1
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Villagomez FR, Diaz-Valencia JD, Ovalle-García E, Antillón A, Ortega-Blake I, Romero-Ramírez H, Cerna-Cortes JF, Rosales-Reyes R, Santos-Argumedo L, Patiño-López G. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages. Sci Rep 2021; 11:20946. [PMID: 34686741 PMCID: PMC8536695 DOI: 10.1038/s41598-021-00450-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation. However, its specific role in macrophages remains unknown. Here, we show that TBC1D10C engages in functions dependent on the cytoskeleton and plasma membrane reorganization. Using ex vivo and in vitro assays, we found that elimination and overexpression of TBC1D10C modified the cytoskeletal architecture of macrophages by decreasing and increasing the spreading ability of these cells, respectively. In addition, TBC1D10C overexpression contributed to higher phagocytic activity against Burkholderia cenocepacia and to increased cell membrane tension. Furthermore, by performing in vitro and in silico analyses, we identified 27 TBC1D10C-interacting proteins, some of which were functionally classified as protein complexes involved in cytoskeletal dynamics. Interestingly, we identified one unreported TBC1D10C-intrinsically disordered region (IDR) with biological potential at the cytoskeleton level. Our results demonstrate that TBC1D10C shapes macrophage activity by inducing reorganization of the cytoskeleton-plasma membrane in cell spreading and phagocytosis. We anticipate our results will be the basis for further studies focused on TBC1D10C. For example, the specific molecular mechanism in Burkholderia cenocepacia phagocytosis and functional analysis of TBC1D10C-IDR are needed to further understand its role in health and disease.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan D Diaz-Valencia
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Jorge F Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental de la Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad De México, Mexico
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Wang HL, Yeh TH, Huang YZ, Weng YH, Chen RS, Lu CS, Wei KC, Liu YC, Chen YL, Chen CL, Chen YJ, Lin YW, Hsu CC, Chiu CH, Chiu CC. Functional variant rs17525453 within RAB35 gene promoter is possibly associated with increased risk of Parkinson's disease in Taiwanese population. Neurobiol Aging 2021; 107:189-196. [PMID: 34275689 DOI: 10.1016/j.neurobiolaging.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taiwan
| | - Ying-Zu Huang
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Landseed Sports Medicine Center, Landseed International Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Nakamura T, Nakajima K, Kobayashi Y, Itohara S, Kasahara T, Tsuboi T, Kato T. Functional and behavioral effects of de novo mutations in calcium-related genes in patients with bipolar disorder. Hum Mol Genet 2021; 30:1851-1862. [PMID: 34100076 PMCID: PMC8444452 DOI: 10.1093/hmg/ddab152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Bipolar disorder is a common mental illness occurring in approximately 1% of individuals and exhibits lifetime prevalence. Although genetic factors are known to contribute to this disorder, the genetic architecture has not yet been completely clarified. Our initial trio-based exome sequencing study of bipolar disorder showed enrichment of de novo, loss-of-function (LOF) or protein-altering mutations in a combined group with bipolar I and schizoaffective disorders, and the identified de novo mutations were enriched in calcium-related genes. These findings suggested a role for de novo mutations in bipolar disorder. The validity of these statistical associations can be demonstrated if the functional impact of the mutations on cellular function and behavior are identified. In this study, we focused on two de novo LOF mutations in calcium-related genes, EHD1 and MACF1, found in patients with bipolar disorder. We first showed that the EHD1 mutation resulted in a truncated protein with diminished effect on neurite outgrowth and inhibited endocytosis. Next, we used CRISPR/Cas9 to establish two knock-in mouse lines to model the in vivo effects of these mutations. We performed behavioral screening using IntelliCage and long-term wheel running analysis. Ehd1 mutant mice showed higher activity in the light phase. Macf1 mutant mice showed diminished attention and persistence to rewards. These behavioral alterations were similar to the phenotypes in previously proposed animal models of bipolar disorder. These findings endorse the possible role of de novo mutations as a component of the genetic architecture of bipolar disorder which was suggested by the statistical evidence.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
5
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
6
|
Raza A, Pandey MS, Jin Q, Mulder KM. km23-1/DYNLRB1 regulation of MEK/ERK signaling and R-Ras in invasive human colorectal cancer cells. Cell Biol Int 2020; 44:155-165. [PMID: 31393067 PMCID: PMC7007335 DOI: 10.1002/cbin.11215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/03/2019] [Indexed: 01/25/2023]
Abstract
We previously found that km23-1/DYNLRB1 is required for transforming growth factor-β (TGFβ) production through Ras/ERK pathways in TGFβ-sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23-1/DYNLRB1 is required for mitogen-activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23-1/DYNLRB1-siRNA inhibition of phospho-(p)-MEK immunostaining in RKO cells. Furthermore, we show that CRISPR-Cas9 knock-out (KO) of km23-1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD-1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ-mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ-mediated activation of MEK1/2 or c-Jun N-terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B-Raf, extracellular signal-regulated kinase (ERK), and p-ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23-1/DYNLRB1 co-sedimented with Ras, p-ERK, and ERK in fractions that did not contain components of holo-dynein. Thus, km23-1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein-independent km23-1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R-Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23-1/DYNLRB1 and RRas wase co-localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23-1/DYNLRB1-R-Ras complex in CRC invasion.
Collapse
Affiliation(s)
| | | | | | - Kathleen M. Mulder
- To whom correspondence should be addressed: Dr. Kathleen M. Mulder, Professor, Department of Biochemistry and Molecular Biology-MC H171, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, Telephone: 1-717-531-6789; FAX: 1-717-531-0939
| |
Collapse
|
7
|
Wu C, Bao G, Xu G, Sun Y, Wang L, Chen J, Zhang J, Chen C, Zhu Q, Cui Z. Triad1 regulates the expression and distribution of EHD1 contributing to the neurite outgrowth of neurons after spinal cord injury. J Cell Biochem 2018; 120:5355-5366. [PMID: 30320922 DOI: 10.1002/jcb.27814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
Traumatic spinal cord injury is a common and severe complication after an accident. As we all know that neurite outgrowth of neurons is difficult after a spinal cord injury. Endosome system is associated with cargoes transportation and contributes in promoting the neuronal capability for neurite outgrowth. EH domain-containing protein 1 (EHD1) transports proteins through the endosome system, especially in the recycling endosomes and regulating the neurite outgrowth. In mammalian cells, the involvement of the ubiquitin-proteasome system in endosomal sorting has been well established. Two RING fingers and a DRIL (double RING finger-linked) 1 (Triad1) plays an important role in membrane trafficking and its mutant results in the wrong accumulation of receptors in endosomes and plasma membrane. In this current study, we reasonably integrated the results of the above research and investigated the regulating function of Triad1 to EHD1 following the spinal cord injury. We characterized the upregulated expression and distribution of Triad1 and EHD1 in the neurons after SCI and declared the interaction between Triad1 with EHD1 both in vitro and in vivo. Triad1 regulated the interaction between itself and the full-length or EH domain of EHD1, which influenced the neurite outgrowth of PC12 cells. Our data delineate a novel interaction between Triad1 and EHD1 that may contribute to the regulation of neurite outgrowth for neurons after the spinal cord injury.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Qiancheng Zhu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
8
|
Villagomez FR, Medina-Contreras O, Cerna-Cortes JF, Patino-Lopez G. The role of the oncogenic Rab35 in cancer invasion, metastasis, and immune evasion, especially in leukemia. Small GTPases 2018; 11:334-345. [PMID: 29781368 PMCID: PMC7549652 DOI: 10.1080/21541248.2018.1463895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of cancer has allowed researchers to describe some biological characteristics that tumor cells acquire during their development, known as the “hallmarks of cancer” but more research is needed to expand our knowledge about cancer biology and to generate new strategies of treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting areas of study since these proteins are frequently altered in cancer. However, their participation is not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its association with different cellular functions, distinctly important in immune cells, a possible role of Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains poorly understood and its possible specific role in leukemia remains unknown. In this review, we analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible role of Rab35 in leukemia.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Genaro Patino-Lopez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| |
Collapse
|
9
|
Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic 2018; 19:247-252. [PMID: 29314576 DOI: 10.1111/tra.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico-basal cell polarity and promotes cell migration. Here we review Rab35's known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35-dependent membrane trafficking in cancer progression.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
10
|
Chiu CC, Yeh TH, Lai SC, Weng YH, Huang YC, Cheng YC, Chen RS, Huang YZ, Hung J, Chen CC, Lin WY, Chang HC, Chen YJ, Chen CL, Chen HY, Lin YW, Wu-Chou YH, Wang HL, Lu CS. Increased Rab35 expression is a potential biomarker and implicated in the pathogenesis of Parkinson's disease. Oncotarget 2018; 7:54215-54227. [PMID: 27509057 PMCID: PMC5342336 DOI: 10.18632/oncotarget.11090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is the second common neurodegenerative disease. Identification of biomarkers for early diagnosis and prediction of disease progression is important. The present comparative proteomic study of serum samples using two-dimensional fluorescence differential gel electrophoresis followed by ELISA confirmation demonstrated that protein expression of Rab35 was increased in PD patients compared with matched control subjects and other parkinsonian disorders, progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). The serum level of Rab35 was significantly correlated with the age at onset of PD. The median age of onset in patients with higher Rab35 serum level was 5 years younger than those with lower Rab35 serum level. There was a positive correlation between the Rab35 level and disease duration of PD. Moreover, the protein expression of Rab35 was increased in the substantia nigra but not in the striatum of mouse models of PD, including MPTP-treated mice, rotenone-treated mice, (R1441C) LRRK2 or (G2019S) LRRK2 transgenic mice. Furthermore, overexpression of Rab35 increased the aggregation and secretion of mutant A53T α-synuclein in dopaminergic SH-SY5Y cells. Co-expression of Rab35 with wild-type or A53T α-synuclein in SH-SY5Y cells deteriorated cell death. Our results suggest that Rab35 is potentially useful in the differential diagnosis of parkinsonian disorders and is implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Chuan Cheng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan,Taiwan
| | - June Hung
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wey-Yil Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chen Chang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsin-Yi Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yah-Huei Wu-Chou
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, Chang Gung University School of Medicine, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University School of Medicine, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
12
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
13
|
Rab35 Functions in Axon Elongation Are Regulated by P53-Related Protein Kinase in a Mechanism That Involves Rab35 Protein Degradation and the Microtubule-Associated Protein 1B. J Neurosci 2017; 36:7298-313. [PMID: 27383602 DOI: 10.1523/jneurosci.4064-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Rab35 is a key protein for cargo loading in the recycling endosome. In neuronal immortalized cells, Rab35 promotes neurite differentiation. Here we describe that Rab35 favors axon elongation in rat primary neurons in an activity-dependent manner. In addition, we show that the p53-related protein kinase (PRPK) negatively regulates axonal elongation by reducing Rab35 protein levels through the ubiquitin-proteasome degradation pathway. PRPK-induced Rab35 degradation is regulated by its interaction with microtubule-associated protein 1B (MAP1B), a microtubule stabilizing binding protein essential for axon elongation. Consistently, axon defects found in MAP1B knock-out neurons were reversed by Rab35 overexpression or PRPK inactivation suggesting an epistatic relationship among these proteins. These results define a novel mechanism to support axonal elongation, by which MAP1B prevents PRPK-induced Rab35 degradation. Such a mechanism allows Rab35-mediated axonal elongation and connects the regulation of actin dynamics with membrane trafficking. In addition, our study reveals for the first time that the ubiquitin-proteasome degradation pathway regulates a Rab GTPase. SIGNIFICANCE STATEMENT Rab35 is required for axonal outgrowth. We define that its protein levels are negatively regulated by p53-related protein kinase (PRPK). We show that microtubule-associated protein 1B (MAP1B) interacts with PRPK, preventing PRPK-dependent Rab35 proteasome degradation. We demonstrate that Rab35 regulates Cdc42 activity in neurons. This is the first evidence showing that a Rab protein is regulated by degradation dependent on the ubiquitin-proteasome system.
Collapse
|
14
|
Frémont S, Romet-Lemonne G, Houdusse A, Echard A. Emerging roles of MICAL family proteins - from actin oxidation to membrane trafficking during cytokinesis. J Cell Sci 2017; 130:1509-1517. [PMID: 28373242 DOI: 10.1242/jcs.202028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokinetic abscission is the terminal step of cell division, leading to the physical separation of the two daughter cells. The exact mechanism mediating the final scission of the intercellular bridge connecting the dividing cells is not fully understood, but requires the local constriction of endosomal sorting complex required for transport (ESCRT)-III-dependent helices, as well as remodelling of lipids and the cytoskeleton at the site of abscission. In particular, microtubules and actin filaments must be locally disassembled for successful abscission. However, the mechanism that actively removes actin during abscission is poorly understood. In this Commentary, we will focus on the latest findings regarding the emerging role of the MICAL family of oxidoreductases in F-actin disassembly and describe how Rab GTPases regulate their enzymatic activity. We will also discuss the recently reported role of MICAL1 in controlling F-actin clearance in the ESCRT-III-mediated step of cytokinetic abscission. In addition, we will highlight how two other members of the MICAL family (MICAL3 and MICAL-L1) contribute to cytokinesis by regulating membrane trafficking. Taken together, these findings establish the MICAL family as a key regulator of actin cytoskeleton dynamics and membrane trafficking during cell division.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris 75013, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| |
Collapse
|
15
|
Abstract
Cell polarity refers to the asymmetric localization of cellular components that allows cells to carry out their specialized functions, be they epithelial barrier function, transmission of action potentials in nerve cells, or modulation of the immune response. The establishment and maintenance of cell polarity requires the directed trafficking of membrane proteins and lipids - essential processes that are mediated by Rab GTPases. Interestingly, several of the Rabs that impact polarity are present in the earliest eukaryotes, and the Rab polarity repertoire has expanded as cells have become more complex. There is a substantial conservation of Rab function across diverse cell types. Rabs act through an assortment of effector proteins that include scaffolding proteins, cytoskeletal motors, and other small GTPases. In this review we highlight the similarities and differences in Rab function for the instruction of polarity in diverse cell types.
Collapse
Affiliation(s)
- Sara S Parker
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Christopher Cox
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| | - Jean M Wilson
- a Department of Cellular and Molecular Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
16
|
Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Traffic 2016; 17:1063-77. [PMID: 27329675 DOI: 10.1111/tra.12422] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35-dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F-actin, both on endosomes and at the plasma membrane.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France. .,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.
| |
Collapse
|
17
|
Wu C, Cui Z, Liu Y, Zhang J, Ding W, Wang S, Bao G, Xu G, Sun Y, Chen J. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury. Int J Dev Neurosci 2016; 52:24-32. [PMID: 27211346 DOI: 10.1016/j.ijdevneu.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wensen Ding
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Song Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Basso M, Bonetto V. Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci 2016; 10:127. [PMID: 27065789 PMCID: PMC4814526 DOI: 10.3389/fnins.2016.00127] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.
Collapse
Affiliation(s)
- Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| |
Collapse
|
19
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
20
|
Tang Y, Lin Y, Li C, Hu X, Liu Y, He M, Luo J, Sun G, Wang T, Li W, Guo M. MicroRNA-720 promotes in vitro cell migration by targeting Rab35 expression in cervical cancer cells. Cell Biosci 2015; 5:56. [PMID: 26413265 PMCID: PMC4583841 DOI: 10.1186/s13578-015-0047-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-720 (miR-720), a nonclassical miRNA, is involved in the initiation and progression of several tumors. In our previous studies, miR-720 was shown to be significantly upregulated in cervical cancer tissues compared with normal cervical tissues. However, the precise biological functions of miR-720, and its molecular mechanisms of action, are still unknown. Results Microarray expression profiles, luciferase reporter assays, and western blot assays were used to validate Rab35 as a target gene of miR-720 in HEK293T and HeLa cells. The regulation of Rab35 expression by miR-720 was assessed using qRT-PCR and western blot assays, and the effects of exogenous miR-720 and Rab35 on cell migration were evaluated in vitro using Transwell® assay, wound healing assay, and real-time analyses in HeLa cells. The influences of exogenous miR-720 on cell proliferation were evaluated in vitro by the MTT assay in HeLa cells. In addition, expression of E-cadherin and vimentin associated with epithelial-mesenchymal transition were also assessed using western blot analyses after transfection of miR-720 mimics and Rab35 expression vectors. The results showed that the small GTPase, Rab35, is a direct functional target of miR-720 in cervical cancer HeLa cells. By targeting Rab35, overexpression of miR-720 resulted in a decrease in E-cadherin expression and an increase in vimentin expression and finally led to promotion of HeLa cell migration. Furthermore, reintroduction of Rab35 3′-UTR(−) markedly reversed the induction of cell migration in miR-720-expressing HeLa cells. Conclusions The miR-720 promotes cell migration of HeLa cells by downregulating Rab35. The results show that miR-720 is a novel cell migration-associated gene in cervical cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0047-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunlan Tang
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Yi Lin
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Chuang Li
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Xunwu Hu
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Yi Liu
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Mingyang He
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital, Wuhan University, 430071 Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wenxin Li
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Mingxiong Guo
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| |
Collapse
|
21
|
Kobayashi H, Etoh K, Ohbayashi N, Fukuda M. Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol Open 2014; 3:803-14. [PMID: 25086062 PMCID: PMC4163657 DOI: 10.1242/bio.20148771] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small GTPase Rab35 is an important molecular switch for endocytic recycling that regulates various cellular processes, including cytokinesis, cell migration, and neurite outgrowth. We previously showed that active Rab35 promotes nerve growth factor (NGF)-induced neurite outgrowth of PC12 cells by recruiting MICAL-L1, a multiple Rab-binding protein, to Arf6-positive recycling endosomes. However, the physiological significance of the multiple Rab-binding ability of MICAL-L1 during neurite outgrowth remained completely unknown. Here we report that Rab35 and MICAL-L1 promote the recruitment of Rab8, Rab13, and Rab36 to Arf6-positive recycling endosomes during neurite outgrowth. We found that Rab35 functions as a master Rab that determines the intracellular localization of MICAL-L1, which in turn functions as a scaffold for Rab8, Rab13, and Rab36. We further showed by functional ablation experiments that each of these downstream Rabs regulates neurite outgrowth in a non-redundant manner downstream of Rab35 and MICAL-L1, e.g. by showing that knockdown of Rab36 inhibited recruitment of Rab36-specific effector JIP4 to Arf6-positive recycling endosomes, and caused inhibition of neurite outgrowth without affecting accumulation of Rab8 and Rab13 in the same Arf6-positive area. Our findings suggest the existence of a novel mechanism that recruits multiple Rab proteins at the Arf6-positive compartment by MICAL-L1.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kan Etoh
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|