1
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Wang W, Luo Q, Zhao Y, Geng S, Xu T, Sun Y. Genomic organization, evolution and functional characterization of embryonic lethal abnormal vision like protein 1 (ELAVL1) in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104659. [PMID: 36764421 DOI: 10.1016/j.dci.2023.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Embryonic lethal vision-like protein 1 (ELAVL1), an AU-rich elements (AREs) binding protein involved in the regulation of inflammatory transcript stability, which has not been reported in fish. In this study, we identified the ELAVL1 gene in Miichthys miiuy (mmiELAVL1), and then analyzed its structure and evolution, furthermore described its expression pattern in miiuy croaker. The results showed that mmiELAVL1 and other vertebrate ELAVL1 genes all have three highly conserved RNA recognition motif (RRM) protein domains, and the structure and protein structure are evolutionarily conserved, indicating that their functions may also conservative. In healthy miiuy croaker, mmiELAVL1 was commonly expressed in the tested tissues, and mmiELAVL1 is mainly localized in the nucleus of kidney cells. In addition, mmiELAVL1 responds to poly(I:C) and SCRV stimulation and promotes antiviral genes, indicating its active role in immune process. In summary, this study will facilitate future studies on the role and underlying mechanisms of ELAVL1 in fish immune responses.
Collapse
Affiliation(s)
- Wansu Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
3
|
Rothamel K, Arcos S, Kim B, Reasoner C, Lisy S, Mukherjee N, Ascano M. ELAVL1 primarily couples mRNA stability with the 3' UTRs of interferon-stimulated genes. Cell Rep 2021; 35:109178. [PMID: 34038724 PMCID: PMC8225249 DOI: 10.1016/j.celrep.2021.109178] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Upon pathogen detection, the innate immune system triggers signaling events leading to upregulation of pro-inflammatory and anti-microbial mRNA transcripts. RNA-binding proteins (RBPs) interact with these critical mRNAs and regulate their fates at the post-transcriptional level. One such RBP is ELAVL1. Although significant progress has been made in understanding how embryonic lethal vision-like protein 1 (ELAVL1) regulates mRNAs, its target repertoire and binding distribution within an immunological context remain poorly understood. We overlap four high-throughput approaches to define its context-dependent targets and determine its regulatory impact during immune activation. ELAVL1 transitions from binding overwhelmingly intronic sites to 3′ UTR sites upon immune stimulation of cells, binding previously and newly expressed mRNAs. We find that ELAVL1 mediates the RNA stability of genes that regulate pathways essential to pathogen sensing and cytokine production. Our findings reveal the importance of examining RBP regulatory impact under dynamic transcriptomic events to understand their post-transcriptional regulatory roles within specific biological circuitries. Rothamel et al. show that upon immune activation, the RNA-binding protein ELAVL1 accumulates in the cytoplasm and redistributes from introns to mRNA 3′ UTRs. 3′ UTR binding confers enrichment and transcript stability. Many top-ranking transcripts are interferon-stimulated genes (ISGs), indicating that ELAVL1 is a positive regulator of an innate immune response.
Collapse
Affiliation(s)
- Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Clara Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Xia H, Chen L, Shao D, Liu X, Wang Q, Zhu F, Guo Z, Gao L, Chen K. Vacuolar protein sorting 4 is required for silkworm metamorphosis. INSECT MOLECULAR BIOLOGY 2019; 28:728-738. [PMID: 30955208 DOI: 10.1111/imb.12586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vacuolar protein sorting 4 (Vps4) not only functions with its positive regulator vacuolar protein sorting 20-associated 1 (Vta1) in the multivesicular body (MVB) pathway but also participates alone in MVB-unrelated cellular processes. However, its physiological roles at the organism level remain rarely explored. We previously identified their respective homologues Bombyx mori Vps4 (BmVps4) and BmVta1 from the silkworm, a model organism for insect research. In this study, we performed fluorescence quantitative real-time PCR and Western blot to globally characterize the transcription and protein expression profiles of BmVps4 and BmVta1 during silkworm development and in different silkworm tissues and organs. The results showed that they were significantly up-regulated in metamorphosis, adulthood and embryogenesis relative to larval stages, and displayed a roughly similar tissue-and-organ specificity for transcriptions in silkworm larvae. Importantly, BmVps4 was down-regulated during the early period of the fifth instar, reaching the lowest level of transcription on Day 6, then up-regulated from Day 7 to the wandering, spinning and pupal stages, and down-regulated again in adulthood. Moreover, knocking down BmVps4 by RNA interference significantly inhibited silk gland growth, shortened spinning time, prolonged pupation, reduced pupal size and weight, and increased moth wing defects. Together, our data demonstrate the critical and broad requirements for BmVps4 in silkworm metamorphosis.
Collapse
Affiliation(s)
- H Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - L Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - D Shao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - X Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Q Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - F Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Z Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - L Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Zandieh Z, Amjadi F, Vakilian H, Aflatoonian K, Amirchaghmaghi E, Fazeli A, Aflatoonian R. Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells. Clin Exp Reprod Med 2018; 45:154-162. [PMID: 30538945 PMCID: PMC6277672 DOI: 10.5653/cerm.2018.45.4.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Objective The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line.
Collapse
Affiliation(s)
- Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haghighat Vakilian
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Elham Amirchaghmaghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Wang H, Behrens EM, Pignolo RJ, Kaplan FS. ECSIT links TLR and BMP signaling in FOP connective tissue progenitor cells. Bone 2018; 109:201-209. [PMID: 29288875 DOI: 10.1016/j.bone.2017.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 01/12/2023]
Abstract
Clinical and laboratory observations strongly suggest that the innate immune system induces flare-ups in the setting of dysregulated bone morphogenetic protein (BMP) signaling in fibrodysplasia ossificans progressiva (FOP). In order to investigate the signaling substrates of this hypothesis, we examined toll-like receptor (TLR) activation and bone morphogenetic protein (BMP) signaling in connective tissue progenitor cells (CTPCs) from FOP patients and unaffected individuals. We found that inflammatory stimuli broadly activate TLR expression in FOP CTPCs and that TLR3/TLR4 signaling amplifies BMP pathway signaling through both ligand dependent and independent mechanisms. Importantly, Evolutionarily Conserved Signaling Intermediate in the Toll Pathway (ECSIT) integrates TLR injury signaling with dysregulated BMP pathway signaling in FOP CTPCs. These findings provide novel insight into the cell autonomous integration of injury signals from the innate immune system with dysregulated response signals from the BMP signaling pathway and provide new exploratory targets for therapeutic approaches to blocking the induction and amplification of FOP lesions.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Physiology and Biomedical Research, The Mayo Clinic, Rochester, MN, United States
| | - Edward M Behrens
- Department of Pediatrics, Division of Rheumatology, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, United States
| | - Robert J Pignolo
- Department of Medicine, The Mayo Clinic, Rochester, MN, United States.
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, United States; Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, United States; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Salmina AB, Komleva YK, Lopatina OL, Kuvacheva NV, Gorina YV, Panina YA, Uspenskaya YA, Petrova MM, Demko IV, Zamay AS, Malinovskaya NA. Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Rev Neurosci 2016; 26:143-59. [PMID: 25528762 DOI: 10.1515/revneuro-2014-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023]
Abstract
Neuroinflammation is as an important component of pathogenesis in many types of brain pathology. Immune mechanisms regulate neuroplasticity, memory formation, neurogenesis, behavior, brain development, cognitive functions, and brain metabolism. It is generally believed that essential homeostatic functions of astrocytes - astroglia-neuron metabolic coupling, gliovascular control, regulation of proliferation, and migration of cells in the neurogenic niches - are compromised in neuroinflammation resulting in excitotoxicity, neuronal and glial cell death, and alterations of intercellular communication. Viral neuroinfection, release of non-coding RNAs from the cells at the sites of brain injury or degeneration, and application of siRNA or RNA aptamers as therapeutic agents would require dsRNA-sensing pathways in the cells of neuronal and non-neuronal origin. In this review, we analyze the data regarding the role of astrocytes in dsRNA-initiated innate immune response in neuroinflammation and their contribution to progression of neurodegenerative and neurodevelopmental pathology.
Collapse
|
8
|
The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion. PLoS Pathog 2015; 11:e1005123. [PMID: 26431433 PMCID: PMC4592276 DOI: 10.1371/journal.ppat.1005123] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.
Collapse
|
9
|
Sorvina A, Brooks DA, Ng YS, Bader CA, Weigert R, Shandala T. Bacterial challenge initiates endosome-lysosome response inDrosophilaimmune tissues. INTRAVITAL 2014. [DOI: 10.4161/intv.23889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Abstract
The nine neurodegenerative disorders including Huntington disease (HD) are caused by the expansion of a trinucleotide CAG repeats (polyQ), which are located within the coding of the affected gene. Previous studies suggested that a gain of toxic function by polyQ repeats is widely thought to have a major role in pathogenesis. PolyQ-expanded htt induced ubiquitinated aggregates cause cell death in neuronal cells. Using a HD cellular model, we demonstrate that Tollip protects cells against the toxicity of polyQ-expanded htt and also protects cells from death (Oguro, Kubota, Shimizu, Ishiura, & Atomi, 2011). Tom1 which belongs to the VHS domain-containing protein family is also found to be directly binding to ubiquitin chains and Tollip (Katoh et al., 2004; Yamakami, Yoshimori, & Yokosawa, 2003). Tollip recruits misfolded protein to aggresome via late endosome. The cell system can be used to determine if your protein of interest is controlled under a part of Tollip pathway or not among other cell homeostatic systems: molecular chaperons, autophagy, and endoplasmic reticulum (ER)-associated degradation (ERAD). Tollip can be used for polyQ cell toxicity sensor by detecting microtubule-dependent trafficking and aggresome colocalization of aggregated protein.
Collapse
|
12
|
Benzing C, Rossy J, Gaus K. Do signalling endosomes play a role in T cell activation? FEBS J 2013; 280:5164-76. [PMID: 23834225 DOI: 10.1111/febs.12427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/02/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022]
Abstract
Signalling endosomes represent a general mechanism for modulating and compartmentalizing cell signalling, which is achieved by delineating specific spatial environments and connecting the plasma membrane with intracellular events. The molecular composition of vesicles, together with their targeting mechanisms and endocytic routes, contributes to the outcome of signalling pathways that are initiated either at the plasma membrane or within endosomes themselves. In T cell signalling, it is now accepted that the spatial distribution of signalling proteins is central to T cell activation not only at the immunological synapse, but also in endosomes travelling to and from the plasma membrane. In addition, there is a global rearrangement of the endosome machinery upon T cell activation, and emerging experimental evidence suggests that vesicles in T cells contain key T cell signalling proteins. We review the various mechanisms by which endosomes contribute to signalling pathways and consider whether signalling endosomes play a role in T cell signalling.
Collapse
Affiliation(s)
- Carola Benzing
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|