1
|
Kochen Rossi J, Nuevo-Tapioles C, O'Keefe RA, Hunkeler M, Schmoker AM, Fissore-O'Leary M, Su W, Ahearn IM, Branco C, Cheong H, Esposito D, Clotea I, Ueberheide B, Fischer ES, Philips MR. The differential interactomes of the KRAS splice variants identify BIRC6 as a ubiquitin ligase for KRAS4A. Cell Rep 2025; 44:115087. [PMID: 39705142 DOI: 10.1016/j.celrep.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants. We find 24 and 10 proteins that interact specifically with KRAS4A or KRAS4B, respectively. The KRAS interacting protein most specific to KRAS4A is BIRC6, a large member of the inhibitor of apoptosis protein family unique in possessing E2/E3 ubiquitin ligase activity. We find that this interaction takes place on the Golgi apparatus and results in the mono- and di-ubiquitination of KRAS4A at lysines 128 and 147. Silencing BIRC6 diminishes GTP loading of and growth stimulation by KRAS4A but not KRAS4B. Thus, BIRC6 is a ubiquitin ligase that inhibits apoptosis and also modifies KRAS4A.
Collapse
Affiliation(s)
- Juan Kochen Rossi
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Rachel A O'Keefe
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenjuan Su
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ian M Ahearn
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cristina Branco
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hakyung Cheong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioana Clotea
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Singh J, Karunaraj P, Luf M, Pfleger CM. Lysines K117 and K147 play conserved roles in Ras activation from Drosophila to mammals. G3 (BETHESDA, MD.) 2023; 13:jkad201. [PMID: 37665961 PMCID: PMC10627255 DOI: 10.1093/g3journal/jkad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Ras signaling plays an important role in growth, proliferation, and developmental patterning. Maintaining appropriate levels of Ras signaling is important to establish patterning in development and to prevent diseases such as cancer in mature organisms. The Ras protein is represented by Ras85D in Drosophila and by HRas, NRas, and KRas in mammals. In the past dozen years, multiple reports have characterized both inhibitory and activating ubiquitination events regulating Ras proteins. Inhibitory Ras ubiquitination mediated by Rabex-5 or Lztr1 is highly conserved between flies and mammals. Activating ubiquitination events at K117 and K147 have been reported in mammalian HRas, NRas, and KRas, but it is unclear if these activating roles of K117 and K147 are conserved in flies. Addressing a potential conserved role for these lysines in Drosophila Ras activation requires phenotypes strong enough to assess suppression. Therefore, we utilized oncogenic Ras, RasG12V, which biases Ras to the GTP-loaded active conformation. We created double mutants RasG12V,K117R and RasG12V,K147R and triple mutant RasG12V,K117R,K147R to prevent lysine-specific post-translational modification of K117, K147, or both, respectively. We compared their phenotypes to RasG12V in the wing to reveal the roles of these lysines. Although RasG12V,K147R did not show compelling or quantifiable differences from RasG12V, RasG12V,K117R showed visible and quantifiable suppression compared to RasG12V, and triple mutant RasG12V,K117R,K147R showed dramatic suppression compared to RasG12V and increased suppression compared to RasG12V,K117R. These data are consistent with highly conserved roles for K117 and K147 in Ras activation from flies to mammals.
Collapse
Affiliation(s)
- Jiya Singh
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prashath Karunaraj
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Luf
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cathie M Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, Koide S, O’Bryan JP. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. J Biol Chem 2022; 298:102661. [PMID: 36334633 PMCID: PMC9763690 DOI: 10.1016/j.jbc.2022.102661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren Wallon
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA,Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA,For correspondence: John P. O’Bryan; Shohei Koide
| | - John P. O’Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA,For correspondence: John P. O’Bryan; Shohei Koide
| |
Collapse
|
4
|
Jung J, Baek J, Tae K, Shin D, Han S, Yang W, Yu W, Jung SM, Park SH, Choi CY, Lee S. Structural mechanism for regulation of Rab7 by site-specific monoubiquitination. Int J Biol Macromol 2022; 194:347-357. [PMID: 34801583 DOI: 10.1016/j.ijbiomac.2021.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Yang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol 2021; 71:180-192. [PMID: 34365229 DOI: 10.1016/j.sbi.2021.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, USA
| |
Collapse
|
6
|
Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021; 8:707439. [PMID: 34307463 PMCID: PMC8295990 DOI: 10.3389/fmolb.2021.707439] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.
Collapse
Affiliation(s)
- Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Doshun Ito
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Venkat R. Chirasani
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
7
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
8
|
Washington C, Chernet R, Gokhale RH, Martino-Cortez Y, Liu HY, Rosenberg AM, Shahar S, Pfleger CM. A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5. PLoS Genet 2020; 16:e1008715. [PMID: 32559233 PMCID: PMC7329146 DOI: 10.1371/journal.pgen.1008715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/01/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of the Ras oncogene in development causes developmental disorders, "Rasopathies," whereas mutational activation or amplification of Ras in differentiated tissues causes cancer. Rabex-5 (also called RabGEF1) inhibits Ras by promoting Ras mono- and di-ubiquitination. We report here that Rabex-5-mediated Ras ubiquitination requires Ras Tyrosine 4 (Y4), a site of known phosphorylation. Ras substitution mutants insensitive to Y4 phosphorylation did not undergo Rabex-5-mediated ubiquitination in cells and exhibited Ras gain-of-function phenotypes in vivo. Ras Y4 phosphomimic substitution increased Rabex-5-mediated ubiquitination in cells. Y4 phosphomimic substitution in oncogenic Ras blocked the morphological phenotypes associated with oncogenic Ras in vivo dependent on the presence of Rabex-5. We developed polyclonal antibodies raised against an N-terminal Ras peptide phosphorylated at Y4. These anti-phospho-Y4 antibodies showed dramatic recognition of recombinant wild-type Ras and RasG12V proteins when incubated with JAK2 or SRC kinases but not of RasY4F or RasY4F,G12V recombinant proteins suggesting that JAK2 and SRC could promote phosphorylation of Ras proteins at Y4 in vitro. Anti-phospho-Y4 antibodies also showed recognition of RasG12V protein, but not wild-type Ras, when incubated with EGFR. A role for JAK2, SRC, and EGFR (kinases with well-known roles to activate signaling through Ras), to promote Ras Y4 phosphorylation could represent a feedback mechanism to limit Ras activation and thus establish Ras homeostasis. Notably, rare variants of Ras at Y4 have been found in cerebellar glioblastomas. Therefore, our work identifies a physiologically relevant Ras ubiquitination signal and highlights a requirement for Y4 for Ras inhibition by Rabex-5 to maintain Ras pathway homeostasis and to prevent tissue transformation.
Collapse
Affiliation(s)
- Chalita Washington
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rachel Chernet
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rewatee H. Gokhale
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yesenia Martino-Cortez
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hsiu-Yu Liu
- Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ashley M. Rosenberg
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Columbia University, New York, New York, United States of America
| | - Sivan Shahar
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Medical College, Valhalla, New York, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
9
|
Abstract
Many sensory and chemical signal inputs are transmitted by intracellular GTP-binding (G) proteins. G proteins make up two major subfamilies: "large" G proteins comprising three subunits and "small" G proteins, such as the proto-oncogene product RAS, which contains a single subunit. Members of both subfamilies are regulated by post-translational modifications, including lipidation, proteolysis, and carboxyl methylation. Emerging studies have shown that these proteins are also modified by ubiquitination. Much of our current understanding of this post-translational modification comes from investigations of the large G-protein α subunit from yeast (Gpa1) and the three RAS isotypes in humans, NRAS, KRAS, and HRAS. Gα undergoes both mono- and polyubiquitination, and these modifications have distinct consequences for determining the sites and mechanisms of its degradation. Genetic and biochemical reconstitution studies have revealed the enzymes and binding partners required for addition and removal of ubiquitin, as well as the delivery and destruction of both the mono- and polyubiquitinated forms of the G protein. Complementary studies of RAS have identified multiple ubiquitination sites, each having distinct consequences for binding to regulatory proteins, shuttling to and from the plasma membrane, and degradation. Here, we review what is currently known about these two well-studied examples, Gpa1 and the human RAS proteins, that have revealed additional mechanisms of signal regulation and dysregulation relevant to human physiology. We also compare and contrast the effects of G-protein ubiquitination with other post-translational modifications of these proteins.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
10
|
Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018; 101:80-93. [PMID: 29864543 DOI: 10.1016/j.biocel.2018.06.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023]
Abstract
Dynamic modulation and posttranslational modification of proteins are tightly controlled biological processes that occur in response to physiological cues. One such dynamic modulation is ubiquitination, which marks proteins for degradation via the proteasome, altering their localization, affecting their activity, and promoting or interfering with protein interactions. Hence, ubiquitination is crucial for a plethora of physiological processes, including cell survival, differentiation and innate and adaptive immunity. Similar to kinases, components of the ubiquitination system are often deregulated, leading to a variety of diseases, such as cancer and neurodegenerative disorders. In a context-dependent manner, ubiquitination can regulate both tumor-suppressing and tumor-promoting pathways in cancer. This review outlines how components of the ubiquitination systems (e.g. E3 ligases and deubiquitinases) act as oncogenes or tumor suppressors according to the nature of their substrates. Furthermore, I interrogate how the current knowledge of the differential roles of ubiquitination in cancer lead to technical advances to inhibit or reactivate the components of the ubiquitination system accordingly.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Institute of Cancer Sciences, University of Glasgow, United Kingdom; The CRUK Beatson Institute, Glasgow, Switchback Road, G61 1BD, United Kingdom; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
11
|
Thurman R, Siraliev-Perez E, Campbell SL. RAS ubiquitylation modulates effector interactions. Small GTPases 2017; 11:180-185. [PMID: 29185849 DOI: 10.1080/21541248.2017.1371267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RAS proteins function as molecular switches that regulate cellular growth by cycling between active GTP- and inactive GDP bound states. While RAS activity is modulated by factors (guanine nucleotide exchange and GTPase activating proteins) that control levels of active Ras-GTP, RAS proteins also undergo a number of post-translational modifications that regulate their function. One such modification is ubiquitylation. Monoubiquitylation of KRAS at lysine 147 (mUbRAS) enhances Ras activation and promotes signaling through the RAF and Phosphoinositide 3-Kinase (PI3K) signaling pathways. We have previously shown that mUbRAS leads to activation of RAS through a defect in GTPase activating protein (GAP) mediated downregulation, similar to the action of most oncogenic mutations. Consistent with these findings, we now show that mUbRASimpairsRAS binding to the p120 GAP catalytic domain. Mutations in activated G12V RAS that prevent ubiquitylaton at 147 show a decrease in tumorigenesis, suggesting that in addition to activating KRAS, monoubiquitylation at this site may promote downstream signaling and transformation. To investigate whether mUbRAS alters RAS effector interactions, we chemically ubiquitylated KRAS at residue 147 and characterized binding of mUbRAS to RAS binding domains (RBDs) from three distinct downstream effectors that play key roles in RAS-mediated transformation. Results from these studies show a decrease in binding of mUbRAS (7-10-fold) relative to the CRAF RAS Binding Domain (RBD), the catalytic subunit of Phosphoinositide 3-Kinase catalytic gamma (PI3Kcγ) and RALGDS RBD. Intriguingly, we find that mUbRAS shows greatly enhanced (> 40-fold) binding to the CRAF RBD when bound to GDP. These findings, taken together, suggest that mUbRASmay promoteactivation of RAS through a GAP defect, and facilitate RAF association and MAPK signaling in a nucleotide independent manner.
Collapse
Affiliation(s)
- Ryan Thurman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
A simple toolset to identify endogenous post-translational modifications for a target protein: a snapshot of the EGFR signaling pathway. Biosci Rep 2017; 37:BSR20170919. [PMID: 28724604 PMCID: PMC6192658 DOI: 10.1042/bsr20170919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Identification of a novel post-translational modification (PTM) for a target protein, defining its physiologic role, and studying its potential crosstalk with other PTMs is a challenging process. A set of highly sensitive tools termed Signal-Seeker kits was developed, which enables rapid and simple detection of post-translational modifications on any target protein. The methodology for these tools utilizes affinity purification of modified proteins from a cell or tissue lysate and immunoblot analysis. These tools utilize a single lysis system that is effective at identifying endogenous, dynamic PTM changes, as well as the potential crosstalk between PTMs. As a proof-of-concept experiment, the acetylation, tyrosine phosphorylation, SUMOylation 2/3, and ubiquitination profiles of the EGFR - Ras - c-Fos axis were examined in response to EGF stimulation. All 10 previously identified PTMs of this signaling axis were confirmed using these tools, and it also identified acetylation as a novel modification of c-Fos. This axis in the EGF/EGFR signaling pathway was chosen because it is a well-established signaling pathway with proteins localized in the membrane, cytoplasmic, and nuclear compartments that ranged in abundance from 4.18x108 (EGFR) to 1.35x104 (c-Fos) molecules per A431 cell. These tools enabled the identification of low abundance PTMs, such as c-Fos Ac, at 17 molecules per cell. These studies highlight how pervasive PTMs are, and how stimulants like EGF induce multiple PTM changes on downstream signaling axis. Identification of endogenous changes and potential crosstalk between multiple PTMs for a target protein or signaling axis will provide regulatory mechanistic insight to investigators.
Collapse
|
13
|
Biancucci M, Dolores JS, Wong J, Grimshaw S, Anderson WF, Satchell KJF, Kwon K. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag. BMC Biotechnol 2017; 17:1. [PMID: 28056928 PMCID: PMC5216533 DOI: 10.1186/s12896-016-0323-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. Results In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called “the CPD-tag”. The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. Conclusion pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA
| | - Jazel S Dolores
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jennifer Wong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Indiana University, Bloomington, IN, USA
| | - Sarah Grimshaw
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA.,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Keehwan Kwon
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Ras activation revisited: role of GEF and GAP systems. Biol Chem 2016; 396:831-48. [PMID: 25781681 DOI: 10.1515/hsz-2014-0257] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.
Collapse
|
15
|
Nussinov R, Jang H, Tsai CJ. The structural basis for cancer treatment decisions. Oncotarget 2014; 5:7285-302. [PMID: 25277176 PMCID: PMC4202123 DOI: 10.18632/oncotarget.2439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer treatment decisions rely on genetics, large data screens and clinical pharmacology. Here we point out that genetic analysis and treatment decisions may overlook critical elements in cancer development, progression and drug resistance. Two critical structural elements are missing in genetics-based decision-making: the mechanisms of oncogenic mutations and the cellular network which is rewired in cancer. These lay the foundation for the structural basis for cancer treatment decisions, which is rooted in the physical principles of the molecular conformational behavior of single molecules and their interactions. Improved tumor mutational analysis platforms and knowledge of the redundant pathways which can take over in cancer, may not only supplement known actionable findings, but forecast possible cancer progression and resistance. Such forward-looking can be powerful, endowing the oncologist with mechanistic insight and cancer prognosis, and consequently more informed treatment options. Examples include redundant pathways taking over after inhibition of EGFR constitutive activation, mutations in PIK3CA p110α and p85, and the non-hotspot AKT1 mutants conferring constitutive membrane localization.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|