1
|
Louveau B, Reger De Moura C, Jouenne F, Sadoux A, Allayous C, Da Meda L, Bernard-Cacciarella M, Baroudjian B, Lebbé C, Mourah S, Dumaz N. Combined PDE4+MEK inhibition shows antiproliferative effects in NRASQ61 mutated melanoma preclinical models. Melanoma Res 2024; 34:186-192. [PMID: 38141200 DOI: 10.1097/cmr.0000000000000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Upregulation of phosphodiesterase type 4 (PDE4) has been associated with worse prognosis in several cancers. In melanomas harboring NRAS mutations, PDE4 upregulation has been shown to trigger a switch in signaling from BRAF to RAF1 which leads to mitogen-activated protein kinase pathway activation. Previous in vitro evidence showed that PDE4 inhibition induced death in NRASQ61mut melanoma cells and such a strategy may thus be a relevant therapeutic option in those cases with no molecular targeted therapies approved to date. In this study, we generated patient-derived xenografts (PDX) from two NRASQ61mut melanoma lesions. We performed ex vivo histoculture drug response assays and in vivo experiments. A significant ex vivo inhibition of proliferation with the combination of roflumilast+cobimetinib was observed compared to dimethyl sulfoxide control in both models (51 and 67%). This antiproliferative effect was confirmed in vivo for PDX-1 with a 56% inhibition of tumor growth. To decipher molecular mechanisms underlying this effect, we performed transcriptomic analyses and revealed a decrease in MKI67, RAF1 and CCND1 expression under bitherapy. Our findings strengthen the therapeutic interest of PDE4 inhibitors and support further experiments to evaluate this approach in metastatic melanoma.
Collapse
Affiliation(s)
- Baptiste Louveau
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Coralie Reger De Moura
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Clara Allayous
- Department of Dermatology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Da Meda
- Department of Dermatology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mélanie Bernard-Cacciarella
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Barouyr Baroudjian
- Department of Dermatology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céleste Lebbé
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
- Department of Dermatology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| | - Nicolas Dumaz
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), Paris, France
| |
Collapse
|
2
|
Veth TS, Francavilla C, Heck AJR, Altelaar M. Elucidating Fibroblast Growth Factor-Induced Kinome Dynamics Using Targeted Mass Spectrometry and Dynamic Modeling. Mol Cell Proteomics 2023; 22:100594. [PMID: 37328066 PMCID: PMC10368922 DOI: 10.1016/j.mcpro.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, and Manchester Breast Centre, Manchester Cancer Research Centre, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Hossain SM, Eccles MR. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. Int J Mol Sci 2023; 24:ijms24021601. [PMID: 36675114 PMCID: PMC9864717 DOI: 10.3390/ijms24021601] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
4
|
Cai Y, Liu H, Chen X, Yang J, Huang B. P40 and TTF-1 double-expressing non-small cell lung cancer with EML4-ALK and PIK3CA gene mutations: A case report and review of the literature. Oncol Lett 2022; 25:59. [PMID: 36644157 PMCID: PMC9827448 DOI: 10.3892/ol.2022.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
P40 and thyroid transcription factor-1 (TTF-1) dual expression in non-small cell lung cancer (NSCLC) is a rare occurrence. However, the presence of EML4-ALK and PIK3CA gene mutations in this type of cancer is unknown. The present study describes the case of a 38-year-old male patient who had never smoked. A 4.5-cm mass adjacent to his right upper mediastinum was detected by a computed tomography (CT) scan of the chest. Biopsy of the level four lymph nodes in the right mediastinum revealed microscopic morphological features typical of high-grade NSCLC. Immunohistochemical findings resembled those reported previously for several cases of NSCLC with the dual expression of P40 and TTF-1 markers. In addition, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit a (PIK3CA) gene mutations were detected using high-throughput next-generation sequencing. To the best of our knowledge, this is the first report of NSCLC with the expression of P40 and TTF-1 as well as EML4-ALK and PIK3CA gene mutations. The presence of this type of tumor should be considered in patients with NSCLC who have never smoked and may have unique clinicopathological features.
Collapse
Affiliation(s)
- Ying Cai
- Department of Respiratory Medicine, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Hongsheng Liu
- Department of Pathology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Xiaodan Chen
- Department of Pathology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Junjie Yang
- Department of Pathology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Bin Huang
- Department of Pathology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China,Correspondence to: Dr Bin Huang, Department of Pathology, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China, E-mail:
| |
Collapse
|
5
|
Lehmann R, Rayner BS, Ziegler DS. Resistance mechanisms in BRAF V600E paediatric high-grade glioma and current therapeutic approaches. Front Oncol 2022; 12:1031378. [PMID: 36582791 PMCID: PMC9792688 DOI: 10.3389/fonc.2022.1031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) are aggressive central nervous system tumours with a poor prognosis. BRAFV600E mutant pHGGs can be treated with targeted BRAF inhibitors, which have shown both preclinical activity and potent clinical efficacy. Unfortunately, the development of drug resistance results in disease relapse or progression and is the primary cause of treatment failure. While there is a lot of data to explain mechanisms of resistance in other BRAFV600E tumours, comparatively little is known about the mechanisms of BRAF inhibitor resistance in BRAFV600E pHGG. Recent literature has identified aberrations in members of the RAS/RAF/ERK pathway, the PI3K/AKT/MTOR pathway and the cell cycle as major contributors to the resistance profile. A range of novel therapies have been suggested to overcome BRAF inhibitor drug resistance in BRAFV600E pHGG. This review will discuss the current literature available for BRAF inhibitor resistant BRAFV600E pHGGs and provide an overview of the currently available and proposed therapies.
Collapse
Affiliation(s)
- R Lehmann
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - B S Rayner
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - D S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
6
|
Wu K, Ho S, Wu C, Wang HD, Ma D, Leung C. Simultaneous blocking of the pan-RAF and S100B pathways as a synergistic therapeutic strategy against malignant melanoma. J Cell Mol Med 2021; 25:1972-1981. [PMID: 33377602 PMCID: PMC7882986 DOI: 10.1111/jcmm.15994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is a very aggressive form of skin cancer. Although BRAF inhibitors have been utilized for melanoma therapy, advanced melanoma patients still face a low five-year survival rate. Recent studies have shown that CRAF can compensate for BRAF depletion via regulating DNA synthesis to remain melanoma proliferation. Hence, targeting CRAF either alone or in combination with other protein pathways is a potential avenue for melanoma therapy. Based on our previously reported CRAF-selective inhibitor for renal cancer therapy, we have herein discovered an analogue (complex 1) from the reported CRAF library suppresses melanoma cell proliferation and melanoma tumour growth in murine models of melanoma via blocking the S100B and RAF pathways. Intriguingly, we discovered that inhibiting BRAF together with S100B exerts a novel synergistic effect to significantly restore p53 transcription activity and inhibit melanoma cell proliferation, whereas blocking BRAF together with CRAF only had an additive effect. We envision that blocking the pan-RAF and S100B/p53 pathways might be a novel synergistic strategy for melanoma therapy and that complex 1 is a potential inhibitor against melanoma via blocking the pan-RAF and S100B pathways.
Collapse
Affiliation(s)
- Ke‐Jia Wu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Shih‐Hsin Ho
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyHarbinChina
| | - Chun Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Hui‐Min D. Wang
- Graduate Institute of Biomedical Engineering National Chung Hsing UniversityTaichungTaiwan
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung CityTaiwan
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
7
|
Scalia P, Giordano A, Martini C, Williams SJ. Isoform- and Paralog-Switching in IR-Signaling: When Diabetes Opens the Gates to Cancer. Biomolecules 2020; 10:biom10121617. [PMID: 33266015 PMCID: PMC7761347 DOI: 10.3390/biom10121617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) and IR-related signaling defects have been shown to trigger insulin-resistance in insulin-dependent cells and ultimately to give rise to type 2 diabetes in mammalian organisms. IR expression is ubiquitous in mammalian tissues, and its over-expression is also a common finding in cancerous cells. This latter finding has been shown to associate with both a relative and absolute increase in IR isoform-A (IR-A) expression, missing 12 aa in its EC subunit corresponding to exon 11. Since IR-A is a high-affinity transducer of Insulin-like Growth Factor-II (IGF-II) signals, a growth factor is often secreted by cancer cells; such event offers a direct molecular link between IR-A/IR-B increased ratio in insulin resistance states (obesity and type 2 diabetes) and the malignant advantage provided by IGF-II to solid tumors. Nonetheless, recent findings on the biological role of isoforms for cellular signaling components suggest that the preferential expression of IR isoform-A may be part of a wider contextual isoform-expression switch in downstream regulatory factors, potentially enhancing IR-dependent oncogenic effects. The present review focuses on the role of isoform- and paralog-dependent variability in the IR and downstream cellular components playing a potential role in the modulation of the IR-A signaling related to the changes induced by insulin-resistance-linked conditions as well as to their relationship with the benign versus malignant transition in underlying solid tumors.
Collapse
Affiliation(s)
- Pierluigi Scalia
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
- Correspondence:
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- Department of Medical Biotechnologies, University of Siena, 52100 Siena, Italy
| | - Caroline Martini
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
| | - Stephen J. Williams
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA; (A.G.); (C.M.); (S.J.W.)
- ISOPROG-Somatolink EPFP Network, Functional Research Unit, Philadelphia, PA 19104, USA and 93100 Caltanissetta, Italy
| |
Collapse
|
8
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
9
|
Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines. Cancers (Basel) 2020; 12:cancers12020455. [PMID: 32079091 PMCID: PMC7072554 DOI: 10.3390/cancers12020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/12/2023] Open
Abstract
Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRASp.G12C entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRASp.G12A and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRASWT, KRASp.G12A, KRASp.A146T, and KRASp.A146V were overexpressed in HEK293 cells and the KRASWT MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.
Collapse
|
10
|
Ma M, Dai J, Tang H, Xu T, Yu S, Si L, Cui C, Sheng X, Chi Z, Mao L, Wu X, Yang L, Yu H, Li S, Lian B, Tang B, Wang X, Yan X, Bai X, Zhou L, Kong Y, Guo J. MicroRNA-23a-3p Inhibits Mucosal Melanoma Growth and Progression through Targeting Adenylate Cyclase 1 and Attenuating cAMP and MAPK Pathways. Theranostics 2019; 9:945-960. [PMID: 30867808 PMCID: PMC6401396 DOI: 10.7150/thno.30516] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/22/2018] [Indexed: 02/03/2023] Open
Abstract
Mucosal melanoma (MM) is the second most common melanoma subtype in Asian populations. Deregulation of microRNAs (miRNAs) has been extensively investigated in various cancers, including cutaneous melanoma. However, the roles of miRNAs in MM are unclear. In this study, we carried out miRNA profiling in MM, and we investigated the clinical and biological roles of miR-23a-3p in MM. Methods: miRNA expression in MM was profiled by miRNA microarray analysis. The expression of miR-23a-3p was quantitated by qRT-PCR in a cohort of 117 patients with MM, and its prognostic significance was evaluated. The biological effect of miR-23a-3p was demonstrated by both in vitro and in vivo studies through ectopic expression of miR-23a-3p. The target gene of miR-23a-3p and molecular pathway influenced by it was characterized using in silico target prediction tools, dual luciferase reporter assays, knockdown, and rescue experiments. Results: Microarray and qRT-PCR results showed that the miR-23a-3p level was substantially lower in MM, and low miR-23a-3p expression was significantly associated with poor outcomes. Ectopic expression of miR-23a-3p suppressed MM cell proliferation, migration, invasion, and tumorigenicity, indicating that miR-23a-3p has a tumor-suppressive role in MM. Mechanistic investigations identified adenylate cyclase 1 (ADCY1) as a direct target of miR-23a-3p in MM, and knockdown of ADCY1 recapitulated all the phenotypic characteristics of miR-23a-3p overexpression. Targeting of ADCY1 by miR-23a-3p resulted in the suppression of cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways. Conclusions: Our data highlight the molecular etiology and clinical significance of miR-23a-3p in MM and reveal its major target and biological function. miR-23a-3p may represent a new prognostic biomarker or therapeutic target in MM.
Collapse
|
11
|
The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein. Oncotarget 2018; 7:45597-45607. [PMID: 27323809 PMCID: PMC5216745 DOI: 10.18632/oncotarget.10056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.
Collapse
|
12
|
Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, Kimple ME, Setaluri V. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP. Mol Cancer Res 2017; 15:1792-1802. [PMID: 28851815 PMCID: PMC6309370 DOI: 10.1158/1541-7786.mcr-17-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura Block
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jaclyn A Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
13
|
Richtig G, Hoeller C, Kashofer K, Aigelsreiter A, Heinemann A, Kwong L, Pichler M, Richtig E. Beyond the BRAF
V
600E
hotspot: biology and clinical implications of rare BRAF
gene mutations in melanoma patients. Br J Dermatol 2017; 177:936-944. [DOI: 10.1111/bjd.15436] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Affiliation(s)
- G. Richtig
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
- Department of Dermatology; Medical University of Graz; Graz Austria
| | - C. Hoeller
- Department of Dermatology; Medical University of Vienna; Vienna Austria
| | - K. Kashofer
- Institute for Pathology; Medical University of Graz; Graz Austria
| | - A. Aigelsreiter
- Institute for Pathology; Medical University of Graz; Graz Austria
| | - A. Heinemann
- Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - L.N. Kwong
- Translational Molecular Pathology; The University of Texas MD Anderson Cancer Center; Houston TX U.S.A
| | - M. Pichler
- Division of Oncology; Medical University of Graz; Graz Austria
- Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston TX U.S.A
| | - E. Richtig
- Department of Dermatology; Medical University of Graz; Graz Austria
| |
Collapse
|
14
|
Dorard C, Estrada C, Barbotin C, Larcher M, Garancher A, Leloup J, Beermann F, Baccarini M, Pouponnot C, Larue L, Eychène A, Druillennec S. RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nat Commun 2017; 8:15262. [PMID: 28497782 PMCID: PMC5437303 DOI: 10.1038/ncomms15262] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
NRAS and its effector BRAF are frequently mutated in melanoma. Paradoxically, CRAF but not BRAF was shown to be critical for various RAS-driven cancers, raising the question of the role of RAF proteins in NRAS-induced melanoma. Here, using conditional ablation of Raf genes in NRAS-induced mouse melanoma models, we investigate their contribution in tumour progression, from the onset of benign tumours to malignant tumour maintenance. We show that BRAF expression is required for ERK activation and nevi development, demonstrating a critical role in the early stages of NRAS-driven melanoma. After melanoma formation, single Braf or Craf ablation is not sufficient to block tumour growth, showing redundant functions for RAF kinases. Finally, proliferation of resistant cells emerging in the absence of BRAF and CRAF remains dependent on ARAF-mediated ERK activation. These results reveal specific and compensatory functions for BRAF and CRAF and highlight an addiction to RAF signalling in NRAS-driven melanoma. The melanoma-driver mutations in NRAS and BRAF are mutually exclusive but the contribution of RAF signalling downstream of NRAS remains to be clarified. Here, using mouse models, the authors show specific roles of each member of the RAF family at different stages of melanomagenesis.
Collapse
Affiliation(s)
- Coralie Dorard
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Charlène Estrada
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Céline Barbotin
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Magalie Larcher
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Alexandra Garancher
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France
| | - Jessy Leloup
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Friedrich Beermann
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Manuela Baccarini
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Celio Pouponnot
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France
| | - Lionel Larue
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Alain Eychène
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| | - Sabine Druillennec
- Institut Curie, Orsay F-91405, France.,INSERM U1021, Centre Universitaire, Orsay F-91405, France.,CNRS UMR 3347, Centre Universitaire, Orsay F-91405, France.,Université Paris Sud-11, Orsay F-91405, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay F-91405, France
| |
Collapse
|
15
|
Mazurenko NN, Tsyganova IV, Lushnikova AA, Ponkratova DA, Anurova OA, Cheremushkin EA, Mikhailova IN, Demidov LV. The spectrum of oncogene mutations differs among melanoma subtypes. Mol Biol 2015. [DOI: 10.1134/s0026893315060163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Desman G, Waintraub C, Zippin JH. Investigation of cAMP microdomains as a path to novel cancer diagnostics. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2636-45. [PMID: 25205620 DOI: 10.1016/j.bbadis.2014.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Abstract
Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Garrett Desman
- Department of Pathology, Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Caren Waintraub
- Albert Einstein College of Medicine at Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
17
|
Rodríguez CI, Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys 2014; 563:22-7. [PMID: 25017568 DOI: 10.1016/j.abb.2014.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023]
Abstract
G-protein coupled receptors (GPCRs), which include melanocortin-1 receptor (MC1R), play a crucial role in melanocytes development, proliferation and differentiation. Activation of the MC1R by the α-melanocyte stimulating hormone (α-MSH) leads to the activation of the cAMP signaling pathway that is mainly associated with differentiation and pigment production. Some MC1R polymorphisms produce cAMP signaling impairment and pigmentary phenotypes such as the red head color and fair skin phenotype (RHC) that is usually associated with higher risk for melanoma development. Despite its importance in melanocyte biology, the role of cAMP signaling cutaneous melanoma is not well understood. Melanoma is primarily driven by mutations in the components of mitogen-activated protein kinases (MAPK) pathway. Increasing evidence, however, now suggests that cAMP signaling also plays an important role in melanoma even though genetic alterations in components of this pathway are note commonly found in melanoma. Here we review these new roles for cAMP in melanoma including its contribution to the notorious treatment resistance of melanoma.
Collapse
Affiliation(s)
- Carlos Iván Rodríguez
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States
| | - Vijayasaradhi Setaluri
- Department of Dermatology and Molecular and Environmental Toxicology Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706, United States.
| |
Collapse
|
18
|
Wilson MA, Zhao F, Letrero R, D'Andrea K, Rimm DL, Kirkwood JM, Kluger HM, Lee SJ, Schuchter LM, Flaherty KT, Nathanson KL. Correlation of somatic mutations and clinical outcome in melanoma patients treated with Carboplatin, Paclitaxel, and sorafenib. Clin Cancer Res 2014; 20:3328-37. [PMID: 24714776 PMCID: PMC4058354 DOI: 10.1158/1078-0432.ccr-14-0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Sorafenib is an inhibitor of VEGF receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and RAF kinases, amongst others. We assessed the association of somatic mutations with clinicopathologic features and clinical outcomes in patients with metastatic melanoma treated on E2603, comparing treatment with carboplatin, paclitaxel ± sorafenib (CP vs. CPS) EXPERIMENTAL DESIGN Pretreatment tumor samples from 179 unique individuals enrolled on E2603 were analyzed. Genotyping was performed using a custom iPlex panel interrogating 74 mutations in 13 genes. Statistical analysis was performed using Fisher exact test, logistic regression, and Cox proportional hazards models. Progression-free survival (PFS) and overall survival were estimated using Kaplan-Meier methods. RESULTS BRAF and NRAS mutations were found at frequencies consistent with other metastatic melanoma cohorts. BRAF-mutant melanoma was associated with worse performance status, increased number of disease sites, and younger age at diagnosis. NRAS-mutant melanoma was associated with better performance status, fewer sites of disease, and female gender. BRAF and NRAS mutations were not significantly predictive of response or survival when treated with CPS versus CP. However, patients with NRAS-mutant melanoma trended toward a worse response and PFS on CP than those with BRAF-mutant or WT/WT melanoma, an association that was reversed for this group on the CPS arm. CONCLUSIONS This study of somatic mutations in melanoma is the last prospectively collected phase III clinical trial population before the era of BRAF-targeted therapy. A trend toward improved clinical response in patients with NRAS-mutant melanoma treated with CPS was observed, possibly due to the effect of sorafenib on CRAF.
Collapse
Affiliation(s)
- Melissa A Wilson
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Fengmin Zhao
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Richard Letrero
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Kurt D'Andrea
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - David L Rimm
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - John M Kirkwood
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Harriet M Kluger
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Sandra J Lee
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Lynn M Schuchter
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, ConnecticutAuthors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Keith T Flaherty
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| | - Katherine L Nathanson
- Authors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, ConnecticutAuthors' Affiliations: Hematology/Oncology, Department of Medicine, University of Pennsylvania; Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania; Abramson Cancer Center of the University of Pennsylvania, Philadelphia; University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Dana Farber Cancer Institute; Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Yale University School of Medicine; and Section of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
| |
Collapse
|
19
|
Krayem M, Journe F, Wiedig M, Morandini R, Sales F, Awada A, Ghanem G. Prominent role of cyclic adenosine monophosphate signalling pathway in the sensitivity of (WT)BRAF/(WT)NRAS melanoma cells to vemurafenib. Eur J Cancer 2014; 50:1310-20. [PMID: 24559688 DOI: 10.1016/j.ejca.2014.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 01/03/2023]
Abstract
Vemurafenib improves survival in patients with melanoma bearing the (V600E)BRAF mutation, but it did not show any benefit in clinical trials focusing on wild type tumours while it may well inhibit (WT)BRAF considering the dosage used and the bioavailability of the drug. As tumours may contain a mixture of mutant and wild type BRAF cells and this has been also put forward as a resistance mechanism, we aimed to evaluate the sensitivity/resistance of six, randomly selected, (WT)BRAF/(WT)NRAS lines to vemurafenib and found four sensitive. The sensitivity to the drug was accompanied by a potent inhibition of both phospho-ERK and phospho-AKT, and a significant induction of apoptosis while absent in lines with intrinsic or acquired resistance. Phospho-CRAF expression was low in all sensitive lines and high in resistant ones, and MEK inhibition can effectively potentiate the drug effect. A possible explanation for CRAF modulation is cyclic adenosine monophosphate (cAMP), a mediator of melanocortin receptor 1 (MC1R) signalling, since it can actually inhibit CRAF. Indeed, we measured cAMP and found that all four sensitive lines contained significantly higher constitutive cAMP levels than the resistant ones. Consequently, vemurafenib and cAMP stimulator combination resulted in a substantial synergistic effect in lines with both intrinsic and acquired resistance but only restricted to those where cAMP was effectively increased. The use of a cAMP agonist overcame such restriction. In conclusion, we report that (WT)BRAF/(WT)NRAS melanoma lines with low phospho-CRAF and high cAMP levels may be sensitive to vemurafenib and that CRAF inhibition through cAMP stimulation may overcome the resistance to the drug.
Collapse
Affiliation(s)
- Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Murielle Wiedig
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Renato Morandini
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Department of Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
20
|
Wang AX, Qi XY. Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB Life 2013; 65:748-58. [PMID: 23893853 DOI: 10.1002/iub.1193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ao-Xue Wang
- Department of Dermatology; The Second Affiliated Hospital of Dalian Medical University; Dalian; People's Republic of China
| | - Xiao-Yi Qi
- Department of Dermatology; The Second Affiliated Hospital of Dalian Medical University; Dalian; People's Republic of China
| |
Collapse
|
21
|
Li Y, Takahashi M, Stork PJS. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem 2013; 288:27646-27657. [PMID: 23893412 DOI: 10.1074/jbc.m113.463067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.
Collapse
Affiliation(s)
- Yanping Li
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
22
|
Fowles JS, Denton CL, Gustafson DL. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet Comp Oncol 2013; 13:288-304. [PMID: 23745794 DOI: 10.1111/vco.12044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/07/2013] [Indexed: 01/11/2023]
Abstract
The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT signalling dysregulation, and response to select molecularly targeted agents. Pathway activation was investigated via microarray and mutational analysis. Growth inhibition and cell cycle effects were assessed for pathway inhibitors AZD6244 (MAPK) and rapamycin (PI3K/AKT) in human and canine melanoma cells. Human and canine melanoma share similar differential gene expression patterns within the MAPK and PI3K/AKT pathways. Constitutive pathway activation and similar sensitivity to AZD6244 and rapamycin was observed in human and canine cells. These results show that human and canine melanoma share activation and sensitivity to inhibition of cancer-related signalling pathways despite differences in activating mutations.
Collapse
Affiliation(s)
- J S Fowles
- Cell and Molecular Biology Program, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.,Flint Animal Cancer Center, Veterinary Medical Center, Colorado State University, Fort Collins, CO, USA
| | - C L Denton
- Flint Animal Cancer Center, Veterinary Medical Center, Colorado State University, Fort Collins, CO, USA
| | - D L Gustafson
- Cell and Molecular Biology Program, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.,Flint Animal Cancer Center, Veterinary Medical Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Affiliation(s)
- Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
24
|
NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 2012; 32:3009-18. [PMID: 23069660 DOI: 10.1038/onc.2012.453] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent years have seen a significant shift in the expectations for the therapeutic management of disseminated melanoma. The clinical success of BRAF targeted therapy suggests that long-term disease control may one day be a reality for genetically defined subgroups of melanoma patients. Despite this progress, few advances have been made in developing targeted therapeutic strategies for the 50% of patients whose melanomas are BRAF wild-type. The most well-characterized subgroup of BRAF wild-type tumors is the 15-20% of all melanomas that harbor activating NRAS (Neuroblastoma Rat Sarcoma Virus) mutations. Emerging preclinical and clinical evidence suggests that NRAS mutant melanomas have patterns of signal transduction and biological behavior that is distinct from BRAF mutant melanomas. This overview will discuss the unique clinical and prognostic behavior of NRAS mutant melanoma and will summarize the emerging data on how NRAS-driven signaling networks can be translated into novel therapeutic strategies.
Collapse
|
25
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|
26
|
Herraiz C, Journé F, Ghanem G, Jiménez-Cervantes C, García-Borrón JC. Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells. Int J Biochem Cell Biol 2012; 44:2244-52. [PMID: 23000456 DOI: 10.1016/j.biocel.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/15/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Campus de Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|