1
|
Li C, Zhang ED, Yu R, Yuan B, Yang Y, Zeng Z, Huang H. Comprehensive multi-omics analysis showed that CDC6 is a potential prognostic and immunotherapy biomarker for multiple cancer types including HCC. Transl Oncol 2025; 53:102314. [PMID: 39904279 PMCID: PMC11846587 DOI: 10.1016/j.tranon.2025.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Cell division cycle 6 (CDC6) is a member of the AAA+ ATPase family and has chaperone-like activity. Many studies have shown that CDC6 plays an important role in cancer development and progression. METHODS Explored CDC6 mRNA and protein expression in normal human tissues and tumors using TCGA, GTEx, and HPA. The role of CDC6 in cancer was analyzed using multiple web platforms and software, including R, cBioPortal, UALCAN, SangerBox and others. Finally, CCK-8, EdU assays and Transwell assays were used to verify the effects of CDC6 knockdown on HCC cell proliferation, migration, and invasion. RESULTS CDC6 expression was upregulated in most cancers and was associated with poorer prognosis. RNA methylation may play an important role in CDC6 epigenetic modification. CDC6 was significantly positively associated with CD4+ Th2 cells and MDSC in a variety of tumors. Furthermore, immunomodulatory genes are strongly associated with CDC6 expression in most tumor types. CDC6 has higher predictive value than B. Clonality and TMB, and its expression is significantly positively correlated with TMB/MSI and DNAss/RNAss, and is closely related to cell cycle events. Down-regulation of CDC6 can inhibit proliferation, migration and invasion of HCC cells. CONCLUSIONS CDC6 is associated with the occurrence and progression of multiple cancer types by regulating the cell cycle. It holds promise as a diagnostic and prognostic biomarker for cancer, and offers potential in immunomodulatory and targeted therapies.
Collapse
Affiliation(s)
- Chenxuan Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - En-di Zhang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Rui Yu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Bo Yuan
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Yunxin Yang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China.
| | - Hanfei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China.
| |
Collapse
|
2
|
Song Y, Zhang J, Li Y, Cheng L, Song H, Zhang Y, Du G, Yu S, Zou Y, Xu Q. Exploring Bioinformatics Tools to Analyze the Role of CDC6 in the Progression of Polycystic Ovary Syndrome to Endometrial Cancer by Promoting Immune Infiltration. Int J Mol Sci 2024; 25:12974. [PMID: 39684684 DOI: 10.3390/ijms252312974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cell division cycle 6 (CDC6) is essential for the initiation of DNA replication in eukaryotic cells and contributes to the development of various human tumors. Polycystic ovarian syndrome (PCOS) is a reproductive endocrine disease in women of childbearing age, with a significant risk of endometrial cancer (EC). However, the role of CDC6 in the progression of PCOS to EC is unclear. Therefore, we examined CDC6 expression in patients with PCOS and EC. We evaluated the relationship between CDC6 expression and its prognostic value, potential biological functions, and immune infiltrates in patients with EC. In vitro analyses were performed to investigate the effects of CDC6 knockdown on EC proliferation, migration, invasion, and apoptosis. CDC6 expression was significantly upregulated in patients with PCOS and EC. Moreover, this protein caused EC by promoting the aberrant infiltration of macrophages into the immune microenvironment in patients with PCOS. A functional enrichment analysis revealed that CDC6 exerted its pro-cancer and pro-immune cell infiltration functions via the PI3K-AKT pathway. Moreover, it promoted EC proliferation, migration, and invasion but inhibited apoptosis. This protein significantly reduced EC survival when mutated. These findings demonstrate that CDC6 regulates the progression of PCOS to EC and promotes immune infiltration.
Collapse
Affiliation(s)
- Yuhang Song
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Yao Li
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Lufeng Cheng
- Basic Medical College, Xinjiang Medical University, Urumqi 830054, China
| | - Hua Song
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yuhang Zhang
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Guoqing Du
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Sunyue Yu
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Qi Xu
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
3
|
Wu H, Zhu P, Shu P, Zhang S. Screening and verification of hub genes in esophageal squamous cell carcinoma by integrated analysis. Sci Rep 2024; 14:6894. [PMID: 38519533 PMCID: PMC10959922 DOI: 10.1038/s41598-024-57320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. However, the mechanisms underlying ESCC tumorigenesis have not been fully elucidated. Thus, we aimed to determine the key genes involved in ESCC tumorigenesis. The following bioinformatics analyses were performed: identification of differentially expressed genes (DEGs); gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis; integrated analysis of the protein-protein interaction network and Gene Expression Profiling Interactive Analysis database for validation of hub genes. Finally, western blotting and qPCR were used to explore the expression of cell division cycle 6 (CDC6) in ESCC cell lines. Immunohistochemistry analysis of ESCC samples from patients and matched clinical characteristics was used to determine the effects of CDC6. A total of 494 DEGs were identified, and functional enrichment was mainly focused on cell cycle and DNA replication. Biological pathway analysis of the hub genes was closely related to the cell cycle. We found that CDC6 was upregulated in ESCC cell lines and patient tissues and was related to the clinicopathological characteristics of ESCC. In conclusion, this study identified hub genes and crucial biological pathways related to ESCC tumorigenesis and integrated analyses indicated that CDC6 may be a novel diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hongqiang Wu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Peng Shu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
4
|
Shen M, Zhang Y, Tang L, Fu Q, Zhang J, Xu Y, Zeng H, Li Y. CDC6, a key replication licensing factor, is overexpressed and confers poor prognosis in diffuse large B-cell lymphoma. BMC Cancer 2023; 23:978. [PMID: 37833632 PMCID: PMC10571299 DOI: 10.1186/s12885-023-11186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/17/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Cell division cycle 6 (CDC6) is a key licensing factor in the assembly of pre-replicative complexes at origins of replication. The role of CDC6 in the pathogenesis of in diffuse larger B-cell lymphoma (DLBCL) remains unknown. We aim to investigate the effects of CDC6 on the proliferation, apoptosis and cell cycle regulation in DLBCL cells, delineate its underlying mechanism, and to correlate CDC6 expression with clinical characteristics and prognosis of patients with DLBCL. METHODS Initial bioinformatic analysis was performed to screen the potential role of CDC6 in DLBCL. Lentiviral constructs harboring CDC6 or shCDC6 was transfected to overexpress or knockdown CDC6 in SUDHL4 and OCI-LY7 cells. The cell proliferation was evaluated by CCK-8 assay, cell apoptosis was detected by Annexin-V APC/7-AAD double staining, and cell cycle was measured by flow cytometry. Real time quantitative PCR and western blot was used to characterize CDC6 expression and its downstream signaling pathways. The clinical data of DLBCL patients were retrospectively reviewed, the CDC6 expression in DLBCL or lymph node reactive hyperplasia tissues was evaluated by immunohistochemistry. RESULTS In silico data suggest that CDC6 overexpression is associated with inferior prognosis of DLBCL. We found that CDC6 overexpression increased SUDHL4 or OCI-LY7 cell proliferation, while knockdown of CDC6 inhibited cell proliferation in a time-dependent manner. Upon overexpression, CDC6 reduced cells in G1 phase and did not affect cell apoptosis; CDC6 knockdown led to significant cell cycle arrest in G1 phase and increase in cell apoptosis. Western blot showed that CDC6 inhibited the expression of INK4, E-Cadherin and ATR, accompanied by increased Bcl-2 and deceased Bax expression. The CDC6 protein was overexpressed DLBCL compared with lymph node reactive hyperplasia, and CDC6 overexpression was associated with non-GCB subtype, and conferred poor PFS and OS in patients with DLBCL. CONCLUSION CDC6 promotes cell proliferation and survival of DLBCL cells through regulation of G1/S cell cycle checkpoint and apoptosis. CDC6 is overexpressed and serves as a novel prognostic marker in DLBCL.
Collapse
Affiliation(s)
- Mingfang Shen
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Yunfeng Zhang
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Lun Tang
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Qinyan Fu
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Jiawei Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Zhejiang, China
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Zhejiang, China
| | - Hui Zeng
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China.
| | - Yuan Li
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
5
|
Fleifel D, Cook JG. G1 Dynamics at the Crossroads of Pluripotency and Cancer. Cancers (Basel) 2023; 15:4559. [PMID: 37760529 PMCID: PMC10526231 DOI: 10.3390/cancers15184559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.
Collapse
Affiliation(s)
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
6
|
Chen S, Zhang Y, Ding X, Li W. Identification of lncRNA/circRNA-miRNA-mRNA ceRNA Network as Biomarkers for Hepatocellular Carcinoma. Front Genet 2022; 13:838869. [PMID: 35386284 PMCID: PMC8977626 DOI: 10.3389/fgene.2022.838869] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer, with the incidence and mortality rates increasing every year. Despite the improvement of clinical management, substantial challenges remain due to its high recurrence rates and short survival period. This study aimed to identify potential diagnostic and prognostic biomarkers in HCC through bioinformatic analysis. Methods: Datasets from GEO and TCGA databases were used for the bioinformatic analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out by WebGestalt website and clusterProfiler package of R. The STRING database and Cytoscape software were used to establish the protein-protein interaction (PPI) network. The GEPIA website was used to perform expression analyses of the genes. The miRDB, miRWalk, and TargetScan were employed to predict miRNAs and the expression levels of the predicted miRNAs were explored via OncomiR database. LncRNAs were predicted in the StarBase and LncBase while circRNA prediction was performed by the circBank. ROC curve analysis and Kaplan-Meier (KM) survival analysis were performed to evaluate the diagnostic and prognostic value of the gene expression, respectively. Results: A total of 327 upregulated and 422 downregulated overlapping DEGs were identified between HCC tissues and noncancerous liver tissues. The PPI network was constructed with 89 nodes and 178 edges and eight hub genes were selected to predict upstream miRNAs and ceRNAs. A lncRNA/circRNA-miRNA-mRNA network was successfully constructed based on the ceRNA hypothesis, including five lncRNAs (DLGAP1-AS1, GAS5, LINC00665, TYMSOS, and ZFAS1), six circRNAs (hsa_circ_0003209, hsa_circ_0008128, hsa_circ_0020396, hsa_circ_0030051, hsa_circ_0034049, and hsa_circ_0082333), eight miRNAs (hsa-miR-150-5p, hsa-miR-19b-3p, hsa-miR-23b-3p, hsa-miR-26a-5p, hsa-miR-651-5p, hsa-miR-10a-5p, hsa-miR-214-5p and hsa-miR-486-5p), and five mRNAs (CDC6, GINS1, MCM4, MCM6, and MCM7). The ceRNA network can promote HCC progression via cell cycle, DNA replication, and other pathways. Clinical diagnostic and survival analyses demonstrated that the ZFAS1/hsa-miR-150-5p/GINS1 ceRNA regulatory axis had a high diagnostic and prognostic value. Conclusion: These results revealed that cell cycle and DNA replication pathway could be potential pathways to participate in HCC development. The ceRNA network is expected to provide potential biomarkers and therapeutic targets for HCC management, especially the ZFAS1/hsa-miR-150-5p/GINS1 regulatory axis.
Collapse
Affiliation(s)
- Shanshan Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhou X, Xue D, Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma. Head Neck 2021; 44:89-103. [PMID: 34713497 DOI: 10.1002/hed.26910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common tumor in the oral cavity and maxillofacial region. Increasing evidence suggests that aerobic glycolysis plays an important role in the occurrence, development, and prognosis of OSCC. Therefore, the identification of biomarkers related to glycolysis in OSCC represents considerable potential for improving its treatment. METHODS In the present study, a single-sample gene-set enrichment analysis (ssGSEA) algorithm with weighted gene co-expression network analysis (WGCNA) were used to quantify the degree of glycolysis and identify key modules with the greatest correlation with glycolysis. RESULTS Glycolytic scores significantly correlated with prognosis. In the key module 5 HUB genes were finally selected, which displayed a robust predictive effect. The expressions of key genes were associated with glycolysis. CONCLUSIONS The research comprehensively analyzed the glycolysis of OSCC and identified several biomarkers related to glycolysis. These biomarkers may represent potential therapeutic targets for future OSCC therapy.
Collapse
Affiliation(s)
- Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Hajrah NH, Abdul WM, Abdul-Hameed ZH, Alarif WM, Al-Abbas NSA, Ayyad SEN, Omer AMS, Mutawakil MZ, Hall N, Obaid AY, Bora RS, Sabir JSM, Saini KS. Gene Expression Profiling to Delineate the Anticancer Potential of a New Alkaloid Isopicrinine From Rhazya stricta. Integr Cancer Ther 2021; 19:1534735420920711. [PMID: 32463309 PMCID: PMC7262827 DOI: 10.1177/1534735420920711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background:Rhazya stricta has been used as a folkloric medicinal herb for
treating various diseases such as diabetes, inflammatory disorders, and sore
throat. Several studies have revealed the potential of this plant as an
important source of phytochemicals with anticancer properties.
Objective: The present study was designed to isolate a novel
anticancer compound from Rhazya stricta and elucidate its
mechanism of action using genomics approach. Methods:Rhazya stricta leaves extract was prepared, and several
alkaloids were purified and characterized. These alkaloids were screened for
their anticancer potential. One of the alkaloids, termed as isopicrinine, showed
efficient cytotoxicity against MCF7 breast cancer cell line and was selected for
further analysis. RNA-Seq transcription profiling was conducted to identify the
affected genes and cellular pathways in MCF7 cells after treatment with
isopicrinine alkaloid. Results: In vitro studies revealed that
newly identified isopicrinine alkaloid possess efficient anticancer activity.
Exposure of MCF7 cells with isopicrinine affected the expression of various
genes involved in p53 signaling pathway. One of the crucial proapoptotic genes,
significantly upregulated in MCF7 after exposure to alkaloid, was
PUMA (p53 upregulated modulator of apoptosis), which is
involved in p53-dependent and -independent apoptosis. Moreover, exposure of
sublethal dose of isopicrinine alkaloid in breast cancer cell line led to the
downregulation of survivin, which is involved in negative regulation of
apoptosis. Besides, several genes involved in mitosis and cell proliferation
were significantly downregulated. Conclusion: In this article, we
report the determination of a new alkaloid isopicrinine from the aerial parts of
Rhazya stricta with anticancer property. This compound has
the potential to be developed as a drug for curing cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Roop Singh Bora
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| | | | - Kulvinder Singh Saini
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
9
|
Tewari D, Lloyd-Jones K, Hider RC, Collins H. HPO iron chelator, CP655, causes the G1/S phase cell cycle block via p21 upregulation. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:568-583. [PMID: 32865890 PMCID: PMC7654408 DOI: 10.1002/iid3.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
Iron is known not only for its importance in cellular and metabolic pathways but also for its role in causing cellular toxicities such as production of reactive oxygen species and growth of pathogens. The inability of the human body to physiologically excrete excess iron highlights the need to develop a cheap yet effective iron chelator. This study provides initial evidence of the therapeutic and prophylactic properties of 3-hydroxypyridin-4-one (HPO) chelators in murine collagen-induced arthritis. To determine whether these chelators would be effective on human cells, we tested a panel of different HPO chelators and identified 7-diethylamino-N-((5-hydroxy-6-methyl-4-oxo-1,4-dihydropyridin-3-yl)methyl)-N-methyl-2-oxo-chromen-3-carboxamide (CP655) as the most effective compound targeting human CD4+ T cells. Treatment with CP655 causes significant inhibition of cell proliferation and production of inflammatory cytokines such as interferon-γ and interleukin-17. Microarray analysis revealed dysregulation in cell cycle-related genes following CP655 treatment. This was validated by flow cytometry demonstrating a G1/S phase block caused by CP655. Finally, mechanistic experiments revealed that the chelator may be causing an upregulation of the cell cycle inhibitor protein CDKN1A (p21) as a possible mechanism of action. In conclusion, this study demonstrates that HPO chelators could prove to have therapeutic potential for diseases driven by excessive T cell proliferation.
Collapse
Affiliation(s)
- Damini Tewari
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| | - Katie Lloyd-Jones
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Helen Collins
- Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, New Hunts House, London, United Kingdom
| |
Collapse
|
10
|
An C, Liu G, Cheng S, Pang B, Sun S, Zhang Y, Pan Z, Kang X. A pilot study of cdc6 as a biomarker for circulating tumor cells in patients with lung cancer. J Clin Lab Anal 2020; 34:e23245. [PMID: 32249466 PMCID: PMC7307357 DOI: 10.1002/jcla.23245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cell division cycle 6 (cdc6) is a key factor of DNA replication initiation license system and a proto-oncogene. It has been detected in some tumor tissues to aid cancer diagnosis in many research projects. However, it remains unclear that if cdc6 could be detected in the peripheral blood, just like liquid biopsy, in solid tumor patients. The aim of this study is to investigate the possibility of cdc6 as a biomarker for circulating tumor cells in patients with lung cancer. METHODS We first detected the expression of cdc6 in peripheral blood mononuclear cells (PBMCs) and tumor cells by in situ hybridization with cdc6 RNA probe. Then, we examined the expression of cdc6 in PBMCs from health individual, mononuclear cells from cord blood, or A549 cell line by RT-qPCR. Furthermore, we used RT-qPCR to test the cdc6 expression in PBMCs from tumor patients (test group) and non-tumor individuals as a control group. Chi-square test with Fisher's exact test was used to analyze the statistical significance of the difference. P < .05 is considered as statistically significant difference. RESULTS When compared the cdc6 expression in cells from difference sources, we found that A549 tumor cell line had the strongest expression of cdc6, samples from cord blood showed the least expression level, indicating the detection strategy of RT-qPCR is reasonable. Using this method, we studied whether cdc6 in Peripheral blood could be detected as a biomarker by examining cdc6 expression from PBMCs of patients with lung cancer. We found 20% of patients with lung cancer were cdc6 positive in PBMCs, whereas only 4.26% was found positive in the control group (P = .039, P < .05). CONCLUSION Cell division cycle 6 has a potential to be used as a circulating tumor cell biomarker for lung cancer. Further study in clinical application is still broad needed.
Collapse
Affiliation(s)
- Cheng An
- Laboratory Diagnosis CenterBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Guijian Liu
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Shi Cheng
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Bo Pang
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Shipeng Sun
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Yaying Zhang
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Zhongdai Pan
- Department of Clinical LaboratoryGuang anmen HospitalChina Academy of Chinese medical ScienceBeijingChina
| | - Xixiong Kang
- Laboratory Diagnosis CenterBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Lim N, Townsend PA. Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation. Int J Cancer 2020; 147:1528-1534. [PMID: 32010971 PMCID: PMC7496346 DOI: 10.1002/ijc.32900] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/22/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Cdc6 is a key replication licencing factor with a pivotal role in regulating the process of DNA replication, rendering it an important investigatory focus in tumourigenesis. Indeed, Cdc6 overexpression has been found to be a feature in certain tumours and has been associated as an early event in malignancies. With a focus on pancreatic cancer, there are evidence of its convergence in downstream pathways implicated in major genetic alterations found in pancreatic cancer, primarily KRAS. There is also data of its direct influence on protumourigenic processes as a transcriptional regulator, repressing the key tumour suppressor loci CDH1 (E‐Cadherin) and influencing epithelial to mesenchymal transition (EMT). Moreover, gene amplification of Cdc6 as well as of E2F (an upstream regulator of Cdc6) have also been found to be a key feature in tumours overexpressing Cdc6, further highlighting this event as a potential driver of tumourigenesis. In this review, we summarise the evidence for the role of Cdc6 overexpression in cancer, specifically that of pancreatic cancer. More importantly, we recapitulate the role of Cdc6 as part of the DNA damage response and on senescence—an important antitumour barrier—in the context of pancreatic cancer. Finally, recent emerging observations suggest that the potential of the subcellular localisation of Cdc6 in inducing senescence. In this regard, we speculate and hypothesise potentially exploitable mechanisms in the context of inducing senescence via a novel pathway involving cytoplasmic retention of Cdc6 and Cyclin E.
Collapse
Affiliation(s)
- Nicholas Lim
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Paul A Townsend
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom.,Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Jiang W, Yu Y, Liu J, Zhao Q, Wang J, Zhang J, Dang X. Downregulation of Cdc6 inhibits tumorigenesis of osteosarcoma in vivo and in vitro. Biomed Pharmacother 2019; 115:108949. [DOI: 10.1016/j.biopha.2019.108949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
|
13
|
Cai J, Wang H, Jiao X, Huang R, Qin Q, Zhang J, Chen H, Feng D, Tian X, Wang H. The RNA-Binding Protein HuR Confers Oxaliplatin Resistance of Colorectal Cancer By Upregulating CDC6. Mol Cancer Ther 2019; 18:1243-1254. [PMID: 31064870 DOI: 10.1158/1535-7163.mct-18-0945] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 05/01/2019] [Indexed: 11/16/2022]
Abstract
Human antigen R (HuR) is an RNA-binding protein that posttranscriptionally regulates many cancer-trait genes. CDC6, a central regulator of DNA replication, is regulated by HuR. In this study, we investigated the role of HuR in colorectal cancer tumorigenesis and oxaliplatin (L-OHP) resistance, as well as the underlying mechanisms involving CDC6. We detected increased HuR and CDC6 expression, along with a positive correlation between the two in human colorectal cancer tissues. HuR overexpression increased colorectal cancer cell proliferation in vitro and xenograft tumor growth in vivo, and induced resistance to L-OHP. In contrast, HuR knockdown sensitized colorectal cancer cells to L-OHP. CDC6 overexpression increased while CDC6 knockdown decreased colorectal cancer cell malignant behaviors (growth, DNA synthesis, EMT, migration, and invasion) and L-OHP resistance in vitro Moreover, L-OHP resistance induced by HuR overexpression was reversed by CDC6 knockdown. Mechanistically, the results from our luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that HuR upregulates CDC6 by binding to CDC6 3'-UTR. Taken together, our findings identified HuR's regulation of CDC6 as an essential mechanism driving colorectal cancer tumorigenesis and L-OHP resistance, and this mechanism may represent a potential target for overcoming drug resistance in colorectal cancer.
Collapse
Affiliation(s)
- Jian Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaodong Jiao
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rongkang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiyuan Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwei Zhang
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Honglei Chen
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dan Feng
- Department of Medical Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Tian
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
15
|
Yao L, Chen J, Wu X, Jia S, Meng A. Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype. Hum Mol Genet 2018; 26:4168-4180. [PMID: 28985365 PMCID: PMC5886151 DOI: 10.1093/hmg/ddx305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 11/13/2022] Open
Abstract
Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients.
Collapse
Affiliation(s)
- Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Vermeulen MA, Doebar SC, van Deurzen CHM, Martens JWM, van Diest PJ, Moelans CB. Copy number profiling of oncogenes in ductal carcinoma in situ of the male breast. Endocr Relat Cancer 2018; 25:173-184. [PMID: 29203614 DOI: 10.1530/erc-17-0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Characterizing male breast cancer (BC) and unraveling male breast carcinogenesis is challenging because of the rarity of this disease. We investigated copy number status of 22 BC-related genes in 18 cases of pure ductal carcinoma in situ (DCIS) and in 49 cases of invasive carcinoma (IC) with adjacent DCIS (DCIS-AIC) in males using multiplex ligation-dependent probe amplification (MLPA). Results were compared to female BC and correlated with survival. Overall, copy number ratio and aberration frequency including all 22 genes showed no significant difference between the 3 groups. Individual unpaired analysis revealed a significantly higher MTDH copy number ratio in IC compared to DCIS-AIC and pure DCIS (P = 0.009 and P = 0.038, respectively). ADAM9 showed a significantly lower copy number aberration frequency in male BC, compared to female BC (P = 0.020). In DCIS-AIC, MTDH, CPD, CDC6 and TOP2A showed a lower frequency of copy number increase in males compared to females (P < 0.001 for all 4 genes). In IC, CPD gain and CCNE1 gain were independent predictors of poor overall survival. In conclusion, male DCIS and IC showed a similar copy number profile for 21 out of 22 interrogated BC-related genes, illustrating their clonal relation and the genetically advanced state of male DCIS. MTDH showed a higher copy number ratio in IC compared to adjacent and pure DCIS and may therefore play a role in male breast carcinogenesis. Differences were detected between male and female DCIS for 4 genes pointing to differences in breast carcinogenesis between the sexes.
Collapse
Affiliation(s)
- Marijn A Vermeulen
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shusma C Doebar
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
| | - John W M Martens
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics NetherlandsErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Chen S, Chen X, Xie G, He Y, Yan D, Zheng D, Li S, Fu X, Li Y, Pang X, Hu Z, Li H, Tan W, Li J. Cdc6 contributes to cisplatin-resistance by activation of ATR-Chk1 pathway in bladder cancer cells. Oncotarget 2018; 7:40362-40376. [PMID: 27246979 PMCID: PMC5130013 DOI: 10.18632/oncotarget.9616] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022] Open
Abstract
High activation of DNA damage response is implicated in cisplatin (CDDP) resistance which presents as a serious obstacle for bladder cancer treatment. Cdc6 plays an important role in the malignant progression of tumor. Here, we reported that Cdc6 expression is up-regulated in bladder cancer tissues and is positively correlated to high tumor grade. Cdc6 depletion can attenuate the malignant properties of bladder cancer cells, including DNA replication, migration and invasion. Furthermore, higher levels of chromatin-binding Cdc6 and ATR were detected in CDDP-resistant bladder cancer cells than in the parent bladder cancer cells. Intriguingly, down-regulation of Cdc6 can enhance sensitivity to CDDP both in bladder cancer cells and CDDP-resistant bladder cancer cells. Cdc6 depletion abrogates S phase arrest caused by CDDP, leading to aberrant mitosis by inactivating ATR-Chk1-Cdc25C pathway. Our results indicate that Cdc6 may be a promising target for overcoming CDDP resistance in bladder cancer.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Gui'e Xie
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue He
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoyu Yan
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyang Fu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yeping Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Bellelli R, Vitagliano D, Federico G, Marotta P, Tamburrino A, Salerno P, Paciello O, Papparella S, Knauf JA, Fagin JA, Refetoff S, Troncone G, Santoro M. Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia. Mol Cell Endocrinol 2018; 460:24-35. [PMID: 28652169 PMCID: PMC5741508 DOI: 10.1016/j.mce.2017.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/30/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
Abstract
Here we describe a conditional doxycycline-dependent mouse model of RET/PTC3 (NCOA4-RET) oncogene-induced thyroid tumorigenesis. In these mice, after 10 days of doxycycline (dox) administration, RET/PTC3 expression induced mitogen activated protein kinase (MAPK) stimulation and a proliferative response which resulted in the formation of hyperplastic thyroid lesions. This was followed, after 2 months, by growth arrest accompanied by typical features of oncogene-induced senescence (OIS), including upregulation of p16INK4A and p21CIP, positivity at the Sudan black B, activation of the DNA damage response (DDR) markers γH2AX and pChk2 T68, and induction of p53 and p19ARF. After 5 months, about half of thyroid lesions escaped OIS and formed tumors that remained dependent on RET/PTC3 expression. This progression was accompanied by activation of AKT-FOXO1/3a pathway and increased serum TSH levels.
Collapse
Affiliation(s)
- Roberto Bellelli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy
| | - Donata Vitagliano
- Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale, Seconda Universita' di Napoli, Via S Pansini 5, 80131 Naples, Italy
| | - Giorgia Federico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy
| | - Pina Marotta
- IRGS, Biogem, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Anna Tamburrino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy
| | - Paolo Salerno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy
| | - Orlando Paciello
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Universita' Federico II, Via Delpino 1, Naples, Italy
| | - Serenella Papparella
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Universita' Federico II, Via Delpino 1, Naples, Italy
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Samuel Refetoff
- Department of Medicine, Department of Pediatrics, The Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Giancarlo Troncone
- Dipartimento di Sanità Pubblica, Universita' Federico II, Via S Pansini 5, 80131 Naples, Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
19
|
Komseli ES, Pateras IS, Krejsgaard T, Stawiski K, Rizou SV, Polyzos A, Roumelioti FM, Chiourea M, Mourkioti I, Paparouna E, Zampetidis CP, Gumeni S, Trougakos IP, Pefani DE, O’Neill E, Gagos S, Eliopoulos AG, Fendler W, Chowdhury D, Bartek J, Gorgoulis VG. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. BMC Genomics 2018; 19:37. [PMID: 29321003 PMCID: PMC5763532 DOI: 10.1186/s12864-017-4375-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Senescence is a fundamental biological process implicated in various pathologies, including cancer. Regarding carcinogenesis, senescence signifies, at least in its initial phases, an anti-tumor response that needs to be circumvented for cancer to progress. Micro-RNAs, a subclass of regulatory, non-coding RNAs, participate in senescence regulation. At the subcellular level micro-RNAs, similar to proteins, have been shown to traffic between organelles influencing cellular behavior. The differential function of micro-RNAs relative to their subcellular localization and their role in senescence biology raises concurrent in situ analysis of coding and non-coding gene products in senescent cells as a necessity. However, technical challenges have rendered in situ co-detection unfeasible until now. METHODS In the present report we describe a methodology that bypasses these technical limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGorTM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene-induced senescence that we generated for the purposes of the study. For the characterization of this novel system, we applied a wide range of cellular and molecular techniques, as well as high-throughput analysis of the transcriptome and micro-RNAs. RESULTS This experimental setting has three advantages that are presented and discussed: i) it covers a "gap" in the molecular carcinogenesis field, as almost all corresponding in vitro models are fibroblast-based, even though the majority of neoplasms have epithelial origin, ii) it recapitulates the precancerous and cancerous phases of epithelial tumorigenesis within a short time frame under the light of natural selection and iii) it uses as an oncogenic signal, the replication licensing factor CDC6, implicated in both DNA replication and transcription when over-expressed, a characteristic that can be exploited to monitor RNA dynamics. CONCLUSIONS Consequently, we demonstrate that our model is optimal for studying the molecular basis of epithelial carcinogenesis shedding light on the tumor-initiating events. The latter may reveal novel molecular targets with clinical benefit. Besides, since this method can be incorporated in a wide range of low, medium or high-throughput image-based approaches, we expect it to be broadly applicable.
Collapse
Affiliation(s)
- Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Ioannis S. Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3c, DK-2200 Copenhagen, Denmark
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St. 92-215, Lodz, Poland
| | - Sophia V. Rizou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Alexander Polyzos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Fani-Marlen Roumelioti
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Maria Chiourea
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Eleni Paparouna
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Christos P. Zampetidis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Dafni-Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Eric O’Neill
- CRUK/MRC Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Sarantis Gagos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Aristides G. Eliopoulos
- Department of Biology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology-Hellas, GR-70013 Heraklion, Crete Greece
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St. 92-215, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská, 1333/5, 779 00 Olomouc, Czech Republic
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, SE-171 77 Stockholm, Sweden
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester, M20 4QL UK
| |
Collapse
|
20
|
Gamell C, Gulati T, Levav-Cohen Y, Young RJ, Do H, Pilling P, Takano E, Watkins N, Fox SB, Russell P, Ginsberg D, Monahan BJ, Wright G, Dobrovic A, Haupt S, Solomon B, Haupt Y. Reduced abundance of the E3 ubiquitin ligase E6AP contributes to decreased expression of the INK4/ARF locus in non-small cell lung cancer. Sci Signal 2017; 10:10/461/eaaf8223. [PMID: 28074012 DOI: 10.1126/scisignal.aaf8223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor suppressor p16INK4a, one protein encoded by the INK4/ARF locus, is frequently absent in multiple cancers, including non-small cell lung cancer (NSCLC). Whereas increased methylation of the encoding gene (CDKN2A) accounts for its loss in a third of patients, no molecular explanation exists for the remainder. We unraveled an alternative mechanism for the silencing of the INK4/ARF locus involving the E3 ubiquitin ligase and transcriptional cofactor E6AP (also known as UBE3A). We found that the expression of three tumor suppressor genes encoded in the INK4/ARF locus (p15INK4b, p16INK4a, and p19ARF) was decreased in E6AP-/- mouse embryo fibroblasts. E6AP induced the expression of the INK4/ARF locus at the transcriptional level by inhibiting CDC6 transcription, a gene encoding a key repressor of the locus. Luciferase assays revealed that E6AP inhibited CDC6 expression by reducing its E2F1-dependent transcription. Chromatin immunoprecipitation analysis indicated that E6AP reduced the amount of E2F1 at the CDC6 promoter. In a subset of NSCLC samples, an E6AP-low/CDC6-high/p16INK4a-low protein abundance profile correlated with low methylation of the gene encoding p16INK4a (CDKN2A) and poor patient prognosis. These findings define a previously unrecognized tumor-suppressive role for E6AP in NSCLC, reveal an alternative silencing mechanism of the INK4/ARF locus, and reveal E6AP as a potential prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Cristina Gamell
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Twishi Gulati
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Yaara Levav-Cohen
- The Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Richard J Young
- Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Hongdo Do
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria 3084, Australia
| | - Pat Pilling
- Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organization, Melbourne, Victoria 3169, Australia
| | - Elena Takano
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Prudence Russell
- Department of Anatomical Pathology, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Doron Ginsberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Brendon J Monahan
- Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 2555, Australia
| | - Gavin Wright
- Department of Surgery, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Alex Dobrovic
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria 3084, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Ben Solomon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia.,Molecular Therapeutics and Biomarkers Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.,Department of Pathology, University of Melbourne, Victoria 3800, Australia
| |
Collapse
|
21
|
Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V, Mikros E, Trougakos IP, Thanos D, Branzei D, Townsend P, Gorgoulis VG. Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol 2016; 37-38:3-15. [PMID: 26707000 DOI: 10.1016/j.semcancer.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.
Collapse
Affiliation(s)
- Theodoros G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Kostas Vougas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
22
|
Chen C, Lu J, Yu Q, Xiao JR, Wei HF, Song XJ, Ge JB, Tao WD, Qian R, Yu XW, Zhao J. Expression of CDc6 after acute spinal cord injury in adult rats. Neuropeptides 2016; 56:59-67. [PMID: 26899166 DOI: 10.1016/j.npep.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/19/2023]
Abstract
The cell division cycle 6 (CDc6) protein has been primarily investigated as a component of the pre-replicative complex for the initiation of DNA replication. Some studies have shown that CDc6 played a critical role in the development of human carcinoma. However, the expression and roles of CDc6 in the central nervous system remain unknown. We have performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of CDc6 expression in spinal cord. Western blot have found that CDc6 protein levels first significantly increase, reach a peak at day 3, and then gradually return to normal level at day 14 after SCI. Double immunofluorescence staining showed that CDc6 immunoreactivity was found in neurons, astrocytes, and microglia. Additionally, colocalization of CDc6/active caspase-3 has been detected in neurons and colocalization of CDc6/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, CDc6 depletion by short interfering RNA inhibits astrocyte proliferation and reduces cyclin A and cyclin D1 protein levels. CDc6 knockdown also decreases neuronal apoptosis. We speculate that CDc6 might play crucial roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Chen Chen
- Department of orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jian Lu
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Qin Yu
- Department of Medical image, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jian-Ru Xiao
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China
| | - Hai-Feng Wei
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China
| | - Xin-jian Song
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Jian-Bing Ge
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Wei-Dong Tao
- Department of Neurology, Nantong Second People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Rong Qian
- Department of orthopedics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Wei Yu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Jian Zhao
- Department of Orthopedics, Shanghai Changzheng Hospital, 200000 Shanghai, China.
| |
Collapse
|
23
|
Sun TY, Xie HJ, He H, Li Z, Kong LF. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am J Transl Res 2016; 8:1037-1046. [PMID: 27158389 PMCID: PMC4846946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNA) play important regulatory roles in the occurrence and development of cancers. This study aimed to investigate the effects of miR-26a on the proliferation and apoptosis of ovarian cancer cells and explore the potential mechanism. qRT-PCR was performed to measure the miR-26a expression in 46 ovarian cancer tissues, and results showed miR-26a expression reduced significantly when compared with normal ovarian tissues (P<0.05). Moreover, miR-26a expression was related to the extent of cell differentiation and clinical stage of ovarian cancer (P<0.05). miR-26a mimic was transfected into SKOV3 cells and ES2 cells, and CCK8 assay, colony formation assay and flow cytometry showed miR-26a over-expression could significantly inhibit the proliferation of ovarian cancer cells and induce their apoptosis. Bioinformatics analysis revealed Cdc6 was a target gene of miR-26a. dual-luciferase assay and validation assay showed miR-26a could act on the 3'UTR of Cdc6 to regulate Cdc6 expression. These findings suggest that miR-26a may act on the 3'UTR of Cdc6 to regulate Cdc6 expression, which then inhibit the proliferation of ovarian cancer cells and induce their apoptosis. Our findings provide a new target for the diagnosis and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Ting-Yi Sun
- Department of Pathology, Henan Provincial People's Hospital Zhengzhou, China
| | - Hong-Jian Xie
- Department of Pathology, Henan Provincial People's Hospital Zhengzhou, China
| | - Hui He
- Department of Pathology, Henan Provincial People's Hospital Zhengzhou, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital Zhengzhou, China
| | - Ling-Fei Kong
- Department of Pathology, Henan Provincial People's Hospital Zhengzhou, China
| |
Collapse
|
24
|
Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, Vougas K, Stewart RD, Georgakilas AG. Systemic mechanisms and effects of ionizing radiation: A new 'old' paradigm of how the bystanders and distant can become the players. Semin Cancer Biol 2016; 37-38:77-95. [PMID: 26873647 DOI: 10.1016/j.semcancer.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/26/2022]
Abstract
Exposure of cells to any form of ionizing radiation (IR) is expected to induce a variety of DNA lesions, including double strand breaks (DSBs), single strand breaks (SSBs) and oxidized bases, as well as loss of bases, i.e., abasic sites. The damaging potential of IR is primarily related to the generation of electrons, which through their interaction with water produce free radicals. In their turn, free radicals attack DNA, proteins and lipids. Damage is induced also through direct deposition of energy. These types of IR interactions with biological materials are collectively called 'targeted effects', since they refer only to the irradiated cells. Earlier and sometimes 'anecdotal' findings were pointing to the possibility of IR actions unrelated to the irradiated cells or area, i.e., a type of systemic response with unknown mechanistic basis. Over the last years, significant experimental evidence has accumulated, showing a variety of radiation effects for 'out-of-field' areas (non-targeted effects-NTE). The NTE involve the release of chemical and biological mediators from the 'in-field' area and thus the communication of the radiation insult via the so called 'danger' signals. The NTE can be separated in two major groups: bystander and distant (systemic). In this review, we have collected a detailed list of proteins implicated in either bystander or systemic effects, including the clinically relevant abscopal phenomenon, using improved text-mining and bioinformatics tools from the literature. We have identified which of these genes belong to the DNA damage response and repair pathway (DDR/R) and made protein-protein interaction (PPi) networks. Our analysis supports that the apoptosis, TLR-like and NOD-like receptor signaling pathways are the main pathways participating in NTE. Based on this analysis, we formulate a biophysical hypothesis for the regulation of NTE, based on DNA damage and apoptosis gradients between the irradiation point and various distances corresponding to bystander (5mm) or distant effects (5cm). Last but not least, in order to provide a more realistic support for our model, we calculate the expected DSB and non-DSB clusters along the central axis of a representative 200.6MeV pencil beam calculated using Monte Carlo DNA damage simulation software (MCDS) based on the actual beam energy-to-depth curves used in therapy.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Ifigeneia V Mavragani
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Danae A Laskaratou
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Violeta Gika
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Konstantinos Vougas
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, USA
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece.
| |
Collapse
|
25
|
Wu Z, Guo W, Xie Y, Zhou S. Juvenile Hormone Activates the Transcription of Cell-division-cycle 6 (Cdc6) for Polyploidy-dependent Insect Vitellogenesis and Oogenesis. J Biol Chem 2016; 291:5418-27. [PMID: 26728459 DOI: 10.1074/jbc.m115.698936] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/06/2022] Open
Abstract
Although juvenile hormone (JH) is known to prevent insect larval metamorphosis and stimulate adult reproduction, the molecular mechanisms of JH action in insect reproduction remain largely unknown. Earlier, we reported that the JH-receptor complex, composed of methoprene-tolerant and steroid receptor co-activator, acts on mini-chromosome maintenance (Mcm) genes Mcm4 and Mcm7 to promote DNA replication and polyploidy for the massive vitellogenin (Vg) synthesis required for egg production in the migratory locust (Guo, W., Wu, Z., Song, J., Jiang, F., Wang, Z., Deng, S., Walker, V. K., and Zhou, S. (2014) PLoS Genet. 10, e1004702). In this study we have investigated the involvement of cell-division-cycle 6 (Cdc6) in JH-dependent vitellogenesis and oogenesis, as Cdc6 is essential for the formation of prereplication complex. We demonstrate here that Cdc6 is expressed in response to JH and methoprene-tolerant, and Cdc6 transcription is directly regulated by the JH-receptor complex. Knockdown of Cdc6 inhibits polyploidization of fat body and follicle cells, resulting in the substantial reduction of Vg expression in the fat body as well as severely impaired oocyte maturation and ovarian growth. Our data indicate the involvement of Cdc6 in JH pathway and a pivotal role of Cdc6 in JH-mediated polyploidization, vitellogenesis, and oogenesis.
Collapse
Affiliation(s)
- Zhongxia Wu
- From the School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingtian Xie
- College of Life Sciences, Jilin University, Changchun, Jilin 30012, China, and
| | - Shutang Zhou
- State Key laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
26
|
Crochiere M, Kashyap T, Kalid O, Shechter S, Klebanov B, Senapedis W, Saint-Martin JR, Landesman Y. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds. BMC Cancer 2015; 15:910. [PMID: 26573568 PMCID: PMC4647283 DOI: 10.1186/s12885-015-1790-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. METHODS Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. RESULTS Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in >100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental and resistant cells, the extent of response was more robust in the parental cells. CONCLUSIONS These results suggest that SINE resistance is conferred by alterations in signaling pathways downstream of XPO1 inhibition. Modulation of these pathways could potentially overcome the resistance to nuclear export inhibitors.
Collapse
Affiliation(s)
- Marsha Crochiere
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Trinayan Kashyap
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Ori Kalid
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Sharon Shechter
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Boris Klebanov
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - William Senapedis
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | | | - Yosef Landesman
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
27
|
High expression of CDC6 is associated with accelerated cell proliferation and poor prognosis of epithelial ovarian cancer. Pathol Res Pract 2015; 212:239-46. [PMID: 26920249 DOI: 10.1016/j.prp.2015.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022]
Abstract
Cell division cycle 6 (CDC6) is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanisms in the cell cycle. CDC6 has been associated with the oncogenic activities in human cancers, but the biological function and clinical significance of CDC6 in EOC remain unclear. The aim of the present study is to examine the effect of CDC6 on epithelial ovarian cancer (EOC) cells proliferation. We found that CDC6 protein level was up-regulated in EOC tissues compared with the normal ovary tissues. CDC6 expression correlated significantly with FIGO stage (p<0.001), differentiation grade (p=0.002), ascites (p<0.001), malignant tumor cells in ascites (p=0.004), and lymph node status (p<0.001). In vitro, after the release of ovarian cancer cell line (HO8910) from serum starvation, the expression of CDC6, cyclinD1, and PCNA was up-regulated, whereas p16 expression was down-regulated. Furthermore, down-regulation of CDC6 in HO8910 cells decreased cell proliferation and colony formation. HO8910 cells transfected with sh CDC6#1 underwent G1 phase cell cycle arrest. Collectively, this study provides a novel regulatory signaling pathway of CDC6-regulated EOC growth and a new potential therapeutic target for EOC patients.
Collapse
|
28
|
Young VJ, Brown JK, Saunders PTK, Duncan WC, Horne AW. The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One 2014; 9:e106773. [PMID: 25207642 PMCID: PMC4160207 DOI: 10.1371/journal.pone.0106773] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05) and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05). The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05) in expression of genes associated with tumorigenesis (MAPK8, CDC6), epithelial-mesenchymal transition (NOTCH1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.
Collapse
Affiliation(s)
- Vicky J. Young
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Jeremy K. Brown
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - W. Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Andrew W. Horne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Harada M, Kotake Y, Ohhata T, Kitagawa K, Niida H, Matsuura S, Funai K, Sugimura H, Suda T, Kitagawa M. YB-1 promotes transcription of cyclin D1 in human non-small-cell lung cancers. Genes Cells 2014; 19:504-516. [PMID: 24774443 DOI: 10.1111/gtc.12150] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/07/2014] [Indexed: 12/27/2022]
Abstract
Cyclin D1, an oncogenic G1 cyclin, and YB-1, a transcription factor involved in cell growth, are both over-expressed in several human cancers. In human lung cancer, the functional association between YB-1 and cyclin D1 has never been elucidated. In this study, we show YB-1 is involved in the transcription of cyclin D1 in human lung cancer. Depletion of endogenous YB-1 by siRNA inhibited progression of G1 phase and down-regulated both the protein and mRNA levels of cyclin D1 in human lung cancer cells. Forced over-expression of YB-1 with a cyclin D1 reporter plasmid increased luciferase activity, and ChIP assay results showed YB-1 bound to the cyclin D1 promoter. Moreover, the amount of YB-1 mRNA positively correlated with cyclin D1 mRNA levels in clinical non-small-cell lung cancer (NSCLC) specimens. Immunohistochemical analysis also indicated YB-1 expression correlated with cyclin D1 expression in NSCLC specimens. In addition, most of the cases expressing both cyclin D1 and CDC6, another molecule controlled by YB-1, had co-existing YB-1 over-expression. Together, our results suggest that aberrant expression of both cyclin D1 and CDC6 by YB-1 over-expression may collaboratively participate in lung carcinogenesis.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Female
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Masanori Harada
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Second Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Siah A, McKenna P, Berthe FCJ, Afonso LOB, Danger JM. Transcriptome analysis of neoplastic hemocytes in soft-shell clams Mya arenaria: Focus on cell cycle molecular mechanism. RESULTS IN IMMUNOLOGY 2013; 3:95-103. [PMID: 24600564 DOI: 10.1016/j.rinim.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
In North America, a high mortality of soft-shell clams Mya arenaria was found to be related to the disease known as disseminated neoplasia (DN). Disseminated neoplasia is commonly recognized as a tetraploid disorder related to a disruption of the cell cycle. However, the molecular mechanisms by which hemocytes of clams are transformed in the course of DN remain by far unknown. This study aims at identifying the transcripts related to DN in soft shell clams' hemocytes using next generation of sequencing (Illumina HiSeq2000). This study mainly focuses on transcripts and molecular mechanisms involved in cell cycle. Using Illumina next generation of sequencing, more than 95,399,159 reads count with an average length of 45 bp was generated from three groups of hemocytes: (1) a healthy group with less than 10% of tetraploid cells; (2) an intermediate group with tetraploid hemocytes ranging between 10% and 50% and (3) a diseased group with more than 50% of tetraploid cells. After the reads were cleaned by removing the adapters, de novo assembly was performed on the sequences and more than 73,696 contigs were generated with a mean contig length estimated at 585 bp ranging from 189 bp to 14,773 bp. Once a Blastx search against NCBI Non Redundant database was performed and the duplicates removed, 18,378 annotated sequences matched known sequences, 3078 were hypothetical and 9002 were uncharacterized sequences. Fifty percent and 41% of known sequences match sequences from Mollusca and Gastropoda respectively. Among the bivalvia, 33%, 17%, 17% and 15% of the contigs match sequences from Ostreoida, Veneroida, Pectinoida and Mytiloida respectively. Gene ontology analysis showed that metabolic, cellular, transport, cell communication and cell cycle represent 33%, 15%, 9%, 8.5% and 7% respectively of the total biological process. Approximately 70% of the component process is related to intracellular process and 15% is linked to protein and ribonucleoprotein complex. Catalytic activities and binding molecular processes represent 39% and 33% of the total molecular functions. Interestingly, nucleic acid binding represents more than 18% of the total protein class. Transcripts involved in the molecular mechanisms of cell cycle are discussed providing new avenues for future investigations.
Collapse
Affiliation(s)
- Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, BC CAHS, 871A Island Highway, Campbell River, BC, Canada V9W 2C2 ; Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Patty McKenna
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Franck C J Berthe
- Animal Health and Welfare Unit, European Food Safety Authority (EFSA), Largo N, Palli 5IA, I-43100, Parma,Italy
| | - Luis O B Afonso
- School of Life & Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, PO Box 423, Warrnambool, Victoria 3280, Australia
| | - Jean-Michel Danger
- Laboratory of Ecotoxicology, University of Le Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre, France
| |
Collapse
|