1
|
Chai F, Li P, Liu X, Zhou Z, Ren H. Targeting the PD-L1 cytoplasmic domain and its regulatory pathways to enhance cancer immunotherapy. J Mol Cell Biol 2024; 15:mjad070. [PMID: 37993416 PMCID: PMC11193063 DOI: 10.1093/jmcb/mjad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
As a significant member of the immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) plays a critical role in cancer immune escape and has become an important target for cancer immunotherapy. Clinically approved drugs mainly target the extracellular domain of PD-L1. Recently, the small cytoplasmic domain of PD-L1 has been reported to regulate PD-L1 stability and function through multiple pathways. Therefore, the intracellular domain of PD-L1 and its regulatory pathways could be promising targets for cancer therapy, expanding available strategies for combined immunotherapy. Here, we summarize the emerging roles of the PD-L1 cytoplasmic domain and its regulatory pathways. The conserved motifs, homodimerization, and posttranslational modifications of the PD-L1 cytoplasmic domain have been reported to regulate the membrane anchoring, degradation, nuclear translocation, and glycosylation of PD-L1. This summary provides a comprehensive understanding of the functions of the PD-L1 cytoplasmic domain and evaluates the broad prospects for targeted therapy.
Collapse
Affiliation(s)
- Fangni Chai
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pan Li
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Liu
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhihui Zhou
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
2
|
Cai J, Cui J, Wang L. S-palmitoylation regulates innate immune signaling pathways: molecular mechanisms and targeted therapies. Eur J Immunol 2023; 53:e2350476. [PMID: 37369620 DOI: 10.1002/eji.202350476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.
Collapse
Affiliation(s)
- Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li D, Zhou X, Xu W, Chen Y, Mu C, Zhao X, Yang T, Wang G, Wei L, Ma B. Prostate cancer cells synergistically defend against CD8 + T cells by secreting exosomal PD-L1. Cancer Med 2023; 12:16405-16415. [PMID: 37501397 PMCID: PMC10469662 DOI: 10.1002/cam4.6275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) remains fatal and incurable, despite a variety of treatments that can delay disease progression and prolong life. Immune checkpoint therapy is a promising treatment. However, emerging evidence suggests that exosomal programmed necrosis ligand 1 (PD-L1) directly binds to PD-1 on the surface of T cells in the drain lineage lymph nodes or neutralizes administered PD-L1 antibodies, resulting in poor response to anti-PD-L1 therapy in mCRPC. MATERIALS AND METHODS Western blotting and immunofluorescence were performed to compare PD-L1 levels in exosomes derived from different prostate cancer cells. PC3 cells were subcutaneously injected into nude mice, and then ELISA assay was used to detect human specific PD-L1 in exosomes purified from mouse serum. The function of CD8+ T cells was detected by T cell mediated tumor cell killing assay and FACS analysis. A subcutaneous xenograft model was established using mouse prostate cancer cell RM1, exosomes with or without PD-L1 were injected every 3 days, and then tumor size and weight were analyzed to evaluate the effect of exosomal PD-L1. RESULTS Herein, we found that exosomal-PD-L1 was taken up by tumor cells expressing low levels of PD-L1, thereby protecting them from T-cell killing. Higher levels of PD-L1 were detected in exosomes derived from the highly malignant prostate cancer PC3 and DU145 cell lines. Moreover, exosomal PD-L1 was taken up by the PD-L1-low-expressing LNCaP cell line and inhibited the killing function of CD8-T cells on tumor cells. The growth rate of RM1-derived subcutaneous tumors was decreased after knockdown of PD-L1 in tumor cells, whereas the growth rate recovered following exosomal PD-L1 tail vein injection. Furthermore, in the serum of mice with PCa subcutaneous tumors, PD-L1 was mainly present on exosomes. CONCLUSION In summary, tumor cells share PD-L1 synergistically against T cells through exosomes. Inhibition of exosome secretion or prevention of PD-L1 sorting into exosomes may improve the therapeutic response of prostate tumors to anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Dameng Li
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Xueying Zhou
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Wenxian Xu
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Yuxin Chen
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Chenglong Mu
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Xinchun Zhao
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Tao Yang
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Gang Wang
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Liang Wei
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Bo Ma
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
- Center of Clinical OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
4
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
5
|
Wang D, Liu S, Wang G. Establishment of an Endocytosis-Related Prognostic Signature for Patients With Low-Grade Glioma. Front Genet 2021; 12:709666. [PMID: 34552618 PMCID: PMC8450508 DOI: 10.3389/fgene.2021.709666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Low-grade glioma (LGG) is a heterogeneous tumor that might develop into high-grade malignant glioma, which markedly reduces patient survival time. Endocytosis is a cellular process responsible for the internalization of cell surface proteins or external materials into the cytosol. Dysregulated endocytic pathways have been linked to all steps of oncogenesis, from initial transformation to late invasion and metastasis. However, endocytosis-related gene (ERG) signatures have not been used to study the correlations between endocytosis and prognosis in cancer. Therefore, it is essential to develop a prognostic model for LGG based on the expression profiles of ERGs. Methods The Cancer Genome Atlas and the Genotype-Tissue Expression database were used to identify differentially expressed ERGs in LGG patients. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene set enrichment analysis methodologies were adopted for functional analysis. A protein-protein interaction (PPI) network was constructed and hub genes were identified based on the Search Tool for the Retrieval of Interacting Proteins database. Univariate and multivariate Cox regression analyses were used to develop an ERG signature to predict the overall survival (OS) of LGG patients. Finally, the association between the ERG signature and gene mutation status was further analyzed. Results Sixty-two ERGs showed distinct mRNA expression patterns between normal brain tissues and LGG tissues. Functional analysis indicated that these ERGs were strikingly enriched in endosomal trafficking pathways. The PPI network indicated that EGFR was the most central protein. We then built a 29-gene signature, dividing patients into high-risk and low-risk groups with significantly different OS times. The prognostic performance of the 29-gene signature was validated in another LGG cohort. Additionally, we found that the mutation scores calculated based on the TTN, PIK3CA, NF1, and IDH1 mutation status were significantly correlated with the endocytosis-related prognostic signature. Finally, a clinical nomogram with a concordance index of 0.881 predicted the survival probability of LGG patients by integrating clinicopathologic features and ERG signatures. Conclusion Our ERG-based prediction models could serve as an independent prognostic tool to accurately predict the outcomes of LGG.
Collapse
Affiliation(s)
- Dawei Wang
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiguang Liu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
7
|
Wang Y, Deng S, Xu J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biol Med 2020; 17:583-598. [PMID: 32944392 PMCID: PMC7476092 DOI: 10.20892/j.issn.2095-3941.2020.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy harness the body’s immune system to eliminate cancer, by using a broad panel of soluble and membrane proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these molecules’ modes of action, target-binding “warheads”, lysosomal sorting signals, and linker design should facilitate their rational design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.
Collapse
Affiliation(s)
- Yungang Wang
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng 224006, China
| | - Shouyan Deng
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 2019; 3:306-317. [PMID: 30952982 DOI: 10.1038/s41551-019-0375-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.
Collapse
|
9
|
Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, Janouškovec J, Hrdá Š, Klimeš V, Burger G, Inagaki Y, Keeling PJ, Hampl V, Flegontov P, Yurchenko V, Eliáš M. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep 2018; 8:5239. [PMID: 29588502 PMCID: PMC5869587 DOI: 10.1038/s41598-018-23575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Euki Yazaki
- Institute for Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Denis V Tikhonenkov
- Laboratory of Microbiology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anzhelika Butenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Štěpánka Hrdá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
10
|
Abstract
Ras is the best-studied member of the superfamily of small GTPases because of its role in cancer. Ras proteins transmit signals for proliferation, differentiation and survival. Three RAS genes encode 4 isoforms. All Ras isoforms have long been considered membrane bound, a localization required for function. Our recent study revealed that N-Ras differs from all other isoforms in being largely cytosolic even following modification with a prenyl lipid. Endogenous, cytosolic N-Ras chromatographed in both high and low molecular weight pools, a pattern that required prenylation, suggesting prenyl-dependent interaction with other proteins. VPS35, a coat protein of the retromer, was shown to interact with prenylated N-Ras in the cytosol. Silencing VPS35 results in partial N-Ras mislocalization on vesicular and tubulovesicular structures, reduced GTP-loading of Ras proteins, and inhibited proliferation and MAPK signaling in an oncogenic N-Ras-driven tumor cell line. Our data revealed a novel regulator of N-Ras trafficking and signaling.
Collapse
Affiliation(s)
- Mo Zhou
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| | - Mark R Philips
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| |
Collapse
|
11
|
Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation. mBio 2016; 7:mBio.01925-16. [PMID: 27879337 PMCID: PMC5120144 DOI: 10.1128/mbio.01925-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. Subcellular compartmentalization is increasingly recognized as an important aspect of fungal secondary metabolism. It facilitates sequential enzymatic reactions, provides mobility for enzymes and metabolites, and offers protection against self-toxification. However, how compartmentalization is achieved remains unclear given that the majority of enzymes encoded by secondary metabolism gene clusters are predicted to be cytosolic proteins. Through studying melanization in Aspergillus, we previously found that all enzymes involved in the early steps of melanization are atypical secretory proteins. Here, we discovered physical interactions among melanin enzymes. However, it was the posttranslational palmitoylation rather than the physical interaction that was responsible for their recruitment to the secretory pathway. Intriguingly, palmitoylation is likely a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Collectively, our findings suggest that posttranslational lipid modification helps direct secondary metabolism to defined organelles for biosynthesis and trafficking.
Collapse
|
12
|
Qu D, Huang H, DI J, Gao K, Lu Z, Zheng J. Structure, functional regulation and signaling properties of Rap2B. Oncol Lett 2016; 11:2339-2346. [PMID: 27073477 DOI: 10.3892/ol.2016.4261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
The Ras family small guanosine 5'-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer.
Collapse
Affiliation(s)
- Debao Qu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hui Huang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiehui DI
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
13
|
|