1
|
Xie B, Dean A. Noncoding function of super enhancer derived Cpox pre-mRNA in modulating neighbouring gene expression and chromatin interactions. RNA Biol 2025; 22:1-17. [PMID: 40051047 PMCID: PMC11913378 DOI: 10.1080/15476286.2025.2475421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/12/2025] Open
Abstract
Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, Cpox pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
3
|
Cardamone F, Piva A, Löser E, Eichenberger B, Romero-Mulero MC, Zenk F, Shields EJ, Cabezas-Wallscheid N, Bonasio R, Tiana G, Zhan Y, Iovino N. Chromatin landscape at cis-regulatory elements orchestrates cell fate decisions in early embryogenesis. Nat Commun 2025; 16:3007. [PMID: 40148291 PMCID: PMC11950382 DOI: 10.1038/s41467-025-57719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The establishment of germ layers during early development is crucial for body formation. The Drosophila zygote serves as a model for investigating these transitions in relation to the chromatin landscape. However, the cellular heterogeneity of the blastoderm embryo poses a challenge for gaining mechanistic insights. Using 10× Multiome, we simultaneously analyzed the in vivo epigenomic and transcriptomic states of wild-type, E(z)-, and CBP-depleted embryos during zygotic genome activation at single-cell resolution. We found that pre-zygotic H3K27me3 safeguards tissue-specific gene expression by modulating cis-regulatory elements. Furthermore, we demonstrate that CBP is essential for cell fate specification functioning as a transcriptional activator by stabilizing transcriptional factors binding at key developmental genes. Surprisingly, while CBP depletion leads to transcriptional arrest, chromatin accessibility continues to progress independently through the retention of stalled RNA Polymerase II. Our study reveals fundamental principles of chromatin-mediated gene regulation essential for establishing and maintaining cellular identities during early embryogenesis.
Collapse
Affiliation(s)
- Francesco Cardamone
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School of Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Annamaria Piva
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eva Löser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bastian Eichenberger
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fides Zenk
- Epigenomics of Neurodevelopment, Brain Mind Institute, School of Life Sciences, EPFL - Ecole Polytechnique Federal Lusanne, Ecublens, Switzerland
| | - Emily J Shields
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Laboratory of Stem Cell Biology and Ageing, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
4
|
Du C, Volkan P. Using Chromatin Immunoprecipitation (ChIP) to Study the Chromatin State in Drosophila. Cold Spring Harb Protoc 2025; 2025:pdb.top108139. [PMID: 38453456 DOI: 10.1101/pdb.top108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The chromatin state plays an important role in regulating gene expression, which affects organismal development and plasticity. Proteins, including transcription factors, chromatin modulatory proteins, and histone proteins, usually with modifications, interact with gene loci involved in cellular differentiation, function, and modulation. One molecular method used to characterize protein-DNA interactions is chromatin immunoprecipitation (ChIP). ChIP uses antibodies to immunoprecipitate specific proteins cross-linked to DNA fragments. This approach, in combination with quantitative PCR (qPCR) or high-throughput DNA sequencing, can determine the enrichment of a certain protein or histone modification around specific gene loci or across the whole genome. ChIP has been used in Drosophila to characterize the binding pattern of transcription factors and to elucidate the roles of regulatory proteins in gene expression during development and in response to environment stimuli. This review outlines ChIP procedures using tissues from the Drosophila nervous system as an example and discusses all steps and the necessary optimization.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Pelin Volkan
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Shahib AK, Rastegar M, van Wijnen AJ, Davie JR. Neurodevelopmental functions and activities of the KAT3 class of lysine acetyltransferases. Biochem Cell Biol 2024; 102:430-447. [PMID: 39293094 DOI: 10.1139/bcb-2024-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
The human lysine acetyltransferases KAT3A (CREBBP) and KAT3B (EP300) are essential enzymes in gene regulation in the nucleus. Their ubiquitous expression in metazoan cell types controls cell proliferation and differentiation during development. This comprehensive review delves into the biological roles of KAT3A and KAT3B in neurodevelopment, shedding light on how alterations in their regulation or activity can potentially contribute to a spectrum of neurodegenerative diseases (e.g., Huntington's and Alzheimer's). We explore the pathophysiological implications of KAT3 function loss in these disorders, considering their conserved protein domains and biochemical functions in chromatin regulation. The discussion also underscores the crucial role of KAT3 proteins and their substrates in supporting the integration of key cell signaling pathways. Furthermore, the narrative highlights the interdependence of KAT3-mediated lysine acetylation with lysine methylation and arginine methylation. From a cellular perspective, KAT3-dependent signal integration at subnuclear domains is mediated by liquid-liquid phase separation in response to KAT3-mediated lysine acetylation. The disruption of these finely tuned regulatory processes underscores their pathological roles in neurodegeneration. This review also points to the exciting potential for future research in this field, inspiring further investigation and discovery in the area of neurodevelopment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
7
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
8
|
Ding K, Zhu Y, Yan L, Zhu L, Zhang TT, Zhang R, Li Q, Xie B, Ding L, Shang L, Wang Y, Xu P, Zhu T, Chen C, Zhu Y. Multiwalled Carbon Nanotubes-Reprogrammed Macrophages Facilitate Breast Cancer Metastasis via NBR2/TBX1 Axis. ACS NANO 2024; 18:11103-11119. [PMID: 38623806 DOI: 10.1021/acsnano.3c11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.
Collapse
Affiliation(s)
- Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yaling Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Tian-Tian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Bin Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Limeng Shang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Panpan Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Xie B, Dean A. Noncoding function of super enhancer derived mRNA in modulating neighboring gene expression and TAD interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570115. [PMID: 38105946 PMCID: PMC10723268 DOI: 10.1101/2023.12.05.570115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the mRNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, we found that Cpox mRNA has a non-coding function in regulating neighboring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, we identified a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 that is facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. Our results uncover a regulatory role for mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
11
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
12
|
Wu Y, Tirichine L. Chromosome-Wide Distribution and Characterization of H3K36me3 and H3K27Ac in the Marine Model Diatom Phaeodactylum tricornutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2852. [PMID: 37571007 PMCID: PMC10421102 DOI: 10.3390/plants12152852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Histone methylation and acetylation play a crucial role in response to developmental cues and environmental changes. Previously, we employed mass spectrometry to identify histone modifications such as H3K27ac and H3K36me3 in the model diatom Phaeodactylum tricornutum, which have been shown to be important for transcriptional activation in animal and plant species. To further investigate their evolutionary implications, we utilized chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) and explored their genome-wide distribution in P. tricornutum. Our study aimed to determine their role in transcriptional regulation of genes and transposable elements (TEs) and their co-occurrence with other histone marks. Our results revealed that H3K27ac and H3K36me3 were predominantly localized in promoters and genic regions indicating a high conservation pattern with studies of the same marks in plants and animals. Furthermore, we report the diversity of genes encoding H3 lysine 36 (H3K36) trimethylation-specific methyltransferase in microalgae leveraging diverse sequencing resources including the Marine Microbial Eukaryote Transcriptome Sequencing Project database (MMETSP). Our study expands the repertoire of epigenetic marks in a model microalga and provides valuable insights into the evolutionary context of epigenetic-mediated gene regulation. These findings shed light on the intricate interplay between histone modifications and gene expression in microalgae, contributing to our understanding of the broader epigenetic landscape in eukaryotic organisms.
Collapse
Affiliation(s)
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France;
| |
Collapse
|
13
|
Antonova DV, Gnatenko DA, Kotova ES, Pleshkan VV, Kuzmich AI, Didych DA, Sverdlov ED, Alekseenko IV. Cell-specific expression of the FAP gene is regulated by enhancer elements. Front Mol Biosci 2023; 10:1111511. [PMID: 36825204 PMCID: PMC9941708 DOI: 10.3389/fmolb.2023.1111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.
Collapse
Affiliation(s)
- Dina V. Antonova
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gnatenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Kotova
- Laboratory of Human Molecular Genetics, FSBI Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexey I. Kuzmich
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Dmitry A. Didych
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,*Correspondence: Dmitry A. Didych,
| | - Eugene D. Sverdlov
- Kurchatov Center for Genome Research, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia,Laboratory of Epigenetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Yu D, Liang Y, Kim C, Jaganathan A, Ji D, Han X, Yang X, Jia Y, Gu R, Wang C, Zhang Q, Cheung KL, Zhou MM, Zeng L. Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma. Nat Commun 2023; 14:378. [PMID: 36690674 PMCID: PMC9870903 DOI: 10.1038/s41467-023-36063-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
BRD4-NUT, a driver fusion mutant in rare and highly aggressive NUT carcinoma, acts in aberrant transcription of anti-differentiation genes by recruiting histone acetyltransferase (HAT) p300 and promoting p300-driven histone hyperacetylation and nuclear condensation in chromatin. However, the molecular basis of how BRD4-NUT recruits and activates p300 remains elusive. Here, we report that BRD4-NUT contains two transactivation domains (TADs) in NUT that bind to the TAZ2 domain in p300. Our NMR structures reveal that NUT TADs adopt amphipathic helices when bound to the four-helical bundle TAZ2 domain. The NUT protein forms liquid-like droplets in-vitro that are enhanced by TAZ2 binding in 1:2 stoichiometry. The TAD/TAZ2 bipartite binding in BRD4-NUT/p300 triggers allosteric activation of p300 and acetylation-driven liquid-like condensation on chromatin that comprise histone H3 lysine 27 and 18 acetylation and transcription proteins BRD4L/S, CDK9, MED1, and RNA polymerase II. The BRD4-NUT/p300 chromatin condensation is key for activating transcription of pro-proliferation genes such as ALX1, resulting ALX1/Snail signaling and epithelial-to-mesenchymal transition. Our study provides a previously underappreciated structural mechanism illuminating BRD4-NUT's bipartite p300 recruitment and activation in NUT carcinoma that nucleates a feed-forward loop for propagating histone hyperacetylation and chromatin condensation to sustain aberrant anti-differentiation gene transcription and perpetual tumor cell growth.
Collapse
Affiliation(s)
- Di Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Claudia Kim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Xinye Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Xuelan Yang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ruirui Gu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ka Lung Cheung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
- International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
New Inhibitors of the Human p300/CBP Acetyltransferase Are Selectively Active against the Arabidopsis HAC Proteins. Int J Mol Sci 2022; 23:ijms231810446. [PMID: 36142359 PMCID: PMC9499386 DOI: 10.3390/ijms231810446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.
Collapse
|
16
|
Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep 2022; 40:111090. [PMID: 35858572 DOI: 10.1016/j.celrep.2022.111090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/09/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Base editors (BEs) are a group of genetic tools with potential in both scientific and medical research. Recently, a glycosylase BE (GBE), which converts C to G, has been constructed. However, the editing efficiency and targeting scope remains to be further exploited. Here, we renovate the GBE by first fusing it to various transactivation modules including Vp64, leading to a higher conversion of C to G relative to GBE in HEK293T cells. Further, higher editing efficiency, enhanced editing purity, and an enlarged editing window are acquired by the combination of SunTag system, GBE, and VP64. Finally, a SpRY-Cas9 variant is used to expand the targeting scope for Vp64-GBE. Vp64-SpRY-GBE and SpRY-GBE target genomic sites with non-NGG PAM, and Vp64-SpRY-GBE demonstrates better performance compared with SpRY-GBE. The construction of GBE variants with superior performance and versatile editing scope broadens the toolbox of BEs and may contribute to genetic therapies with C-to-G mutation.
Collapse
|
17
|
MacKenzie A, Hay EA, McEwan AR. Context-dependant enhancers as a reservoir of functional polymorphisms and epigenetic markers linked to alcohol use disorders and comorbidities. ADDICTION NEUROSCIENCE 2022; 2:None. [PMID: 35712020 PMCID: PMC9101288 DOI: 10.1016/j.addicn.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 10/25/2022]
|
18
|
Barrett LN, Westerheide SD. The CBP-1/p300 Lysine Acetyltransferase Regulates the Heat Shock Response in C. elegans. FRONTIERS IN AGING 2022; 3:861761. [PMID: 35821825 PMCID: PMC9261439 DOI: 10.3389/fragi.2022.861761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023]
Abstract
The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in C. elegans. We performed an RNA interference screen of lysine acetyltransferases and examined mRNA expression of the heat-shock inducible gene hsp-16.2, a widely used marker for HSR activation. From this screen, we identified one acetyltransferase, CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300, as a negative regulator of the HSR. We found that while knockdown of CBP-1 decreases the overall lifespan of the worm, it also enhances heat shock protein production upon heat shock and increases thermotolerance of the worm in an HSF-1 dependent manner. Similarly, we examined a hallmark of HSF-1 activation, the formation of nuclear stress bodies (nSBs). In analyzing the recovery rate of nSBs, we found that knockdown of CBP-1 enhanced the recovery and resolution of nSBs after stress. Collectively, our studies demonstrate a role of CBP-1 as a negative regulator of HSF-1 activity and its physiological effects at the organismal level upon stress.
Collapse
|
19
|
Gabriel NN, Balaji K, Jayachandran K, Inkman M, Zhang J, Dahiya S, Goldstein M. Loss of H3K27 trimethylation promotes radiotherapy resistance in medulloblastoma and induces an actionable vulnerability to BET inhibition. Cancer Res 2022; 82:2019-2030. [PMID: 35315927 DOI: 10.1158/0008-5472.can-21-0871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Medulloblastoma has been categorized into four subgroups based on genetic, epigenetic, and transcriptional profiling. Radiation is used for treating medulloblastoma regardless of the subgroup. A better understanding of the molecular pathways determining radiotherapy response could help improve medulloblastoma treatment. Here, we investigated the role of the EZH2-dependent histone H3K27 trimethylation in radiotherapy response in medulloblastoma. The tumors in 47.2% of group 3 and 4 medulloblastoma patients displayed H3K27me3 deficiency. Loss of H3K27me3 was associated with a radioresistant phenotype, high relapse rates, and poor overall survival. In H3K27me3-deficient medulloblastoma cells, an epigenetic switch from H3K27me3 to H3K27ac occurred at specific genomic loci, altering the transcriptional profile. The resulting upregulation of EPHA2 stimulated excessive activation of the pro-survival AKT signaling pathway, leading to radiotherapy resistance. BET inhibition overcame radiation resistance in H3K27me3-deficient medulloblastoma cells by suppressing H3K27ac levels, blunting EPHA2 overexpression, and mitigating excessive AKT signaling. Additionally, BET inhibition sensitized medulloblastoma cells to radiation by enhancing the apoptotic response through suppression of Bcl-xL and upregulation of Bim. This work demonstrates a novel mechanism of radiation resistance in medulloblastoma and identifies an epigenetic marker predictive of radiotherapy response. Based on these findings, we propose an epigenetically guided treatment approach targeting radiotherapy resistance in medulloblastoma patients.
Collapse
Affiliation(s)
- Nishanth N Gabriel
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kumaresh Balaji
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kay Jayachandran
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew Inkman
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jin Zhang
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Sonika Dahiya
- Washington University in St. Louis School of Medicine, St Louis, MO, United States
| | - Michael Goldstein
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Han Z, Li W. Enhancer RNA: What we know and what we can achieve. Cell Prolif 2022; 55:e13202. [PMID: 35170113 PMCID: PMC9055912 DOI: 10.1111/cpr.13202] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Enhancers are important cis-acting elements that can regulate gene transcription and cell fate alongside promoters. In fact, many human cancers and diseases are associated with the malfunction of enhancers. Recent studies have shown that enhancers can produce enhancer RNAs (eRNAs) by RNA polymerase II. In this review, we discuss eRNA production, characteristics, functions and mechanics. eRNAs can determine chromatin accessibility, histone modification and gene expression by constructing a 'chromatin loop', thereby bringing enhancers to their target gene. eRNA can also be involved in the phase separation with enhancers and other proteins. eRNAs are abundant, and importantly, tissue-specific in tumours, various diseases and stem cells; thus, eRNAs can be a potential target for disease diagnosis and treatment. As eRNA is produced from the active transcription of enhancers and is involved in the regulation of cell fate, its manipulation will influence cell function, and therefore, it can be a new target for biological therapy.
Collapse
Affiliation(s)
- Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon 2022; 8:e08664. [PMID: 35028451 PMCID: PMC8741459 DOI: 10.1016/j.heliyon.2021.e08664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications of histone proteins regulate a long cascade of downstream cellular activities, including transcription and replication. Cellular lineage differentiation involves large-scale intracellular signaling and extracellular context. In particular, histone modifications play instructive and programmatic roles in central nervous system development. Deciphering functions of histone could offer feasible molecular strategies for neural diseases caused by histone modifications. Here, we review recent advances of in vitro and in vivo studies on histone modifications in neural differentiation.
Collapse
|
22
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
23
|
Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Front Cell Dev Biol 2021; 9:666508. [PMID: 34568311 PMCID: PMC8461331 DOI: 10.3389/fcell.2021.666508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Richard N. Freiman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
24
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
25
|
Zhang Y, Brown K, Yu Y, Ibrahim Z, Zandian M, Xuan H, Ingersoll S, Lee T, Ebmeier CC, Liu J, Panne D, Shi X, Ren X, Kutateladze TG. Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nat Commun 2021; 12:4618. [PMID: 34326347 PMCID: PMC8322156 DOI: 10.1038/s41467-021-24950-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions. The histone acetyltransferase p300 mostly localizes to active chromatin; however, some repressed genes marked with H3K27me3 are also bound by p300. Here the authors show p300 is capable of phase separation, which relies on its catalytic core, and that p300 catalytic activity is decreased in phase-separated droplets that co-localize with H3K27me3-marked chromatin.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kyle Brown
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Yucong Yu
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ziad Ibrahim
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hongwen Xuan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Steven Ingersoll
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Panne
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, CO, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
26
|
Guo J, Wei L, Chen SS, Cai XW, Su YN, Li L, Chen S, He XJ. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:755-771. [PMID: 33325122 DOI: 10.1111/jipb.13052] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 05/06/2023]
Abstract
In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Long Wei
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
28
|
Bejjani F, Tolza C, Boulanger M, Downes D, Romero R, Maqbool M, Zine El Aabidine A, Andrau JC, Lebre S, Brehelin L, Parrinello H, Rohmer M, Kaoma T, Vallar L, Hughes J, Zibara K, Lecellier CH, Piechaczyk M, Jariel-Encontre I. Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Res 2021; 49:2488-2508. [PMID: 33533919 PMCID: PMC7968996 DOI: 10.1093/nar/gkab053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous family of dimeric transcription factors AP-1 is made up of Fos and Jun family proteins. It has long been thought to operate principally at gene promoters and how it controls transcription is still ill-understood. The Fos family protein Fra-1 is overexpressed in triple negative breast cancers (TNBCs) where it contributes to tumor aggressiveness. To address its transcriptional actions in TNBCs, we combined transcriptomics, ChIP-seqs, machine learning and NG Capture-C. Additionally, we studied its Fos family kin Fra-2 also expressed in TNBCs, albeit much less. Consistently with their pleiotropic effects, Fra-1 and Fra-2 up- and downregulate individually, together or redundantly many genes associated with a wide range of biological processes. Target gene regulation is principally due to binding of Fra-1 and Fra-2 at regulatory elements located distantly from cognate promoters where Fra-1 modulates the recruitment of the transcriptional co-regulator p300/CBP and where differences in AP-1 variant motif recognition can underlie preferential Fra-1- or Fra-2 bindings. Our work also shows no major role for Fra-1 in chromatin architecture control at target gene loci, but suggests collaboration between Fra-1-bound and -unbound enhancers within chromatin hubs sometimes including promoters for other Fra-1-regulated genes. Our work impacts our view of AP-1.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | | - Damien Downes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Raphaël Romero
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | | | | - Sophie Lebre
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | | - Hughes Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Marine Rohmer
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tony Kaoma
- Computational Biomedecine, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laurent Vallar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jim R Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Kazem Zibara
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
29
|
McEwan AR, MacKenzie A. Perspective: Quality Versus Quantity; Is It Important to Assess the Role of Enhancers in Complex Disease from an In Vivo Perspective? Int J Mol Sci 2020; 21:E7856. [PMID: 33113946 PMCID: PMC7660172 DOI: 10.3390/ijms21217856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sequencing of the human genome has permitted the development of genome-wide association studies (GWAS) to analyze the genetics of a number of complex disorders such as depression, anxiety and substance abuse. Thanks to their ability to analyze huge cohort sizes, these studies have successfully identified thousands of loci associated with a broad spectrum of complex diseases. Disconcertingly, the majority of these GWAS hits occur in non-coding regions of the genome, much of which controls the cell-type-specific expression of genes essential to health. In contrast to gene coding sequences, it is a challenge to understand the function of this non-coding regulatory genome using conventional biochemical techniques in cell lines. The current commentary scrutinizes the field of complex genetics from the standpoint of the large-scale whole-genome functional analysis of the promoters and cis-regulatory elements using chromatin markers. We contrast these large scale quantitative techniques against comparative genomics and in vivo analyses including CRISPR/CAS9 genome editing to determine the functional characteristics of these elements and to understand how polymorphic variation and epigenetic changes within these elements might contribute to complex disease and drug response. Most importantly, we suggest that, although the role of chromatin markers will continue to be important in identifying and characterizing enhancers, more emphasis must be placed on their analysis in relevant in-vivo models that take account of the appropriate cell-type-specific roles of these elements. It is hoped that offering these insights might refocus progress in analyzing the data tsunami of non-coding GWAS and whole-genome sequencing "hits" that threatens to overwhelm progress in the field.
Collapse
Affiliation(s)
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
30
|
Jones J, Chen Y, Tiwari M, Li J, Ling J, Sen GL. KLF3 Mediates Epidermal Differentiation through the Epigenomic Writer CBP. iScience 2020; 23:101320. [PMID: 32659720 PMCID: PMC7358749 DOI: 10.1016/j.isci.2020.101320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Impairments in the differentiation process can lead to skin diseases that can afflict ∼20% of the population. Thus, it is of utmost importance to understand the factors that promote the differentiation process. Here we identify the transcription factor KLF3 as a regulator of epidermal differentiation. Knockdown of KLF3 results in reduced differentiation gene expression and increased cell cycle gene expression. Over half of KLF3's genomic binding sites occur at active enhancers. KLF3 binds to active enhancers proximal to differentiation genes that are dependent upon KLF3 for expression. KLF3's genomic binding sites also highly overlaps with CBP, a histone acetyltransferase necessary for activating enhancers. Depletion of KLF3 causes reduced CBP localization at enhancers proximal to differentiation gene clusters, which leads to loss of enhancer activation but not priming. Our results suggest that KLF3 is necessary to recruit CBP to activate enhancers and drive epidermal differentiation gene expression.
Collapse
Affiliation(s)
- Jackson Jones
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - Ji Ling
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
31
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
32
|
Svensson K, LaBarge SA, Sathe A, Martins VF, Tahvilian S, Cunliffe JM, Sasik R, Mahata SK, Meyer GA, Philp A, David LL, Ward SR, McCurdy CE, Aslan JE, Schenk S. p300 and cAMP response element-binding protein-binding protein in skeletal muscle homeostasis, contractile function, and survival. J Cachexia Sarcopenia Muscle 2020; 11:464-477. [PMID: 31898871 PMCID: PMC7113519 DOI: 10.1002/jcsm.12522] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Jennifer M Cunliffe
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gretchen A Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Joseph E Aslan
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Knight Cardiovascular Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Zhou Y, Ye C, Lou Y, Liu J, Ye S, Chen L, Lei J, Guo S, Zeng S, Yu L. Epigenetic Mechanisms Underlying Organic Solute Transporter β Repression in Colorectal Cancer. Mol Pharmacol 2020; 97:259-266. [PMID: 32005758 DOI: 10.1124/mol.119.118216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is known to be the third most common cancer disease and the fourth-leading cause of cancer-related deaths worldwide. Bile acid, especially deoxycholic acid and lithocholic acid, were revealed to play an important role during carcinogenesis of CRC. In this study, we found organic solute transporter β (OSTβ), an important subunit of a bile acid export transporter OSTα-OSTβ, was noticeably downregulated in CRC. The decline of OSTβ expression in CRC was determined by Western blot and real-time polymerase chain reaction (RT-PCR), whereas chromatin immunoprecipitation (ChIP) was used to evaluate the histone acetylation state at the OSTβ promoter region in vivo and in vitro. CRC cell lines HT29 and HCT15 were treated with trichostation A (TSA) for the subsequent determination, including RT-PCR, small interfering RNA (siRNA) knockdown, ChIP, and dual-luciferase reporter gene assay, to find out which histone acetyltransferases and deacetylases exactly participated in regulation. We demonstrated that after TSA treatment, OSTβ expression increased noticeably because of upregulated H3K27Ac state at OSTβ promoter region. We found that stimulating the expression of p300 with CTB (Cholera Toxin B subunit, an activator of p300) and inhibiting p300 expression with C646 (an inhibitor of p300) or siRNA designed for p300 could control OSTβ expression through modulating H3K27Ac state at OSTβ promoter region. Therefore, downregulated expression of p300 in CRC may cause low expression of OSTβ in CRC via epigenetic regulation. Generally, we revealed a novel epigenetic mechanism underlying OSTβ repression in CRC, hoping this mechanism would help us to understand and inhibit carcinogenesis of CRC. SIGNIFICANCE STATEMENT: Organic solute transporter β (OSTβ) expression is lower in colon cancer tissues compared with adjacent normal tissues. We revealed the epigenetic mechanisms of it and proved that p300 controls OSTβ expression through modulating H3K27Ac state at OSTβ promoter region and hence causes low expression of OSTβ in colorectal cancer.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaonan Ye
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Lou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junqing Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Ye
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxiu Lei
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Suhang Guo
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Y.Z., C.Y., L.C., J.Le., S.G., S.Z., L.Y.); Departments of Pharmacy (Y.L.) and Radiation Oncology (J.Li.), The First Affiliated Hospital and Intensive Care Unit, The Children's Hospital (S.Y.), School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Moena D, Nardocci G, Acevedo E, Lian J, Stein G, Stein J, Montecino M. Ezh2-dependent H3K27me3 modification dynamically regulates vitamin D3-dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. J Cell Physiol 2020; 235:5404-5412. [PMID: 31907922 DOI: 10.1002/jcp.29428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/22/2023]
Abstract
Epigenetic control is critical for the regulation of gene transcription in mammalian cells. Among the most important epigenetic mechanisms are those associated with posttranslational modifications of chromosomal histone proteins, which modulate chromatin structure and increased accessibility of promoter regulatory elements for competency to support transcription. A critical histone mark is trimethylation of histone H3 at lysine residue 27 (H3K27me3), which is mediated by Ezh2, the catalytic subunit of the polycomb group complex PRC2 to repress transcription. Treatment of cells with the active vitamin D metabolite 1,25(OH)2 D3 , results in transcriptional activation of the CYP24A1 gene, which encodes a 24-hydroxylase enzyme, that is, essential for physiological control of vitamin D3 levels. We report that the Ezh2-mediated deposition of H3K27me3 at the CYP24A1 gene promoter is a requisite regulatory component during transcriptional silencing of this gene in osteoblastic cells in the absence of 1,25(OH)2 D3 . 1,25(OH)2 D3 dependent transcriptional activation of the CYP24A1 gene is accompanied by a rapid release of Ezh2 from the promoter, together with the binding of the H3K27me3-specific demethylase Utx/Kdm6a and thereby subsequent erasing of the H3K27me3 mark. Importantly, we find that these changes in H3K27me3 enrichment at the CYP24A1 gene promoter are highly dynamic, as this modification is rapidly reacquired following the withdrawal of 1,25(OH)2 D3 .
Collapse
Affiliation(s)
- Daniel Moena
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Concepcion, Chile
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Elvis Acevedo
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jane Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
35
|
Sajwan S, Mannervik M. Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci Rep 2019; 9:18104. [PMID: 31792240 PMCID: PMC6888908 DOI: 10.1038/s41598-019-54179-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Gene overexpression through the targeting of transcription activation domains to regulatory DNA via catalytically defective Cas9 (dCas9) represents a powerful approach to investigate gene function as well as the mechanisms of gene control. To date, the most efficient dCas9-based activator is the Synergistic Activation Mediator (SAM) system whereby transcription activation domains are directly fused to dCas9 as well as tethered through MS2 loops engineered into the gRNA. Here, we show that dCas9 fused to the catalytic domain of the histone acetyltransferase CBP is a more potent activator than the SAM system at some loci, but less efficient at other locations in Drosophila cells. Our results suggest that different rate-limiting steps in the transcription cycle are affected by dCas9-CBP and the SAM system, and that comparing these activators may be useful for mechanistic studies of transcription as well as for increasing the number of hits in genome-wide overexpression screens.
Collapse
Affiliation(s)
- Suresh Sajwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
36
|
Ganner A, Gerber J, Ziegler AK, Li Y, Kandzia J, Matulenski T, Kreis S, Breves G, Klein M, Walz G, Neumann-Haefelin E. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp Gerontol 2019; 126:110690. [PMID: 31419472 DOI: 10.1016/j.exger.2019.110690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 11/28/2022]
Abstract
SKN-1/Nrf transcription factors regulate diverse biological processes essentially stress defense, detoxification, and longevity. Studies in model organisms have identified a broad range of regulatory processes and mechanisms that profoundly influence SKN-1/Nrf functions. Defining the mechanisms how SKN-1 is regulated will provide insight how cells defend against diverse stressors contributing to aging and disease. In this study, we demonstrate a crucial role for the acetyltransferase CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300 in the activation of SKN-1. cbp-1 is essential for tolerance of oxidative stress and normal lifespan. CBP-1 directly interacts with SKN-1 and increases SKN-1 protein abundance. In particular CBP-1 modulates SKN-1 nuclear translocation under basal conditions and in response to stress and promotes SKN-1-dependent transcription of protective genes. Moreover, CBP-1 is required for SKN-1 nuclear recruitment, transcriptional activity, and longevity due to reduced insulin/IGF-1-like signaling, mTOR-, and GSK-3 signaling. Our findings establish the acetyltransferase CBP-1 as a critical activator of SKN-1 that directly modulates SKN-1 protein stability, nuclear localization, and function to ascertain normal stress response and lifespan.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Gerber
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna-Katharina Ziegler
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yujie Li
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Kandzia
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Saskia Kreis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
37
|
Cubiles MD, Barroso S, Vaquero-Sedas MI, Enguix A, Aguilera A, Vega-Palas MA. Epigenetic features of human telomeres. Nucleic Acids Res 2019; 46:2347-2355. [PMID: 29361030 PMCID: PMC5861411 DOI: 10.1093/nar/gky006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/02/2023] Open
Abstract
Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres.
Collapse
Affiliation(s)
- María D Cubiles
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Seville, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avd. Américo Vespucio s/n, 41092 Seville, Spain
| | - María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Avd. Américo Vespucio n° 49, 41092 Seville, Spain
| | - Alicia Enguix
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avd. Américo Vespucio s/n, 41092 Seville, Spain
| | - Miguel A Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Avd. Américo Vespucio n° 49, 41092 Seville, Spain
| |
Collapse
|
38
|
Wang Y, Sun B, Zhang Q, Dong H, Zhang J. p300 Acetylates JHDM1A to inhibit osteosarcoma carcinogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2891-2899. [PMID: 31307234 DOI: 10.1080/21691401.2019.1638790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiao Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Dong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingzhe Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 ( insulin-like growth factor 1). J Biol Chem 2019; 294:9746-9759. [PMID: 31073032 PMCID: PMC6597841 DOI: 10.1074/jbc.ra119.008759] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer-associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and suggested that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara A Grimm
- the Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - John P Lydon
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J Demayo
- Pregnancy & Female Reproduction Group, Reproductive and Developmental Biology Laboratory and
| | | |
Collapse
|
40
|
Zucconi BE, Makofske JL, Meyers DJ, Hwang Y, Wu M, Kuroda MI, Cole PA. Combination Targeting of the Bromodomain and Acetyltransferase Active Site of p300/CBP. Biochemistry 2019; 58:2133-2143. [PMID: 30924641 DOI: 10.1021/acs.biochem.9b00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p300 and CBP are highly related histone acetyltransferase (HAT) enzymes that regulate gene expression, and their dysregulation has been linked to cancer and other diseases. p300/CBP is composed of a number of domains including a HAT domain, which is inhibited by the small molecule A-485, and an acetyl-lysine binding bromodomain, which was recently found to be selectively antagonized by the small molecule I-CBP112. Here we show that the combination of I-CBP112 and A-485 can synergize to inhibit prostate cancer cell proliferation. We find that the combination confers a dramatic reduction in p300 chromatin occupancy compared to the individual effects of blocking either domain alone. Accompanying this loss of p300 on chromatin, combination treatment leads to the reduction of specific mRNAs including androgen-dependent and pro-oncogenic prostate genes such as KLK3 (PSA) and c-Myc. Consistent with p300 directly affecting gene expression, mRNAs that are significantly reduced by combination treatment also exhibit a strong reduction in p300 chromatin occupancy at their gene promoters. The relatively few mRNAs that are up-regulated upon combination treatment show no correlation with p300 occupancy. These studies provide support for the pharmacologic advantage of concurrent targeting of two domains within one key epigenetic modification enzyme.
Collapse
Affiliation(s)
- Beth E Zucconi
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jessica L Makofske
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
41
|
Li J, Aponte Paris S, Thakur H, Kapiloff MS, Dodge-Kafka KL. Muscle A-kinase-anchoring protein-β-bound calcineurin toggles active and repressive transcriptional complexes of myocyte enhancer factor 2D. J Biol Chem 2018; 294:2543-2554. [PMID: 30523159 DOI: 10.1074/jbc.ra118.005465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) transcription factors are key regulators of the development and adult phenotype of diverse tissues, including skeletal and cardiac muscles. Controlled by multiple post-translational modifications, MEF2D is an effector for the Ca2+/calmodulin-dependent protein phosphatase calcineurin (CaN, PP2B, and PPP3). CaN-catalyzed dephosphorylation promotes the desumoylation and acetylation of MEF2D, increasing its transcriptional activity. Both MEF2D and CaN bind the scaffold protein muscle A-kinase-anchoring protein β (mAKAPβ), which is localized to the nuclear envelope, such that C2C12 skeletal myoblast differentiation and neonatal rat ventricular myocyte hypertrophy are inhibited by mAKAPβ signalosome targeting. Using immunoprecipitation and DNA-binding assays, we now show that the formation of mAKAPβ signalosomes is required for MEF2D dephosphorylation, desumoylation, and acetylation in C2C12 cells. Reduced MEF2D phosphorylation was coupled to a switch from type IIa histone deacetylase to p300 histone acetylase binding that correlated with increased MEF2D-dependent gene expression and ventricular myocyte hypertrophy. Together, these results highlight the importance of mAKAPβ signalosomes for regulating MEF2D activity in striated muscle, affirming mAKAPβ as a nodal regulator in the myocyte intracellular signaling network.
Collapse
Affiliation(s)
- Jinliang Li
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Shania Aponte Paris
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Hrishikesh Thakur
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Michael S Kapiloff
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Kimberly L Dodge-Kafka
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
42
|
Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D. Transcription factor dimerization activates the p300 acetyltransferase. Nature 2018; 562:538-544. [PMID: 30323286 PMCID: PMC6914384 DOI: 10.1038/s41586-018-0621-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
The transcriptional coactivator p300 is a histone lysine acetyltransferase that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that p300 activation directly depends on the activation and oligomerisation status of transcription factor (TF) ligands. Using two model TFs, IRF3 and STAT1, we demonstrate that TF dimerization enables trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop (AIL), resulting in HAT activation. We describe a p300 crystal structure in which the AIL invades the active site of a neighbouring HAT domain thus revealing a snap-shot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling, TF activation and dimerization controls p300 activation thus explaining why gene transcription is associated with chromatin acetylation.
Collapse
Affiliation(s)
- Esther Ortega
- European Molecular Biology Laboratory, Grenoble, France
| | - Srinivasan Rengachari
- European Molecular Biology Laboratory, Grenoble, France.,Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Ziad Ibrahim
- European Molecular Biology Laboratory, Grenoble, France.,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Jonathan Gaucher
- European Molecular Biology Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM U1042, HP2 Laboratory, Grenoble, France
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France. .,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
43
|
de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL. The unique DEK oncoprotein in women's health: A potential novel biomarker. Biomed Pharmacother 2018; 106:142-148. [PMID: 29957464 DOI: 10.1016/j.biopha.2018.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.
Collapse
Affiliation(s)
- Ana Cecília de Albuquerque Oliveira
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| | - Ferdinand Kappes
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, PR China
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil.
| | - José Luiz de Lima Filho
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| |
Collapse
|
44
|
Kaypee S, Sahadevan SA, Patil S, Ghosh P, Roy NS, Roy S, Kundu TK. Mutant and Wild-Type Tumor Suppressor p53 Induces p300 Autoacetylation. iScience 2018; 4:260-272. [PMID: 30240745 PMCID: PMC6147029 DOI: 10.1016/j.isci.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
The transcriptional co-activator p300 is essential for p53 transactivation, although its precise role remains unclear. We report that p53 activates the acetyltransferase activity of p300 through the enhancement of p300 autoacetylation. Autoacetylated p300 accumulates near the transcription start sites accompanied by a similar enrichment of activating histone marks near those sites. Abrogation of p53-p300 interaction by a site-directed peptide inhibitor abolished p300-mediated histone acetylation, suggesting a crucial role played by the activation in p53-mediated gene regulation. Gain-of-function mutant p53, known to impart aggressive proliferative properties in tumor cells, also activates p300 autoacetylation. The same peptide abolished many of the gain-of-function properties of mutant p53 as well. Reversal of gain-of-function properties of mutant p53 suggests that molecules targeting the p53-p300 interface may be good candidates for anti-tumor drugs. Wild-type and mutant p53 are potent inducers of p300 autoacetylation p53 activates p300 catalytic activity by altering its structural conformation Induction of p300 autoacetylation possibly enhances p53-targeted gene expression Mutant-p53-induced p300 autoacetylation could be critical for tumorigenicity
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Smitha Asoka Sahadevan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shilpa Patil
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Piya Ghosh
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | | | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
45
|
Bhagwat AS, Lu B, Vakoc CR. Enhancer dysfunction in leukemia. Blood 2018; 131:1795-1804. [PMID: 29439951 PMCID: PMC5909760 DOI: 10.1182/blood-2017-11-737379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic cancers are often initiated by deregulation of the transcriptional machinery. Prominent among such regulators are the sequence-specific DNA-binding transcription factors (TFs), which bind to enhancer and promoter elements in the genome to control gene expression through the recruitment of cofactors. Remarkably, perturbing the function of even a single TF or cofactor can modulate the active enhancer landscape of a cell; conversely, knowledge of the enhancer configuration can be used to discover functionally important TFs in a given cellular process. Our expanding insight into enhancer function can be attributed to the emergence of genome-scale measurements of enhancer activity, which can be applied to virtually any cell type to expose regulatory mechanisms. Such approaches are beginning to reveal the abnormal enhancer configurations present in cancer cells, thereby providing a framework for understanding how transcriptional dysregulation can lead to malignancy. Here, we review the evidence for alterations in enhancer landscapes contributing to the pathogenesis of leukemia, a malignancy in which enhancer-binding proteins and enhancer DNA itself are altered via genetic mutation. We will also highlight examples of small molecules that reprogram the enhancer landscape of leukemia cells in association with therapeutic benefit.
Collapse
Affiliation(s)
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
46
|
Du D, Katsuno Y, Meyer D, Budi EH, Chen SH, Koeppen H, Wang H, Akhurst RJ, Derynck R. Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep 2017; 19:135-155. [PMID: 29233829 DOI: 10.15252/embr.201744250] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
During epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-β-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition. SETDB1 also controls stem cell generation, cancer cell motility, invasion, metastatic dissemination, as well as sensitivity to certain cancer drugs. These functions may explain the correlation of breast cancer patient survival with SETDB1 expression. At the molecular level, TGF-β induces SETDB1 recruitment by Smad3, to repress Smad3/4-activated transcription of SNAI1, encoding the EMT "master" transcription factor SNAIL1. Suppression of SNAIL1-mediated gene reprogramming by SETDB1 occurs through H3K9 methylation at the SNAI1 gene that represses its H3K9 acetylation imposed by activated Smad3/4 complexes. SETDB1 therefore defines a TGF-β-regulated balance between histone methylation and acetylation that controls EMT.
Collapse
Affiliation(s)
- Dan Du
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Yoko Katsuno
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Dominique Meyer
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Erine H Budi
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, Biophysics Graduate Program University of California at San Francisco, San Francisco, CA, USA
| | - Hartmut Koeppen
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Hongjun Wang
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| | - Rosemary J Akhurst
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Boija A, Mahat DB, Zare A, Holmqvist PH, Philip P, Meyers DJ, Cole PA, Lis JT, Stenberg P, Mannervik M. CBP Regulates Recruitment and Release of Promoter-Proximal RNA Polymerase II. Mol Cell 2017; 68:491-503.e5. [PMID: 29056321 PMCID: PMC5826544 DOI: 10.1016/j.molcel.2017.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022]
Abstract
Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.
Collapse
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Dig Bijay Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Aman Zare
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Per-Henrik Holmqvist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Philge Philip
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - David J Meyers
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Philip A Cole
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden; Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, 906 21 Umeå, Sweden.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
48
|
He C, Wu S, Gao A, Su Y, Min H, Shang ZF, Wu J, Yang L, Ding WQ, Zhou J. Phosphorylation of ETS-1 is a critical event in DNA polymerase iota-induced invasion and metastasis of esophageal squamous cell carcinoma. Cancer Sci 2017; 108:2503-2510. [PMID: 28905458 PMCID: PMC5715348 DOI: 10.1111/cas.13399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023] Open
Abstract
An aberrantly elevated expression of DNA polymerase ι (Pol ι) is significantly associated with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), yet the mechanisms behind this phenomenon remain obscure. Based on the RNA-Seq transcriptome and real-time PCR analysis, we identified ETS-1 as a candidate gene involved in Pol ι-mediated progression of ESCC. Wound-healing and transwell assay indicated that downregulation of ETS-1 attenuates Pol ι-mediated invasiveness of ESCC. Signaling pathway analysis showed that Pol ι enhances ETS-1 phosphorylation at threonine-38 through the Erk signaling pathway in ESCC cells. Kaplan-Meier analysis, based on 93 clinical tissue samples, revealed that ETS-1 phosphorylation at threonine-38 is associated with poor prognosis of ESCC patients. The present study thus demonstrates that phosphorylation of ETS-1 is a critical event in the Pol ι-induced invasion and metastasis of ESCC.
Collapse
Affiliation(s)
- Chao He
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Shuhua Wu
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Ye Su
- Jerry M. Wallace School of Osteopathic Medicine, Leon Levine Hall of Medical Science, Campbell University, Lillington, North Carolina, USA
| | - Han Min
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jinchang Wu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Epigenetic regulation of interleukin-8 expression by class I HDAC and CBP in ovarian cancer cells. Oncotarget 2017; 8:70798-70810. [PMID: 29050320 PMCID: PMC5642595 DOI: 10.18632/oncotarget.19990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022] Open
Abstract
Although inhibitors of epigenetic regulators have been effective in the treatment of cutaneous T cell lymphoma (CTCL) and other hematopoietic malignancies, they have been less effective in solid tumors, including ovarian cancer (OC). We have previously shown that inhibition of histone deacetylase (HDAC) activity induces expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (CXCL8, IL-8) in OC cells, resulting in their increased survival and proliferation. Here, we show that in addition to ovarian cancer SKOV3, OVCAR3, and CAOV3 cells, HDAC inhibition induces the CXCL8 expression in HeLa cells, but not in CTCL Hut-78 cells. In OC cells, the CXCL8 expression is induced by pharmacological inhibition of class I HDACs. Interestingly, while an individual suppression of HDAC1, HDAC2, or HDAC3 by corresponding siRNAs inhibits the CXCL8 expression, their simultaneous suppression induces the CXCL8 expression. The induced CXCL8 expression in OC cells is dependent on histone acetyltransferase (HAT) activity of CREB-binding protein (CBP), but not p300, and is associated with HAT-dependent p65 recruitment to CXCL8 promoter. Together, our results show that the CXCL8 expression in OC cells is induced by combined inhibition of HDAC1, -2, and -3, and silenced by suppression of HAT activity of CBP. In addition, our data indicate that the induced CXCL8 expression may be responsible for the limited effectiveness of HDAC inhibitors in OC and perhaps other solid cancers characterized by CXCL8 overexpression, and suggest that targeting class I HDACs and CBP may provide novel combination strategies by limiting the induced CXCL8 expression.
Collapse
|
50
|
Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med 2017; 23:332-347. [PMID: 28291707 DOI: 10.1016/j.molmed.2017.02.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls. Vessel occlusion, often occurring after plaque rupture, can result in myocardial and cerebral infarction. Epigenetic changes are increasingly being associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. Emerging genomic approaches that profile DNA methylation, chromatin accessibility, post-translational histone modifications, transcription factor binding, and RNA expression in low or single cell populations are poised to enhance our spatiotemporal understanding of atherogenesis. Here, we review recent therapeutically relevant epigenetic discoveries and emerging technologies that may generate new opportunities for atherosclerosis research.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - Azad Alizada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Wilson
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|