1
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
2
|
Tiniakou I, Hsu PF, Lopez-Zepeda LS, Garipler G, Esteva E, Adams NM, Jang G, Soni C, Lau CM, Liu F, Khodadadi-Jamayran A, Rodrick TC, Jones D, Tsirigos A, Ohler U, Bedford MT, Nimer SD, Kaartinen V, Mazzoni EO, Reizis B. Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation. Sci Immunol 2024; 9:eadi1023. [PMID: 38608038 PMCID: PMC11182672 DOI: 10.1126/sciimmunol.adi1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.
Collapse
Affiliation(s)
- Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Lorena S. Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Görkem Garipler
- Department of Biology, New York University; New York, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Nicholas M. Adams
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| | - Colleen M. Lau
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine; Ithaca, NY, USA
| | - Fan Liu
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Tori C. Rodrick
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Drew Jones
- Metabolomics Laboratory, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine; New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine; New York, NY, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin; Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine; Berlin, Germany
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry; Ann Arbor, MI, USA
| | | | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine; New York, NY, USA
| |
Collapse
|
3
|
Vega-Sendino M, Lüttmann FF, Olbrich T, Chen Y, Kuenne C, Stein P, Tillo D, Carey GI, Zhong J, Savy V, Radonova L, Lu T, Saykali B, Kim KP, Domingo CN, Schüler L, Günther S, Bentsen M, Bosnakovski D, Schöler H, Kyba M, Maity TK, Jenkins LM, Looso M, Williams CJ, Kim J, Ruiz S. The homeobox transcription factor DUXBL controls exit from totipotency. Nat Genet 2024; 56:697-709. [PMID: 38509386 PMCID: PMC11149696 DOI: 10.1038/s41588-024-01692-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.
Collapse
Affiliation(s)
| | - Felipe F Lüttmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yanpu Chen
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | | | - Grace I Carey
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Jiasheng Zhong
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Lenka Radonova
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Tianlin Lu
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Leah Schüler
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Hans Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Mario Looso
- Cardio-Pulmonary Institute, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany.
- German Center for Lung Research (DZL), Partner Site Rhein/Main, Germany.
- Institute of Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany.
- The Center for Cardiovascular Regeneration and Immunology at TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany.
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Hui Z, Fu Y, Chen Y, Yin J, Fang H, Tu Y, Gu Y, Zhang J. Loss of TRIM24 promotes IL-10 expression via CBP/p300-dependent IFNβ1 transcription during macrophage activation. Inflamm Res 2023; 72:1441-1452. [PMID: 37326695 DOI: 10.1007/s00011-023-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND As an anti-inflammatory cytokine, interleukin 10 (IL-10) plays a vital role in preventing inflammatory and autoimmune pathologies while also maintaining immune homeostasis. IL-10 production in macrophages is tightly regulated by multiple pathways. TRIM24, a member of the Transcriptional Intermediary Factor 1 (TIF1) family, contributes to antiviral immunity and macrophage M2 polarization. However, the role of TRIM24 in regulating IL-10 expression and its involvement in endotoxic shock remains unclear. METHODS In vitro, bone marrow derived macrophages cultured with GM-CSF or M-CSF were stimulated with LPS (100ng/ml). Murine models of endotoxic shock were established by challenging the mice with different dose of LPS (i.p). RTPCR, RNA sequencing, ELISA and hematoxylin and eosin staining were performed to elucidate the role and mechanisms of TRIM24 in endotoxic shock. RESULTS The expression of TRIM24 is downregulated in LPS-stimulated bone marrow-derived macrophages (BMDMs). Loss of TRIM24 boosted IL-10 expression during the late stage of LPS-stimulation in macrophages. RNA-seq analysis revealed the upregulation of IFNβ1, an upstream regulator of IL-10, in TRIM24 knockout macrophages. Treatment with C646, a CBP/p300 inhibitor, diminished the difference in both IFNβ1 and IL-10 expression between TRIM24 knockout and control macrophages. Loss of TRIM24 provided protection against LPS-induced endotoxic shock in mice. CONCLUSION Our results demonstrated that inhibiting TRIM24 promoted the expression of IFNβ1 and IL-10 during macrophage activation, therefore protecting mice from endotoxic shock. This study offers novel insights into the regulatory role of TRIM24 in IL-10 expression, making it a potentially attractive therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Zhaoyuan Hui
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, 750004, China
| | - Yuanzheng Fu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yunyun Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jie Yin
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hui Fang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Tu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Gu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
- Department of Genetics, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Jiawei Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
8
|
Emerging Roles of TRIM Family Proteins in Gliomas Pathogenesis. Cancers (Basel) 2022; 14:cancers14184536. [PMID: 36139694 PMCID: PMC9496762 DOI: 10.3390/cancers14184536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Gliomas remain challenging tumors due to their increased heterogeneity, complex molecular profile, and infiltrative phenotype that are often associated with a dismal prognosis. In a constant search for molecular changes and associated mechanisms, the TRIM protein family has emerged as an important area of investigation because of the regulation of vital cellular processes involved in brain pathophysiology that may possibly lead to brain tumor development. Herein, we discuss the diverse role of TRIM proteins in glioma progression, aiming to detect potential targets for future intervention. Abstract Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.
Collapse
|
9
|
HSF1 phosphorylation establishes an active chromatin state via the TRRAP-TIP60 complex and promotes tumorigenesis. Nat Commun 2022; 13:4355. [PMID: 35906200 PMCID: PMC9338313 DOI: 10.1038/s41467-022-32034-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Transcriptional regulation by RNA polymerase II is associated with changes in chromatin structure. Activated and promoter-bound heat shock transcription factor 1 (HSF1) recruits transcriptional co-activators, including histone-modifying enzymes; however, the mechanisms underlying chromatin opening remain unclear. Here, we demonstrate that HSF1 recruits the TRRAP-TIP60 acetyltransferase complex in HSP72 promoter during heat shock in a manner dependent on phosphorylation of HSF1-S419. TRIM33, a bromodomain-containing ubiquitin ligase, is then recruited to the promoter by interactions with HSF1 and a TIP60-mediated acetylation mark, and cooperates with the related factor TRIM24 for mono-ubiquitination of histone H2B on K120. These changes in histone modifications are triggered by phosphorylation of HSF1-S419 via PLK1, and stabilize the HSF1-transcription complex in HSP72 promoter. Furthermore, HSF1-S419 phosphorylation is constitutively enhanced in and promotes proliferation of melanoma cells. Our results provide mechanisms for HSF1 phosphorylation-dependent establishment of an active chromatin status, which is important for tumorigenesis. Here the authors show phosphorylation of heat shock factor 1 (HSF1) at S419 via the chromatin-bound kinase PLK1, promotes HSF1 recruitment of histone acetyltransferases and histone acetylation reader proteins TRIM33 and TRIM24, which actually also execute histone H2BK120 mono-ubiquitination at target genes. Furthermore, HSF1 phosphorylation has an impact on melanoma cell proliferation.
Collapse
|
10
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
12
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Jiang T, Mao H, Chen Q, Cao L, He Y, Gao X, Chen W, Zhang H. Trim24 prompts tumor progression via inducing EMT in renal cell carcinoma. Open Med (Wars) 2020; 15:1153-1162. [PMID: 33336072 PMCID: PMC7718642 DOI: 10.1515/med-2020-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/26/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor originating from renal tubular epithelial cells with poor prognosis and high metastatic rate. Tripartite motif-containing 24 (Trim24) is a member of the tripartite motif (Trim) family and also a valuable oncogene, but its role in RCC remains unclear. We constructed the overexpression and knockdown of Trim24 cell lines to investigate its roles in RCC progression. CCK8, wound healing, and transwell assay were performed to determine the proliferation, migration, and invasion of RCC cell lines, respectively. Moreover, the expression of Trim24 and its clinicopathological significance were evaluated in a human RCC tissue microarray. From our results, Trim24 promoted the proliferation, migration, and invasion of RCC cells in vitro. Importantly, overexpression of Trim24 led to a significant increase in the expression levels of MMP-2, MMP-9, fibronectin, snail, vimentin, N-cadherin, and β-catenin, inducing the EMT process in turn, while the expression of these proteins was significantly downregulated when Trim24 was knocked down in ACHN cells. In addition, Trim24 was significantly upregulated in RCC, and its high expression was negatively associated with the tumor size. Trim24 might operate as an oncogene in RCC progression by inducing the EMT process, suggesting that Trim24 was a potential target for human RCC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Houping Mao
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Qin Chen
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Linsheng Cao
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Yanfeng He
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Xingjian Gao
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Wenwei Chen
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Hua Zhang
- Department of Urology, Second District, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| |
Collapse
|
14
|
Trim24 and Trim33 Play a Role in Epigenetic Silencing of Retroviruses in Embryonic Stem Cells. Viruses 2020; 12:v12091015. [PMID: 32932986 PMCID: PMC7551373 DOI: 10.3390/v12091015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESC) have the ability to epigenetically silence endogenous and exogenous retroviral sequences. Trim28 plays an important role in establishing this silencing, but less is known about the role other Trim proteins play. The Tif1 family is a sub-group of the Trim family, which possess histone binding ability in addition to the distinctive RING domain. Here, we have examined the interaction between three Tif1 family members, namely Trim24, Trim28 and Trim33, and their function in retroviral silencing. We identify a complex formed in ESC, comprised of these three proteins. We further show that when Trim33 is depleted, the complex collapses and silencing efficiency of both endogenous and exogenous sequences is reduced. Similar transcriptional activation takes place when Trim24 is depleted. Analysis of the H3K9me3 chromatin modification showed a decrease in this repressive mark, following both Trim24 and Trim33 depletion. As Trim28 is an identified binding partner of the H3K9 methyltransferase ESET, this further supports the involvement of Trim28 in the complex. The results presented here suggest that a complex of Tif1 family members, each of which possesses different specificity and efficiency, contributes to the silencing of retroviral sequences in ESC.
Collapse
|
15
|
Yang T, Li M, Li H, Shi P, Liu J, Chen M. Downregulation of circEPSTI1 represses the proliferation and invasion of non-small cell lung cancer by inhibiting TRIM24 via miR-1248 upregulation. Biochem Biophys Res Commun 2020; 530:348-354. [PMID: 32828310 DOI: 10.1016/j.bbrc.2020.06.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 01/16/2023]
Abstract
The circular RNA (circRNA) circEPSTI1 has been recently identified as a new cancer-associated circRNA in multiple types of cancer. However, the involvement of circEPSTI1 in non-small cell lung cancer (NSCLC) remains unexplored. The purpose of this study was to explore the expression pattern and function of circEPSTI1 in NSCLC. We found that circEPSTI1 expression was significantly elevated in NSCLC. In vitro experiments elucidated that knockdown of circEPSTI1 caused a significant reduction in NSCLC cell proliferation and invasion. Moreover, circEPSTI1 was identified as an miRNA sponge of miRNA-1248. Knockdown of circEPSTI1 markedly increased the expression of miR-1248 in NSCLC cells. Upregulation of miR-1248 significantly restricted the proliferation and invasion of NSCLC cells. Inhibition of miR-1248 promoted the proliferation and invasion of NSCLC cells and blocked the circEPSTI1 knockdown-mediated inhibitory effect on NSCLC cell proliferation and invasion. Subsequent data revealed that the tumor-promoting gene tripartite motif-containing protein 24 (TRIM24) is a target gene of miR-1248. The upregulation of TRIM24 partially reversed circEPSTI1 knockdown- or miR-1248 overexpression-induced tumor suppressive effect in NSCLC cells. In summary, our data demonstrate that downregulation of circEPSTI1 represses the proliferation and invasion of NSCLC by inhibiting TRIM24 via miR-1248 upregulation.
Collapse
Affiliation(s)
- Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Hong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Johnson Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
16
|
Xie W, Zhang Y, Wang B, Hu Y, Zhan B, Wei F, Tang J, Lian J. Tripartite motif containing 24 regulates cell proliferation in colorectal cancer through YAP signaling. Cancer Med 2020; 9:6367-6376. [PMID: 32677374 PMCID: PMC7476840 DOI: 10.1002/cam4.3310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
The protein, tripartite motif containing 24 (TRIM24) is a member of the TRIM protein family, and acts as a critical co‐regulator of multiple nuclear receptors. TRIM24 is dysregulated in many cancers, including colorectal carcinoma. However, its biological functions and molecular mechanisms with respect to colorectal carcinoma are still largely unknown. In the current study, we found that TRIM24 promotes YAP signaling for driving cell proliferation in colorectal cancer. TRIM24 was significantly upregulated in colorectal carcinoma, and its expression was negatively correlated with the survival of patients. Depletion of TRIM24 impaired the ability of the cancer cells to proliferate and form colonies. Furthermore, this study also revealed the mechanism underlying the recruitment of TRIM24 by the DANCR/KAT6A complex, which is bound to acetylated lysine 23 of histone H3 (H3K23), resulting in binding to the YAP promoter and activation of YAP transcription that ultimately enhances the proliferation of colorectal cancer cells. Our results revealed a novel mechanism involving TRIM24‐YAP signaling for the regulation of colorectal cancer. We also identified TRIM24 as a potential therapeutic molecule for targeting colorectal cancer.
Collapse
Affiliation(s)
- Wenlin Xie
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yingqiang Zhang
- Department of Interventional Radiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bingyang Wang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yuting Hu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bohui Zhan
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Fangqiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People' s Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jianming Tang
- Department of Radiation Oncology, Zhejiang Provincial People' s Hospital, People' s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jiayan Lian
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
17
|
Li L, Liu C, Wang Q, Wu C, Zhang Y, Cheng L, Wen X, Zeng X, Zhang F, Li Y. Analysis of myositis autoantibodies in Chinese patients with cancer-associated myositis. J Clin Lab Anal 2020; 34:e23307. [PMID: 32222002 PMCID: PMC7439325 DOI: 10.1002/jcla.23307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Cancer‐associated myositis (CAM) has poor prognosis and causes higher mortality. In general, myositis‐specific autoantibodies (MSAs) and myositis‐associated autoantibodies (MAAs) have been shown to be useful biomarkers for its diagnosis. Methods In the present study, focus was given in assessing the presence, prevalence, and diagnostic values of myositis autoantibodies in Chinese patients diagnosed with CAM. The sera collected from 49 CAM patients, 108 dermatomyositis/polymyositis (DM/PM) patients without cancer, 105 disease controls, and 60 healthy controls were detected for the presence of 16 autoantigens (Jo‐1, OJ, EJ, PL‐7, PL‐12, MDA5, TIF1γ, Mi‐2α, Mi‐2β, SAE1, NXP2, SRP, Ku, PM‐Scl75, PM‐Scl100, and Ro‐52) using a commercial Euroline assay. Results The frequency of anti‐TIF1γ was significantly higher in CAM patients than in DM/PM patients without cancer (46.9% vs 14.8%, P < .001). Importantly, the sensitivity and specificity for this MSA were 46.9% and 85.2%, respectively. These helped to differentiate CAM patients from DM/PM patients without cancer. However, there was no difference in other MSAs and MAAs between CAM and DM/PM patients without cancer. Conclusion The present study indicates that anti‐TIF1γ levels can serve as important biomarkers for CAM diagnosis and help in distinguishing between CAM and DM/PM patients without cancer.
Collapse
Affiliation(s)
- Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfang Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Medical Laboratory, the First Hospital of Jilin University, Changchun, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoting Wen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Stangl C, Post JB, van Roosmalen MJ, Hami N, Verlaan-Klink I, Vos HR, van Es RM, Koudijs MJ, Voest EE, Snippert HJG, Kloosterman WP. Diverse BRAF Gene Fusions Confer Resistance to EGFR-Targeted Therapy via Differential Modulation of BRAF Activity. Mol Cancer Res 2020; 18:537-548. [PMID: 31911540 DOI: 10.1158/1541-7786.mcr-19-0529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Fusion genes can be oncogenic drivers in a variety of cancer types and represent potential targets for targeted therapy. The BRAF gene is frequently involved in oncogenic gene fusions, with fusion frequencies of 0.2%-3% throughout different cancers. However, BRAF fusions rarely occur in the same gene configuration, potentially challenging personalized therapy design. In particular, the impact of the wide variety of fusion partners on the oncogenic role of BRAF during tumor growth and drug response is unknown. Here, we used patient-derived colorectal cancer organoids to functionally characterize and cross-compare BRAF fusions containing various partner genes (AGAP3, DLG1, and TRIM24) with respect to cellular behavior, downstream signaling activation, and response to targeted therapies. We demonstrate that 5' fusion partners mainly promote canonical oncogenic BRAF activity by replacing the auto-inhibitory N-terminal region. In addition, the 5' partner of BRAF fusions influences their subcellular localization and intracellular signaling capacity, revealing distinct subsets of affected signaling pathways and altered gene expression. Presence of the different BRAF fusions resulted in varying sensitivities to combinatorial inhibition of MEK and the EGF receptor family. However, all BRAF fusions conveyed resistance to targeted monotherapy against the EGF receptor family, suggesting that BRAF fusions should be screened alongside other MAPK pathway alterations to identify patients with metastatic colorectal cancer to exclude from anti-EGFR-targeted treatment. IMPLICATIONS: Although intracellular signaling and sensitivity to targeted therapies of BRAF fusion genes are influenced by their 5' fusion partner, we show that all investigated BRAF fusions confer resistance to clinically relevant EGFR inhibition.
Collapse
Affiliation(s)
- Christina Stangl
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands
| | - Jasmin B Post
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, the Netherlands
| | - Nizar Hami
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco J Koudijs
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands.
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - W P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands. .,Cyclomics, Utrecht, the Netherlands.,Frame Cancer Therapeutics, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Jacques C, Lavaud M, Georges S, Tesfaye R, Baud’huin M, Lamoureux F, Ory B. BET bromodomains’ functions in bone-related pathologies. Epigenomics 2020; 12:127-144. [DOI: 10.2217/epi-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Throughout life, bones are subjected to the so-called ‘bone-remodeling’ process, which is a balanced mechanism between the apposition and the resorption of bone. This remodeling process depends on the activities of bone-specialized cells, namely the osteoblasts and the osteoclasts. Any deregulation in this process results in bone-related pathologies, classified as either metabolic nonmalignant diseases (such as osteoporosis) or malignant primary bone sarcomas. As these pathologies are not characterized by common targetable genetic alterations, epigenetic strategies could be relevant and promising options. Recently, targeting epigenetic regulators such as the bromodomains and extraterminal domains (BET) readers have achieved success in numerous other pathologies, including cancers. In this review, we highlight the current state of the art in terms of the diverse implications of BET bromodomain proteins in the bone’s biology and its defects. Consequently, their role in bone-related pathologies will also be developed, especially in the context of the primary bone sarcomas.
Collapse
Affiliation(s)
- Camille Jacques
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Melanie Lavaud
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Steven Georges
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Robel Tesfaye
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| | - Marc Baud’huin
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - François Lamoureux
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Benjamin Ory
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| |
Collapse
|
20
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Affiliation(s)
- D Fiorentino
- Department of Dermatology, Stanford University School of Medicine, 450 Broadway, Redwood City, CA, U.S.A
| |
Collapse
|
22
|
Bai J, Li K, Tang W, Liang Z, Wang X, Feng W, Zhang S, Ren L, Wu S, Han H, Zhao Y. A high-throughput screen for genes essential for PRRSV infection using a piggyBac-based system. Virology 2019; 531:19-30. [DOI: 10.1016/j.virol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023]
|
23
|
Cai F, Cai L, Zhou Z, Pan X, Wang M, Chen S, Luis MAF, Cen C, Biskup E. Prognostic role of Tif1γ expression and circulating tumor cells in patients with breast cancer. Mol Med Rep 2019; 19:3685-3695. [PMID: 30896800 PMCID: PMC6470918 DOI: 10.3892/mmr.2019.10033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
Transcription intermediary factor 1γ (Tif1γ), a ubiquitous nuclear protein, is a regulator of transforming growth factor-β (TGF-β)/Smad signaling. Tif1γ can function as an oncogene and as a tumor suppressor. In the present study, Tif1γ levels were measured in the plasma of patients with breast cancer in order to investigate the association of Tif1γ with overall survival (OS). The results indicated that Tif1γ is an independent prognostic and predictive factor in breast cancer, and thus, a promising target protein for use in diagnostics and patient follow-up. Plasma levels of Tif1γ were measured in samples obtained from 110 patients with operable breast cancer and in 110 healthy volunteers at the Breast Cancer Department of Yangpu Hospital between 2008 and 2016. The association between Tif1γ levels and clinicopathologic parameters, and the OS in a follow-up period of 98 months was evaluated. The prognostic significance was assessed using the Kaplan-Meier method. The levels of Tif1γ were significantly lower in patients with breast cancer compared with healthy controls. The average concentration of 18.40 ng/ml was used to discriminate between Tif1γ-positive (52) and Tif1γ-negative patients (58). Tif1γ-positive patients had a significantly improved OS compared with Tif1γ-negative patients. In the multivariate analysis, Tif1γ was an independent predictor of a favorable OS in a prospective follow-up setting; thus, Tif1γ plasma levels are an independent prognostic factor for patients with breast cancer. These findings support the potential of using measurements of Tif1γ plasma levels to guide breast cancer therapy and monitoring. Further studies are required to validate Tif1γ as an easily detectable, non-invasive prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, School of Medicine, Shanghai 200041, P.R. China
| | - Xin Pan
- Department of Central Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Minghong Wang
- Department of Cardiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Su Chen
- Department of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shanxi 710061, P.R. China
| | - Manuel Antonio Falar Luis
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Chunmei Cen
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Ewelina Biskup
- Department of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
24
|
Ali H, Mano M, Braga L, Naseem A, Marini B, Vu DM, Collesi C, Meroni G, Lusic M, Giacca M. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat Commun 2019; 10:926. [PMID: 30804369 PMCID: PMC6389893 DOI: 10.1038/s41467-019-08810-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Productive HIV-1 replication requires viral integrase (IN), which catalyzes integration of the viral genome into the host cell DNA. IN, however, is short lived and is rapidly degraded by the host ubiquitin-proteasome system. To identify the cellular factors responsible for HIV-1 IN degradation, we performed a targeted RNAi screen using a library of siRNAs against all components of the ubiquitin-conjugation machinery using high-content microscopy. Here we report that the E3 RING ligase TRIM33 is a major determinant of HIV-1 IN stability. CD4-positive cells with TRIM33 knock down show increased HIV-1 replication and proviral DNA formation, while those overexpressing the factor display opposite effects. Knock down of TRIM33 reverts the phenotype of an HIV-1 molecular clone carrying substitution of IN serine 57 to alanine, a mutation known to impair viral DNA integration. Thus, TRIM33 acts as a cellular factor restricting HIV-1 infection by preventing provirus formation. HIV-1 integration into host DNA is mediated by the viral integrase (IN). Here, using siRNA screen and high-content microscopy, the authors identify the host E3 RING ligase TRIM33 to affect IN stability and show that TRIM33 prevents viral integration by triggering IN proteasome-mediated degradation.
Collapse
Affiliation(s)
- Hashim Ali
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, 3060-197, Portugal
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Asma Naseem
- Cellular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Bruna Marini
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Ulisse BioMed S.r.l., AREA Science Park, Basovizza, 34149, Trieste, Italy
| | - Diem My Vu
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marina Lusic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,University Hospital Heidelberg and German Center for Infection Research, 69120, Heidelberg, Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy. .,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
25
|
Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048. Oncogene 2018; 38:637-655. [PMID: 30177833 DOI: 10.1038/s41388-018-0481-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-β (TGF-β) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ's association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ's ability to suppress TGF-β signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-β signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-β together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-β-Smad2/3 signaling.
Collapse
|
26
|
Carrier M, Lutzing R, Gaouar S, Rochette-Egly C. TRIM24 mediates the interaction of the retinoic acid receptor alpha with the proteasome. FEBS Lett 2018; 592:1426-1433. [PMID: 29543331 DOI: 10.1002/1873-3468.13033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent regulators of transcription. Upon activation by RA, they are recruited at the promoters of target genes together with several coregulators. Then, they are degraded by the ubiquitin proteasome system. Here, we report that the degradation of the RARα subtype involves ubiquitination and the tripartite motif protein TRIM24, which was originally identified as a ligand-dependent corepressor of RARα. We show that in response to RA, TRIM24 serves as an adapter linking RARα to the proteasome for its degradation. In addition, TRIM24 and the proteasome are recruited with RARα to the promoters of target genes and thus are inherently linked to RARα transcriptional activity.
Collapse
Affiliation(s)
- Marilyn Carrier
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch Cedex, France
| | - Regis Lutzing
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch Cedex, France
| | - Samia Gaouar
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch Cedex, France
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch Cedex, France
| |
Collapse
|
27
|
Crawford LJ, Johnston CK, Irvine AE. TRIM proteins in blood cancers. J Cell Commun Signal 2017; 12:21-29. [PMID: 29110249 PMCID: PMC5842186 DOI: 10.1007/s12079-017-0423-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Post-translational modification of proteins with ubiquitin plays a central role in regulating numerous cellular processes. E3 ligases determine the specificity of ubiquitination by mediating the transfer of ubiquitin to substrate proteins. The family of tripartite motif (TRIM) proteins make up one of the largest subfamilies of E3 ligases. Accumulating evidence suggests that dysregulation of TRIM proteins is associated with a variety of diseases. In this review we focus on the involvement of TRIM proteins in blood cancers.
Collapse
Affiliation(s)
- Lisa J Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Cliona K Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Alexandra E Irvine
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
28
|
Lv D, Jia F, Hou Y, Sang Y, Alvarez AA, Zhang W, Gao WQ, Hu B, Cheng SY, Ge J, Li Y, Feng H. Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding. Cancer Res 2017; 77:6190-6201. [PMID: 29021135 DOI: 10.1158/0008-5472.can-17-1388] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 12/31/2022]
Abstract
Lysine acetyltransferase KAT6A is a chromatin regulator that contributes to histone modification and cancer, but the basis of its actions are not well understood. Here, we identify a KAT6A signaling pathway that facilitates glioblastoma (GBM), where it is upregulated. KAT6A expression was associated with GBM patient survival. KAT6A silencing suppressed cell proliferation, cell migration, colony formation, and tumor development in an orthotopic mouse xenograft model system. Mechanistic investigations demonstrated that KAT6A acetylates lysine 23 of histone H3 (H3K23), which recruits the nuclear receptor binding protein TRIM24 to activate PIK3CA transcription, thereby enhancing PI3K/AKT signaling and tumorigenesis. Overexpressing activated AKT or PIK3CA rescued the growth inhibition due to KAT6A silencing. Conversely, the pan-PI3K inhibitor LY294002 abrogated the growth-promoting effect of KAT6A. Overexpression of KAT6A or TRIM24, but not KAT6A acetyltransferase activity-deficient mutants or TRIM24 mutants lacking H3K23ac-binding sites, promoted PIK3CA expression, AKT phosphorylation, and cell proliferation. Taken together, our results define an essential role of KAT6A in glioma formation, rationalizing its candidacy as a therapeutic target for GBM treatment. Cancer Res; 77(22); 6190-201. ©2017 AACR.
Collapse
Affiliation(s)
- Deguan Lv
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai, China
| | - Yanli Hou
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youzhou Sang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Weiwei Zhang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China
| | - Wei-Qiang Gao
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shi-Yuan Cheng
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China.,Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, Shanghai, China.
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Haizhong Feng
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai, China.
| |
Collapse
|
29
|
Aussy A, Boyer O, Cordel N. Dermatomyositis and Immune-Mediated Necrotizing Myopathies: A Window on Autoimmunity and Cancer. Front Immunol 2017; 8:992. [PMID: 28871260 PMCID: PMC5566616 DOI: 10.3389/fimmu.2017.00992] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Autoimmune myopathies (myositides) are strongly associated with malignancy. The link between myositis and cancer, originally noticed by Bohan and Peter in their classification in 1975 (1), has been evidenced by large population-based cohort studies and a recent meta-analysis. The numerous reports of cases in which the clinical course of myositis reflects that of cancer and the short delay between myositis and cancer onset support the notion that myositis may be an authentic paraneoplastic disorder. Thus, cancer-associated myositis raises the question of cancer as a cause rather than a consequence of autoimmunity. Among myositides, dermatomyositis and more recently, although to a lesser extent, immune-mediated necrotizing myopathies are the most documented forms associated with cancer. Interestingly, the current diagnostic approach for myositis is based on the identification of specific antibodies where each antibody determines specific clinical features and outcomes. Recent findings have shown that the autoantibodies anti-TIF1γ, anti-NXP2 and anti-HMGCR are associated with cancers in the course of myositis. Herein, we highlight the fact that the targets of these three autoantibodies involve cellular pathways that intervene in tumor promotion and we discuss the role of cancer mutations as autoimmunity triggers in adult myositis.
Collapse
Affiliation(s)
- Audrey Aussy
- Normandie University, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | - Olivier Boyer
- Normandie University, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | - Nadège Cordel
- Normandie University, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France.,Unit of Dermatology and Internal Medicine, Pointe-à-Pitre University Hospital, University of the French West Indies, Fouillole, Pointe-à-Pitre, Guadeloupe
| |
Collapse
|
30
|
Fang Z, Deng J, Zhang L, Xiang X, Yu F, Chen J, Feng M, Xiong J. TRIM24 promotes the aggression of gastric cancer via the Wnt/β-catenin signaling pathway. Oncol Lett 2017; 13:1797-1806. [PMID: 28454326 DOI: 10.3892/ol.2017.5604] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2016] [Indexed: 01/05/2023] Open
Abstract
Tripartite motif-containing 24 (TRIM24) is important in tumor development and progression. However, the role of TRIM24 in gastric cancer (GC) and the mechanisms underlying the dysregulated expression of TRIM24 remain to be fully elucidated. In the present study, it was found that TRIM24 was frequently overexpressed in GC cell lines and tissues compared with normal controls, as determined by western blotting and immunohistochemical staining. The high nuclear expression of TRIM24 was correlated with the depth of invasion (P=0.007), tumor-node-metastasis stage (P=0.005), and lymph node metastasis (P=0.027), and shorter overall survival rates (P=0.010) in patients with GC. Small interfering RNA-mediated knockdown of TRIM24 inhibited cell proliferation, colony formation, migration, invasion and the nuclear accumulation of β-catenin, and it delayed cell cycle progression and induced apoptosis. In addition, the expression of TRIM24 was positively correlated with that of β-catenin in GC tissues. TRIM24 knockdown decreased the expression of Wnt/β-catenin target genes, whereas the activation of Wnt/β-catenin signaling by lithium chloride reversed the effects of TRIM24 knockdown. Taken together, these data suggested that TRIM24 was a prognostic or potential therapeutic target for patients with GC and was important in the activation of the Wnt/β-catenin pathway during the progression of GC.
Collapse
Affiliation(s)
- Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
31
|
Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer. Tumour Biol 2016; 37:14803-14812. [PMID: 27638829 DOI: 10.1007/s13277-016-5344-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
Acetylated H3 lysine 23 (H3K23ac) is a specific histone post-translational modification recognized by oncoprotein TRIM24. However, it is not clear whether H3K23ac levels are correlated with TRIM24 expression and what role H3K23ac may have in cancer. In this study, we collected breast carcinoma samples from 121 patients and conducted immunohistochemistry to determine the levels of TRIM24 and H3K23ac in breast cancer. Our results demonstrated that TRIM24 expression is positively correlated with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict shorter overall survival of breast cancer patients. We also showed that both TRIM24 and H3K23ac are higher in HER2-positive patients, and their levels were positively correlated with HER2 levels in breast cancer. Moreover, TRIM24 expression is associated with estrogen receptor (ER) and progesterone receptor (PR) statuses in both our cohort and The Cancer Genome Atlas (TCGA) breast carcinoma. In summary, our results revealed an important role of TRIM24 and H3K23ac in breast cancer and provided further evidence that TRIM24 small-molecule inhibitors may benefit ER- and PR-negative or HER2-positive breast cancer patients.
Collapse
|
32
|
Appikonda S, Thakkar KN, Barton MC. Regulation of gene expression in human cancers by TRIM24. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:57-63. [PMID: 27769359 DOI: 10.1016/j.ddtec.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 01/21/2023]
Abstract
Tripartite Motif-containing protein 24 (TRIM24) functions as an E3 ligase targeting p53 for ubiquitination, a histone 'reader' that interacts with a specific signature of histone post-translational modifications and a co-regulator of nuclear receptor-regulated transcription. Although mouse models of Trim24 depletion suggest that TRIM24 may be a liver-specific tumor suppressor, several studies show that human TRIM24 is an oncogene when aberrantly over expressed. This review focuses on the mechanisms of TRIM24 functions in oncogenesis and metabolic reprogramming, which underlie recent interest in therapeutic targeting of aberrant TRIM24 in human cancers.
Collapse
Affiliation(s)
- Srikanth Appikonda
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Kaushik N Thakkar
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β-dependent mechanisms. Proc Natl Acad Sci U S A 2016; 113:E4558-66. [PMID: 27432991 DOI: 10.1073/pnas.1608319113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bromodomain and extraterminal domain protein inhibitors (BETi) hold great promise as a novel class of cancer therapeutics. Because acquired resistance typically limits durable responses to targeted therapies, it is important to understand mechanisms by which tumor cells adapt to BETi. Here, through pooled shRNA screening of colorectal cancer cells, we identified tripartite motif-containing protein 33 (TRIM33) as a factor promoting sensitivity to BETi. We demonstrate that loss of TRIM33 reprograms cancer cells to a more resistant state through at least two mechanisms. TRIM33 silencing attenuates down-regulation of MYC in response to BETi. Moreover, loss of TRIM33 enhances TGF-β receptor expression and signaling, and blocking TGF-β receptor activity potentiates the antiproliferative effect of BETi. These results describe a mechanism for BETi resistance and suggest that combining inhibition of TGF-β signaling with BET bromodomain inhibition may offer new therapeutic benefits.
Collapse
|
34
|
Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, Houtman R, Cato ACB, Tschopp P, Gu L, Corsinotti A, Zhong Q, Fankhauser C, Fritz C, Poyet C, Wagner U, Guo T, Aebersold R, Garraway LA, Wild PJ, Theurillat JP, Brown M. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell 2016; 29:846-858. [PMID: 27238081 PMCID: PMC5124371 DOI: 10.1016/j.ccell.2016.04.012] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/15/2015] [Accepted: 04/27/2016] [Indexed: 01/22/2023]
Abstract
Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients.
Collapse
Affiliation(s)
- Anna C Groner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas de Tribolet-Hardy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Hana Janouskova
- Institute of Oncology Research, Bellinzona 6500, Switzerland
| | | | - René Houtman
- PamGene International, Den Bosch 521HH, the Netherlands
| | - Andrew C B Cato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Tschopp
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Lei Gu
- Division of Newborn Medicine, Children's Hospital Boston and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Qing Zhong
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Christian Fankhauser
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland; Department of Urology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Christine Fritz
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Ulrich Wagner
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8093, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8093, Switzerland; Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona 6500, Switzerland; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne 1011, Switzerland.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
T-cell-intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy. Proc Natl Acad Sci U S A 2016; 113:E568-76. [PMID: 26787865 DOI: 10.1073/pnas.1522287113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ(+)CD4(+) T-helper 2 (TH2) cells orchestrate the type-2-driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081-E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4(gfp+)αβ(+)CD4(+) TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell-intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24(-/-) T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1-regulated signaling. Following this prediction, we found that Trim24(-/-) T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β-mediated activation in vitro and in vivo, and fail to respond to IL-1β-exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell-intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity.
Collapse
|
36
|
TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat Commun 2015; 6:8900. [PMID: 26592194 PMCID: PMC4673826 DOI: 10.1038/ncomms9900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/10/2015] [Indexed: 01/01/2023] Open
Abstract
Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-β gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15 kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown. Transcriptional regulation of the interferon-β gene (Ifnb1) in macrophages is a critical immune event. Here, Ferri et al. show that, at late phases of macrophages activation, TRIM33 bound to a distal repressor element suppresses Ifnb1 transcription by preventing recruitment of CBP/p300.
Collapse
|
37
|
Palmer WS, Poncet-Montange G, Liu G, Petrocchi A, Reyna N, Subramanian G, Theroff J, Yau A, Kost-Alimova M, Bardenhagen JP, Leo E, Shepard HE, Tieu TN, Shi X, Zhan Y, Zhao S, Barton MC, Draetta G, Toniatti C, Jones P, Geck Do M, Andersen JN. Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor. J Med Chem 2015; 59:1440-54. [PMID: 26061247 DOI: 10.1021/acs.jmedchem.5b00405] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bromodomain containing proteins TRIM24 (tripartite motif containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are involved in the epigenetic regulation of gene expression and have been implicated in human cancer. Overexpression of TRIM24 correlates with poor patient prognosis, and BRPF1 is a scaffolding protein required for the assembly of histone acetyltransferase complexes, where the gene of MOZ (monocytic leukemia zinc finger protein) was first identified as a recurrent fusion partner in leukemia patients (8p11 chromosomal rearrangements). Here, we present the structure guided development of a series of N,N-dimethylbenzimidazolone bromodomain inhibitors through the iterative use of X-ray cocrystal structures. A unique binding mode enabled the design of a potent and selective inhibitor 8i (IACS-9571) with low nanomolar affinities for TRIM24 and BRPF1 (ITC Kd = 31 nM and ITC Kd = 14 nM, respectively). With its excellent cellular potency (EC50 = 50 nM) and favorable pharmacokinetic properties (F = 29%), 8i is a high-quality chemical probe for the evaluation of TRIM24 and/or BRPF1 bromodomain function in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard , Houston, Texas 77030, United States
| | | | | | | | | | | |
Collapse
|
38
|
Wang E, Kawaoka S, Roe JS, Shi J, Hohmann AF, Xu Y, Bhagwat AS, Suzuki Y, Kinney JB, Vakoc CR. The transcriptional cofactor TRIM33 prevents apoptosis in B lymphoblastic leukemia by deactivating a single enhancer. eLife 2015; 4:e06377. [PMID: 25919951 PMCID: PMC4409649 DOI: 10.7554/elife.06377] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most mammalian transcription factors (TFs) and cofactors occupy thousands of genomic sites and modulate the expression of large gene networks to implement their biological functions. In this study, we describe an exception to this paradigm. TRIM33 is identified here as a lineage dependency in B cell neoplasms and is shown to perform this essential function by associating with a single cis element. ChIP-seq analysis of TRIM33 in murine B cell leukemia revealed a preferential association with two lineage-specific enhancers that harbor an exceptional density of motifs recognized by the PU.1 TF. TRIM33 is recruited to these elements by PU.1, yet acts to antagonize PU.1 function. One of the PU.1/TRIM33 co-occupied enhancers is upstream of the pro-apoptotic gene Bim, and deleting this enhancer renders TRIM33 dispensable for leukemia cell survival. These findings reveal an essential role for TRIM33 in preventing apoptosis in B lymphoblastic leukemia by interfering with enhancer-mediated Bim activation. DOI:http://dx.doi.org/10.7554/eLife.06377.001 The DNA inside every cell in a human body is the same, and yet the activities that occur within different types of cells can vary greatly. White blood cells, for example, are different from skin cells or liver cells because different genes are active in each type of cell. Molecules called transcription factors and transcriptional cofactors associate with specific DNA sequences to control the activity of nearby genes. It is common for a single transcription factor or cofactor to bind to thousands of sites across the DNA of any cell. In humans, our immune systems protect us against infectious diseases and from malfunctioning cells that could become cancerous. White blood cells called B cells provide part of this immune defense. These cells help to identify invading bacteria and viruses, and can also develop into memory cells that help the immune system to rapidly recognize, respond to and eliminate a disease if it is re-encountered. Immature B cells—also known as B lymphoblasts—mature within bone marrow. If any problem occurs in a cell as it matures, that cell is usually programmed to self-destruct in a process called apoptosis. If these cells are not destroyed, they can accumulate in the bone marrow and prevent the production of other immune cells. This leads to a type of cancer called acute lymphoblastic leukemia. Wang et al. now reveal that TRIM33—a protein that B-lymphoid leukemia cells need to survive—is a transcriptional cofactor that prevents apoptosis. Furthermore, unlike other known transcription factors and cofactors in mammals, TRIM33 binds to an exceedingly small number of sites across the DNA of B cells. In fact, the cancer cell's dependency on the protein is due to TRIM33 associating with just a single binding site. The role of TRIM33 in B cell leukemia also has potential therapeutic implications. Although it is found in cells throughout the body, Wang et al. found that inhibiting TRIM33 in mice resulted in lower numbers of B cells being produced, but did not affect other tissues. Developing drugs that prevent TRIM33 from working could therefore provide new options for treating leukemia. DOI:http://dx.doi.org/10.7554/eLife.06377.002
Collapse
Affiliation(s)
- Eric Wang
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, New York, United States
| | - Junwei Shi
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Yali Xu
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Japan
| | | | | |
Collapse
|
39
|
Laurette P, Strub T, Koludrovic D, Keime C, Le Gras S, Seberg H, Van Otterloo E, Imrichova H, Siddaway R, Aerts S, Cornell RA, Mengus G, Davidson I. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. eLife 2015; 4. [PMID: 25803486 PMCID: PMC4407272 DOI: 10.7554/elife.06857] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.
Collapse
Affiliation(s)
- Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Thomas Strub
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Dana Koludrovic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Hannah Seberg
- University of Iowa College of Medicine, Iowa City, United States
| | | | - Hana Imrichova
- Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumor Research Centre, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Stein Aerts
- Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Robert A Cornell
- University of Iowa College of Medicine, Iowa City, United States
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
40
|
Mackmull MT, Iskar M, Parca L, Singer S, Bork P, Ori A, Beck M. Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs). Mol Cell Proteomics 2015; 14:1350-60. [PMID: 25755299 PMCID: PMC4424404 DOI: 10.1074/mcp.m114.042499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification, thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anticancer drugs. While some HDACi have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To what extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain-containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 h after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveal a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs. Data are available via ProteomeXchange with identifier PXD001660 and NCBI Gene Expression Omnibus with identifier GSE64689.
Collapse
Affiliation(s)
- Marie-Therese Mackmull
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Murat Iskar
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luca Parca
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Singer
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; §Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Peer Bork
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alessandro Ori
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| | - Martin Beck
- From the ‡European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| |
Collapse
|
41
|
Tomar D, Singh R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-κB pathway. Biol Cell 2014; 107:22-40. [DOI: 10.1111/boc.201400046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology; School of Biological Sciences and Biotechnology; Indian Institute of Advanced Research; Gandhinagar India
| | - Rajesh Singh
- Department of Biochemistry; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| |
Collapse
|
42
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
43
|
TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene 2014; 34:600-10. [PMID: 24469053 DOI: 10.1038/onc.2013.593] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/14/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.
Collapse
|
44
|
Kulkarni A, Oza J, Yao M, Sohail H, Ginjala V, Tomas-Loba A, Horejsi Z, Tan AR, Boulton SJ, Ganesan S. Tripartite Motif-containing 33 (TRIM33) protein functions in the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein. J Biol Chem 2013; 288:32357-32369. [PMID: 23926104 PMCID: PMC3820871 DOI: 10.1074/jbc.m113.459164] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/06/2013] [Indexed: 12/17/2022] Open
Abstract
Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage.
Collapse
Affiliation(s)
- Atul Kulkarni
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Jay Oza
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Ming Yao
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Honeah Sohail
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Vasudeva Ginjala
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Antonia Tomas-Loba
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Zuzana Horejsi
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Antoinette R Tan
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Simon J Boulton
- the DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms, EN6 3LD Herts, United Kingdom
| | - Shridar Ganesan
- From the Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903.
| |
Collapse
|
45
|
Yip KS, Suvorov A, Connerney J, Lodato NJ, Waxman DJ. Changes in mouse uterine transcriptome in estrus and proestrus. Biol Reprod 2013; 89:13. [PMID: 23740946 DOI: 10.1095/biolreprod.112.107334] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Changes in the CD-1 mouse uterine transcriptome during proestrus and estrus were investigated to help elucidate mechanisms of uterine tissue remodeling during the estrus cycle and their regulation by estrogen and progesterone in preparation of the uterus for pregnancy. Mice were staged beginning at 6 weeks of age, and uterine horns were harvested after monitoring two estrus cycles. Microarray analysis of whole uterine horn RNA identified 2428 genes differentially expressed in estrus compared to proestrus, indicating there is extensive remodeling of mouse uterus during the estrus cycle, affecting ~10% of all protein-encoding genes. Many (~50%) of these genes showed the same differential expression in independent analyses of isolated uterine lumenal epithelial cells. Changes in gene expression associated with structural alterations of the uterus included remodeling of the extracellular matrix, changes in cell keratins and adhesion molecules, activation of mitosis and changes in major histocompatibility complex class II (MHCII) presentation, complement and coagulation cascades, and cytochrome P450 expression. Signaling pathways regulated during the estrus cycle, involving ligand-gated channels, Wnt and hedgehog signaling, and transcription factors with poorly understood roles in reproductive tissues, included several genes and gene networks that have been implicated in pathological states. Many of the molecular pathways and biological functions represented by the genes differentially expressed from proestrus to estrus are also altered during the human menstrual cycle, although not necessarily at the corresponding phases of the cycle. These findings establish a baseline for further studies in the mouse model to dissect mechanisms involved in uterine tissue response to endocrine disruptors and the development of reproductive tract diseases.
Collapse
Affiliation(s)
- Kerri Stanley Yip
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
46
|
Fitzgerald S, Sheehan KM, O'Grady A, Kenny D, O'Kennedy R, Kay EW, Kijanka GS. Relationship between epithelial and stromal TRIM28 expression predicts survival in colorectal cancer patients. J Gastroenterol Hepatol 2013; 28:967-74. [PMID: 23425061 DOI: 10.1111/jgh.12157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIM TRIM28 is a multi-domain nuclear protein with pleotropic effects in both normal and tumor cells. In this study, TRIM28 expression in epithelial and stromal tumor microenvironment and its prognostic role in colorectal cancer were investigated. METHODS Immunohistological staining of TRIM28 was evaluated in tissue microarrays constructed from 137 colorectal cancer patients. The correlations of TRIM28 expression with clinicopathological features and p53 expression were studied. Kaplan-Meier analysis and Cox proportional hazard modeling were used to assess overall survival (OS) and recurrence-free survival (RFS). RESULTS Strong epithelial TRIM28 expression was found in 42% of colorectal cancer tissues. TRIM28 expression correlated significantly with p53 expression in matched cases (P=0.0168, Spearman rank test). A high epithelial to stromal TRIM28 expression ratio was associated with shorter OS (P=0.033; log-rank test) and RFS (P=0.043; log-rank test). Multivariate analysis showed that the epithelial to stromal TRIM28 expression ratio was an independent predictor of OS (hazard ratio=2.136; 95% confidence interval 1.015-4.498, P=0.046) and RFS (hazard ratio=2.100; confidence interval 1.052-4.191, P=0.035). CONCLUSION A high TRIM28 expression ratio between stromal and epithelial compartments in colorectal cancer tissue is an independent predictor of poor prognosis. The pathophysiological role of TRIM28 in carcinogenesis may be dependent on expression levels and cell type within the tumor microenvironment.
Collapse
Affiliation(s)
- Seán Fitzgerald
- Biomedical Diagnostics Institute, Dublin City University, Ireland
| | | | | | | | | | | | | |
Collapse
|
47
|
Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C, Lerouge T, Jost B, Cammas F, Losson R, Davidson I. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 2013; 20:339-46. [PMID: 23377542 DOI: 10.1038/nsmb.2496] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/18/2012] [Indexed: 01/29/2023]
Abstract
Trim24 (Tif1α) and Trim33 (Tif1γ) interact to form a co-repressor complex that suppresses murine hepatocellular carcinoma. Here we show that Trim24 and Trim33 cooperatively repress retinoic acid receptor-dependent activity of VL30-class endogenous retroviruses (ERVs) in liver. In Trim24-knockout hepatocytes, VL30 derepression leads to accumulation of reverse-transcribed VL30 cDNA in the cytoplasm that correlates with activation of the viral-defense interferon responses mimicking the preneoplastic inflammatory state seen in human liver following exogenous viral infection. Furthermore, upon derepression, VL30 long terminal repeats (LTRs) act as promoter and enhancer elements deregulating expression of neighboring genes and generating enhancer RNAs that are required for LTR enhancer activity in hepatocytes in vivo. These data reinforce the role of the TRIM family of proteins in retroviral restriction and antiviral defense and provide an example of an ERV-derived oncogenic regulatory network.
Collapse
Affiliation(s)
- Benjamin Herquel
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dupont S, Inui M, Newfeld SJ. Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads. FEBS Lett 2012; 586:1913-20. [PMID: 22710170 PMCID: PMC3383349 DOI: 10.1016/j.febslet.2012.03.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 01/17/2023]
Abstract
Polyubiquitylation leading to proteasomal degradation is a well-established mechanism for regulating TGF-β signal transduction components such as receptors and Smads. Recently, an equally important role was suggested for monoubiquitylation of both Smad4 and receptor-associated Smads that regulates their function without protein degradation. Monoubiquitylation of Smads was discovered following the identification of deubiquitylases required for TGF-β signaling, suggesting that continuous cycles of Smad mono- and deubiquitylation are required for proper TGF-β signal transduction. Here we summarize and discuss recent work on Smad mono- and deubiquitylation.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Masafumi Inui
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe AZ 85287-4501, USA
| |
Collapse
|