; 17:2481-2489. [PMID: 30206106 DOI: 10.1158/1535-7163.mct-18-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 (Rag2) gene, using genetically modified spermatogonial stem cells (SSC). We targeted the Rag2 gene in rat SSCs with TALENs and transplanted these Rag2-deficient SSCs into sterile recipients. Offspring were genotyped, and a founder with a 27 bp deletion mutation was identified and bred to homozygosity to produce the Sprague-Dawley Rag2 - Rag2 tm1Hera (SDR) knockout rat. We demonstrated that SDR rat lacks mature B and T cells. Furthermore, the SDR rat model was permissive to growth of human glioblastoma cell line subcutaneously resulting in successful growth of tumors. In addition, a human KRAS-mutant non-small cell lung cancer cell line (H358), a patient-derived high-grade serous ovarian cancer cell line (OV81), and a patient-derived recurrent endometrial cancer cell line (OV185) were transplanted subcutaneously to test the ability of the SDR rat to accommodate human xenografts from multiple tissue types. All human cancer cell lines showed efficient tumor uptake and growth kinetics indicating that the SDR rat is a viable host for a range of xenograft studies. Mol Cancer Ther; 17(11); 2481-9. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Min Tong
- Poseida Therapeutics Inc., San Diego, California
| | | | - Wei Zhang
- Hera BioLabs Inc., Lexington, Kentucky
| | | | | | - Eric Ostertag
- Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Sahar Mazhar
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Jack Crawford
- Hera BioLabs Inc., Lexington, Kentucky.,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Goutham Narla
- Hera BioLabs Inc., Lexington, Kentucky.,The University of Michigan, Ann Arbor, Michigan
| | - Tseten Y Jamling
- Hera BioLabs Inc., Lexington, Kentucky. .,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| |
Collapse
|
3
|
Wentink MWJ, van Zelm MC, van Dongen JJM, Warnatz K, van der Burg M. Deficiencies in the CD19 complex. Clin Immunol 2018; 195:82-87. [PMID: 30075290 DOI: 10.1016/j.clim.2018.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/29/2022]
Abstract
Signaling via the CD19-complex, consisting of CD19, CD81, CD21 and CD225, is critically important for B-cell development, differentiation and maturation. In this complex, each protein has its own distinct function. Over the past decade, 15 patients with antibody deficiency due to deficiencies in the CD19-complex have been described. These patients have deficiencies in different complex-members, all caused by either homozygous or compound heterozygous mutations. Although all patients had antibody deficiencies, the clinical phenotype was different per deficient protein. We aimed to provide an overview of what is known about the function of the different complex-members, knowledge from mouse-studies and to summarize the clinical phenotypes of the patients. Combining this knowledge together can explain why deficiencies in different members of the same complex, result in disease phenotypes that are alike, but not the same.
Collapse
Affiliation(s)
| | - Menno C van Zelm
- Dept. of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Jacques J M van Dongen
- Dept. of Immunohematology and Blood Bank, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Center for Translational Cell Research, Freiburg University Hospital, Freiburg, Germany
| | | |
Collapse
|
4
|
Wentink M, Dalm V, Lankester AC, van Schouwenburg PA, Schölvinck L, Kalina T, Zachova R, Sediva A, Lambeck A, Pico-Knijnenburg I, van Dongen JJM, Pac M, Bernatowska E, van Hagen M, Driessen G, van der Burg M. Genetic defects in PI3Kδ affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol 2017; 176:77-86. [PMID: 28104464 DOI: 10.1016/j.clim.2017.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mutations in PIK3CD and PIK3R1 cause activated PI3K-δ syndrome (APDS) by dysregulation of the PI3K-AKT pathway. METHODS We studied precursor and peripheral B-cell differentiation and apoptosis via flowcytometry. Furthermore, we performed AKT-phosphorylation assays and somatic hypermutations (SHM) and class switch recombination (CSR) analysis. RESULTS We identified 13 patients of whom 3 had new mutations in PIK3CD or PIK3R1. Patients had low total B-cell numbers with increased frequencies of transitional B cells and plasmablasts, while the precursor B-cell compartment in bone marrow was relatively normal. Basal AKT phosphorylation was increased in lymphocytes from APDS patients and natural effector B cells where most affected. PI3K mutations resulted in altered SHM and CSR and increased apoptosis. CONCLUSIONS The B-cell compartment in APDS patients is affected by the mutations in PI3K. There is reduced differentiation beyond the transitional stage, increased AKT phosphorylation and increased apoptosis. This B-cell phenotype contributes to the clinical phenotype.
Collapse
Affiliation(s)
- Marjolein Wentink
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Virgil Dalm
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Dept. of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arjan C Lankester
- Dept. of Pediatric Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Liesbeth Schölvinck
- University of Groningen, University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatrics, Infectious Diseases and Immunology Section, Groningen, The Netherlands
| | - Tomas Kalina
- Dept. of Pediatric Hematology and Oncology, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Radana Zachova
- Dept. of Immunology, Charles University, 2nd Faculty of Medicine and Motol Hospital, Prague, Czech Republic
| | - Anna Sediva
- Dept. of Immunology, Charles University, 2nd Faculty of Medicine and Motol Hospital, Prague, Czech Republic
| | - Annechien Lambeck
- University of Groningen, University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatrics, Infectious Diseases and Immunology Section, Groningen, The Netherlands
| | - Ingrid Pico-Knijnenburg
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Dept. of Immunohematology and Blood Bank, Leiden University Medical Center, Leiden, The Netherlands
| | - Malgorzata Pac
- Dept. of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Bernatowska
- Dept. of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Martin van Hagen
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Dept. of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gertjan Driessen
- Dept. of Pediatric Immunology and Infectious Diseases, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands.
| | - Mirjam van der Burg
- Dept. of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Yang Q, Chen LS, Ha MJ, Do KA, Neelapu SS, Gandhi V. Idelalisib Impacts Cell Growth through Inhibiting Translation-Regulatory Mechanisms in Mantle Cell Lymphoma. Clin Cancer Res 2016; 23:181-192. [PMID: 27342398 DOI: 10.1158/1078-0432.ccr-15-3135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE PI3K is a critical node in the B-cell receptor pathway, which is responsible for survival and proliferation of B-cell malignancies. Idelalisib, a PI3Kδ-isoform-specific inhibitor, has been approved to treat B-cell malignancies. Although biological activity of the drug has been evaluated, molecular mechanisms and signaling pathway disruption leading to the biological effects of idelalisib are not yet well defined. Prior laboratory reports have identified transcription and translation as the primary events for attenuation of PI3Kα isoform. We hypothesized that PI3Kδ-isoform inhibition by idelalisib should also affect gene transcription and protein translation. EXPERIMENTAL DESIGN Using three mantle cell lymphoma cell lines and primary cells from patients, biological consequences such as apoptosis/cell-cycle analysis, as well as RNA/protein synthesis were evaluated. Proteomics analyses (RPPA and immunoblot assays) defined molecular events downstream of PI3K/AKT cassette. RESULTS Idelalisib treatment resulted in inhibition of protein synthesis, which correlated with reduction in cell size and cell growth. A moderate loss of viability without any change in cell-cycle profile was observed. Idelalisib treatment inhibited AKT activation, an immediate downstream PI3K effector, and also reduced phosphorylation levels of downstream AKT/mTOR pathway proteins such as PRAS40. In addition, idelalisib treatment impeded activation of the MAPK pathway, and MEK, ERK and p90RSK phosphorylation levels were reduced. Reduction in AKT, PDK1, and MEK phosphorylation correlated with protein synthesis inhibition. CONCLUSIONS Collectively, these results clarify the molecular mechanisms of actions and may provide biomarkers and targets for combination with idelalisib in B-cell malignancies. Clin Cancer Res; 23(1); 181-92. ©2016 AACR.
Collapse
Affiliation(s)
- Qingshan Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
The Role of p110δ in the Development and Activation of B Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:119-35. [DOI: 10.1007/978-3-319-15774-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Vella LJ, Andrews MC, Behren A, Cebon J, Woods K. Immune consequences of kinase inhibitors in development, undergoing clinical trials and in current use in melanoma treatment. Expert Rev Clin Immunol 2014; 10:1107-23. [PMID: 24939732 DOI: 10.1586/1744666x.2014.929943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metastatic malignant melanoma is a frequently fatal cancer. In recent years substantial therapeutic progress has occurred with the development of targeted kinase inhibitors and immunotherapeutics. Targeted therapies often result in rapid clinical benefit however responses are seldom durable. Immune therapies can result in durable disease control but responses may not be immediate. Optimal cancer therapy requires both rapid and durable cancer control and this can likely best be achieved by combining targeted therapies with immunotherapeutics. To achieve this, a detailed understanding of the immune consequences of the various kinase inhibitors, in development, clinical trial and currently used to treat melanoma is required.
Collapse
Affiliation(s)
- Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immuno-biology Laboratory, Heidelberg, VIC 3084, Australia
| | | | | | | | | |
Collapse
|
8
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|