1
|
Viral subversion of the cell polarity regulator Scribble. Biochem Soc Trans 2023; 51:415-426. [PMID: 36606695 PMCID: PMC9987997 DOI: 10.1042/bst20221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Scribble is a scaffolding protein that regulates key events such as cell polarity, tumorigenesis and neuronal signalling. Scribble belongs to the LAP family which comprise of 16 Leucine Rich Repeats (LRR) at the N-terminus, two LAP Specific Domains (LAPSD) and four PSD-95/Discs-large/ZO-1 (PDZ) domains at the C-terminus. The four PDZ domains have been shown to be key for a range of protein-protein interactions and have been identified to be crucial mediators for the vast majority of Scribble interactions, particularly via PDZ Binding Motifs (PBMs) often found at the C-terminus of interacting proteins. Dysregulation of Scribble is associated with poor prognosis in viral infections due to subversion of multiple cell signalling pathways by viral effector proteins. Here, we review the molecular details of the interplay between Scribble and viral effector proteins that provide insight into the potential modes of regulation of Scribble mediated polarity signalling.
Collapse
|
2
|
Moreau MM, Pietropaolo S, Ezan J, Robert BJA, Miraux S, Maître M, Cho Y, Crusio WE, Montcouquiol M, Sans N. Scribble Controls Social Motivation Behavior through the Regulation of the ERK/Mnk1 Pathway. Cells 2022; 11:cells11101601. [PMID: 35626639 PMCID: PMC9139383 DOI: 10.3390/cells11101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Social behavior is a basic domain affected by several neurodevelopmental disorders, including ASD and a heterogeneous set of neuropsychiatric disorders. The SCRIB gene that codes for the polarity protein SCRIBBLE has been identified as a risk gene for spina bifida, the most common type of neural tube defect, found at high frequencies in autistic patients, as well as other congenital anomalies. The deletions and mutations of the 8q24.3 region encompassing SCRIB are also associated with multisyndromic and rare disorders. Nonetheless, the potential link between SCRIB and relevant social phenotypes has not been fully investigated. Hence, we show that Scribcrc/+ mice, carrying a mutated version of Scrib, displayed reduced social motivation behavior and social habituation, while other behavioral domains were unaltered. Social deficits were associated with the upregulation of ERK phosphorylation, together with increased c-Fos activity. Importantly, the social alterations were rescued by both direct and indirect pERK inhibition. These results support a link between polarity genes, social behaviors and hippocampal functionality and suggest a role for SCRIB in the etiopathology of neurodevelopmental disorders. Furthermore, our data demonstrate the crucial role of the MAPK/ERK signaling pathway in underlying social motivation behavior, thus supporting its relevance as a therapeutic target.
Collapse
Affiliation(s)
- Maïté M. Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Jérôme Ezan
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Benjamin J. A. Robert
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Sylvain Miraux
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques UMR5536, 33077 Bordeaux, France;
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Yoon Cho
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Wim E. Crusio
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Mireille Montcouquiol
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| |
Collapse
|
3
|
Daulat AM, Wagner MS, Walton A, Baudelet E, Audebert S, Camoin L, Borg JP. The Tumor Suppressor SCRIB is a Negative Modulator of the Wnt/β-Catenin Signaling Pathway. Proteomics 2019; 19:e1800487. [PMID: 31513346 DOI: 10.1002/pmic.201800487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/08/2019] [Indexed: 12/25/2022]
Abstract
SCRIB is a scaffold protein containing leucine-rich repeats (LRR) and PSD-95/Dlg-A/ZO-1 domains (PDZ) that localizes at the basolateral membranes of polarized epithelial cells. Deregulation of its expression or localization leads to epithelial defects and tumorigenesis in part as a consequence of its repressive role on several signaling pathways including AKT, ERK, and HIPPO. In the present work, a proteomic approach is used to characterize the protein complexes associated to SCRIB and its paralogue LANO. Common and specific sets of proteins associated to SCRIB and LANO by MS are identified and an extensive landscape of their associated networks and the first comparative analysis of their respective interactomes are provided. Under proteasome inhibition, it is further found that SCRIB is associated to the β-catenin destruction complex that is central in Wnt/β-catenin signaling, a conserved pathway regulating embryonic development and cancer progression. It is shown that the SCRIB/β-catenin interaction is potentiated upon Wnt3a stimulation and that SCRIB plays a repressing role on Wnt signaling. The data thus provide evidence for the importance of SCRIB in the regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Avais M Daulat
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Mônica Silveira Wagner
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Alexandra Walton
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, Marseille Proteomics, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, Marseille Proteomics, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille, Marseille Proteomics, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France.,Centre de Recherche en Cancérologie de Marseille, Marseille Proteomics, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, 13009, Marseille, France
| |
Collapse
|
4
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
5
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
6
|
CD74-dependent deregulation of the tumor suppressor scribble in human epithelial and breast cancer cells. Neoplasia 2014; 15:660-8. [PMID: 23730214 DOI: 10.1593/neo.13464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/18/2022] Open
Abstract
The γ subunit of the major histocompatibility complex (MHC) class II complex, CD74, is overexpressed in a significant proportion of metastatic breast tumors, but the mechanistic foundation and biologic significance of this phenomenon are not fully understood. Here, we show that when CD74 is overexpressed in human cancer and noncancerous epithelial cells, it interacts and interferes with the function of Scribble, a product of a well-known tumor suppressor gene. Furthermore, using epithelial cell lines expressing CD74 under the control of tetracycline-inducible promoter and quantitative high-resolution mass spectrometry, we demonstrate that, as a result of CD74 overexpression, the phosphorylation pattern of the C-terminal part of Scribble undergoes specific changes. This is accompanied with a translocation of the protein from the sites of cell-to-cell contacts at the plasma membrane to the cytoplasm, which is likely to effectively enhance the motility and invasiveness of the cancer cells.
Collapse
|
7
|
Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126:3990-9. [PMID: 23813956 DOI: 10.1242/jcs.129387] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tight junction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting in increased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulation of a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | |
Collapse
|
8
|
Frank SR, Bell JH, Frödin M, Hansen SH. A βPIX-PAK2 complex confers protection against Scrib-dependent and cadherin-mediated apoptosis. Curr Biol 2012; 22:1747-54. [PMID: 22863318 DOI: 10.1016/j.cub.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 06/11/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND During epithelial morphogenesis, a complex comprising the βPIX (PAK-interacting exchange factor β) and class I PAKs (p21-activated kinases) is recruited to adherens junctions. Scrib, the mammalian ortholog of the Drosophila polarity determinant and tumor suppressor Scribble, binds βPIX directly. Scrib is also targeted to adherens junctions by E-cadherin, where Scrib strengthens cadherin-mediated cell-cell adhesion. Although a role for the Scrib-βPIX-PAK signaling complex in promoting membrane protrusion at wound edges has been elucidated, a function for this complex at adherens junctions remains unknown. RESULTS Here, we establish that Scrib targets βPIX and PAK2 to adherens junctions where a βPIX-PAK2 complex counterbalances apoptotic stimuli transduced by Scrib and elicited by cadherin-mediated cell-cell adhesion. Moreover, we show that this signaling pathway regulates cell survival in response to osmotic stress. Finally, we determine that in suspension cultures, the Scrib-βPIX-PAK2 complex functions to regulate anoikis elicited by cadherin engagement, with Scrib promoting and the βPIX-PAK2 complex suppressing anoikis, respectively. CONCLUSIONS Our findings demonstrate that the Scrib-βPIX-PAK2 signaling complex functions as an essential modulator of cell survival when localized to adherens junctions of polarized epithelia. The activity of this complex at adherens junctions is thereby essential for normal epithelial morphogenesis and tolerance of physiological stress. Furthermore, when localized to adherens junctions, the Scrib-βPIX-PAK2 signaling complex serves as a key determinant of anoikis sensitivity, a pivotal mechanism in tumor suppression. Thus, this work also reveals the need to expand the definition of anoikis to include a central role for adherens junctions.
Collapse
Affiliation(s)
- Scott R Frank
- GI Cell Biology Research Laboratory, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
9
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|