1
|
Kouzminova E, Cronan G, Kuzminov A. UV induces codirectional replication-transcription conflicts and an alternative DnaA-dependent replication origin in the rnhAB mutants of Escherichiacoli. Nucleic Acids Res 2025; 53:gkaf282. [PMID: 40240002 PMCID: PMC12000880 DOI: 10.1093/nar/gkaf282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The rnhAB mutants of Escherichia coli lacking both RNase H enzymes are unexpectedly UV-sensitive, being unable to restore normal levels of post-UV replication. Examining patterns of chromosomal replication in the rnhAB mutants after UV could identify the problem sites. We show that normal rnhA (B) mutant replication initiates at three distinct oriK areas in the origin macrodomain, none of them coinciding with oriC proper, the dominant origin being some 400 kb away. Interestingly, initiation after UV switches to the DnaA-dependent oriK closest to oriC and continues from there until the growth replication pattern is restored, like in the rnhA single mutants. However, in the rnhAB double mutant, post-UV forks initiated at the new origin have difficulty reaching the terminus, with the major stalling sites at the rrn operons. In the rnhAB recBC mutants, additionally deficient in linear DNA degradation/repair, post-UV replication forks cannot traverse the origin-distal ribosomal RNA operons, rrnG and rrnH, showing that restoration of disintegrated replication forks is essential for replication in the rnhAB mutant. In contrast, the rnhAB rpoB* mutant, in which transcription complexes are unstable, is UV-resistant and resumes normal replication even faster than WT cells, indicating that the rnhAB mutants suffer from UV-induced replication-transcription conflicts.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
2
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 PMCID: PMC12045467 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Belotserkovskii BP, Hanawalt PC. A model for transcription-dependent R-loop formation at double-stranded DNA breaks: Implications for their detection and biological effects. J Theor Biol 2024; 595:111962. [PMID: 39384064 DOI: 10.1016/j.jtbi.2024.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
R-loops are structures containing an RNA-DNA duplex and an unpaired DNA strand. During R-loop formation an RNA strand invades the DNA duplex, displacing the homologous DNA strand and binding the complementary DNA strand. Here we analyze a model for transcription-dependent R-loop formation at double-stranded DNA breaks (DSBs). In this model, R-loop formation is preceded by detachment of the non-template DNA strand from the RNA polymerase (RNAP). Then, strand exchange is initiated between the nascent RNA and the non-template DNA strand. During that strand exchange the length of the R-loop could either increase, or decrease in a biased random-walk fashion, in which the bias would depend upon the DNA sequence. Eventually, the restoration of the DNA duplex would completely displace the RNA. However, as long as the RNAP remains bound to the template DNA strand it prevents that displacement. Thus, according to the model, RNAPs stalled at DSBs can increase the lifespan of R-loops, increasing their detectability in experiments, and perhaps enhancing their biological effects.
Collapse
|
4
|
Pandiyan A, Mallikarjun J, Maheshwari H, Gowrishankar J. Pathological R-loops in bacteria from engineered expression of endogenous antisense RNAs whose synthesis is ordinarily terminated by Rho. Nucleic Acids Res 2024; 52:12438-12455. [PMID: 39373509 PMCID: PMC11551753 DOI: 10.1093/nar/gkae839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E. coli of several such individual antisense regions on a plasmid or the chromosome generates R-loops that, in an RNase H-modulated manner, serve to disrupt genome integrity. Rho inhibition was associated with increased prevalence of antisense R-loops also in Xanthomonas oryzae pv. oryzae and Caulobacter crescentus. Our results confirm the essential role of Rho in several bacterial genera for prevention of toxic R-loops from pervasive yet cryptic endogenous antisense transcripts. Engineered antisense R-looped regions may be useful for studies on both site-specific impediments to bacterial chromosomal replication and the mechanisms of their resolution.
Collapse
Affiliation(s)
- Apuratha Pandiyan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jillella Mallikarjun
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
- Centre for DNA Fingerprinting and Diagnostics, Uppal Road, Hyderabad 500039, Telengana, India
| | - Himanshi Maheshwari
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jayaraman Gowrishankar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| |
Collapse
|
5
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
6
|
Das P, Hazra A, Saha S, Roy S, Mukherjee M, Hazra S, Majumdar HK, BoseDasgupta S. Resolving the polycistronic aftermath: Essential role of topoisomerase IA in preventing R-loops in Leishmania. J Biol Chem 2024; 300:107162. [PMID: 38484800 PMCID: PMC11021369 DOI: 10.1016/j.jbc.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Kinetoplastid parasites are "living bridges" in the evolution from prokaryotes to higher eukaryotes. The near-intronless genome of the kinetoplastid Leishmania exhibits polycistronic transcription which can facilitate R-loop formation. Therefore, to prevent such DNA-RNA hybrids, Leishmania has retained prokaryotic-like DNA Topoisomerase IA (LdTOPIA) in the course of evolution. LdTOPIA is an essential enzyme that is expressed ubiquitously and is adapted for the compartmentalized eukaryotic form in harboring functional bipartite nuclear localization signals. Although exhibiting greater homology to mycobacterial TOPIA, LdTOPIA could functionally complement the growth lethality of Escherichia coli TOPIA null GyrB ts strain at non-permissive temperatures. Purified LdTOPIA exhibits Mg2+-dependent relaxation of only negatively supercoiled DNA and preference towards single-stranded DNA substrates. LdTOPIA prevents nuclear R-loops as conditional LdTOPIA downregulated parasites exhibit R-loop formation and thereby parasite killing. The clinically used tricyclic antidepressant, norclomipramine could specifically inhibit LdTOPIA and lead to R-loop formation and parasite elimination. This comprehensive study therefore paves an avenue for drug repurposing against Leishmania.
Collapse
Affiliation(s)
- Payel Das
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arnab Hazra
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sadhana Roy
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mandrita Mukherjee
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemanta K Majumdar
- Infectious Diseases and Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Somdeb BoseDasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
7
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
8
|
Zhigalova NA, Oleynikova KY, Ruzov AS, Ermakov AS. The Functions of N 6-Methyladenosine in Nuclear RNAs. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:159-172. [PMID: 38467552 DOI: 10.1134/s0006297924010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications in both eukaryotic and prokaryotic mRNAs. It has been experimentally confirmed that m6A methylation is involved in the regulation of stability and translation of various mRNAs. Until recently, the majority of m6A-related studies have been focused on the cytoplasmic functions of this modification. Here, we review new data on the role of m6A in several key biological processes taking place in the cell nucleus, such as transcription, chromatin organization, splicing, nuclear-cytoplasmic transport, and R-loop metabolism. Based on analysis of these data, we suggest that m6A methylation of nuclear RNAs is another level of gene expression regulation which, together with DNA methylation and histone modifications, controls chromatin structure and functioning in various biological contexts.
Collapse
Affiliation(s)
- Nadezhda A Zhigalova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Katerina Yu Oleynikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
T N, Govindarajan S, Munavar MH. trans-translation system is important for maintaining genome integrity during DNA damage in bacteria. Res Microbiol 2023; 174:104136. [PMID: 37690591 DOI: 10.1016/j.resmic.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
DNA integrity in bacteria is regulated by various factors that act on the DNA. trans-translation has previously been shown to be important for the survival of Escherichia coli cells exposed to certain DNA-damaging agents. However, the mechanisms underlying this sensitivity are poorly understood. In this study, we explored the involvement of the trans-translation system in the maintenance of genome integrity using various DNA-damaging agents and mutant backgrounds. Relative viability assays showed that SsrA-defective cells were sensitive to DNA-damaging agents, such as nalidixic acid (NA), ultraviolet radiation (UV), and methyl methanesulfonate (MMS). The viability of SsrA-defective cells was rescued by deleting sulA, although the expression of SulA was not more pronounced in SsrA-defective cells than in wild-type cells. Live cell imaging using a Gam-GFP fluorescent reporter showed increased double-strand breaks (DSBs) in SsrA-defective cells during DNA damage. We also showed that the ribosome rescue function of SsrA was sufficient for DNA damage tolerance. DNA damage sensitivity can be alleviated by partial uncoupling of transcription and translation by using sub-lethal concentrations of ribosome inhibiting antibiotic (tetracycline) or by mutating the gene coding for RNase H (rnhA). Taken together, our results highlight the importance of trans-translation system in maintaining genome integrity and bacterial survival during DNA damage.
Collapse
Affiliation(s)
- Nagarajan T
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India; Department of Biological Sciences, SRM University-AP, Amaravati, India
| | | | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
10
|
Lim G, Hwang S, Yu K, Kang JY, Kang C, Hohng S. Translocating RNA polymerase generates R-loops at DNA double-strand breaks without any additional factors. Nucleic Acids Res 2023; 51:9838-9848. [PMID: 37638763 PMCID: PMC10570047 DOI: 10.1093/nar/gkad689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The R-loops forming around DNA double-strand breaks (DSBs) within actively transcribed genes play a critical role in the DSB repair process. However, the mechanisms underlying R-loop formation at DSBs remain poorly understood, with diverse proposed models involving protein factors associated with RNA polymerase (RNAP) loading, pausing/backtracking or preexisting transcript RNA invasion. In this single-molecule study using Escherichia coli RNAP, we discovered that transcribing RNAP alone acts as a highly effective DSB sensor, responsible for generation of R-loops upon encountering downstream DSBs, without requiring any additional factors. The R-loop formation efficiency is greatly influenced by DNA end structures, ranging here from 2.8% to 73%, and notably higher on sticky ends with 3' or 5' single-stranded overhangs compared to blunt ends without any overhangs. The R-loops extend unidirectionally upstream from the DSB sites and can reach the transcription start site, interfering with ongoing-round transcription. Furthermore, the extended R-loops can persist and maintain their structures, effectively preventing the efficient initiation of subsequent transcription rounds. Our results are consistent with the bubble extension model rather than the 5'-end invasion model or the middle insertion model. These discoveries provide valuable insights into the initiation of DSB repair on transcription templates across bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Gunhyoung Lim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungha Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kilwon Yu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Satyam R, Ahmad S, Raza K. Comparative genomic assessment of members of genus Tenacibaculum: an exploratory study. Mol Genet Genomics 2023; 298:979-993. [PMID: 37225902 DOI: 10.1007/s00438-023-02031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Tenacibaculosis is an ulcerative skin disorder that affects finfish. It is caused by members of the genus Tenacibaculum, resulting in eccentric behavioural changes, including anorexia, lethargy, and abnormal swimming patterns that often result in mortality. Currently, species suspected of causing fish mortality include T. ovolyticum, T. gallaicum, T. discolor, T. finnmarkense, T. mesophilum, T. soleae, T. dicentrarchi, and T. maritimum. However, pathogenic members and the mechanisms involved in disease causation, progression, and transmission are limited due to the inadequate sequencing efforts in the past decade. In this study, we use a comparative genomics approach to investigate the characteristic features of 26 publicly available genomes of Tenacibaculum and report our observations. We propose the reclassification of "T. litoreum HSC 22" to the singaporense species and assignment of "T. sp. 4G03" to the species discolor (species with quotation marks have not been appropriately named). We also report the co-occurrence of several antimicrobial resistance/virulence genes and genes private to a few members. Finally, we mine several non-B DNA forming regions, operons, tandem repeats, high-confidence putative effector proteins, and sortase that might play a pivotal role in bacterial evolution, transcription, and pathogenesis.
Collapse
Affiliation(s)
- Rohit Satyam
- Computational Intelligence and Bioinformatics Laboratory, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shaban Ahmad
- Computational Intelligence and Bioinformatics Laboratory, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Laboratory, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
12
|
Falchi FA, Forti F, Carnelli C, Genco A, Pizzoccheri R, Manzari C, Pavesi G, Briani F. Human PNPase causes RNA stabilization and accumulation of R-loops in the Escherichia coli model system. Sci Rep 2023; 13:11771. [PMID: 37479726 PMCID: PMC10362022 DOI: 10.1038/s41598-023-38924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Polyribonucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. In Escherichia coli, PNPase controls complex phenotypic traits like biofilm formation and growth at low temperature. In human cells, PNPase is located in mitochondria, where it is implicated in the RNA import from the cytoplasm, the mitochondrial RNA degradation and the processing of R-loops, namely stable RNA-DNA hybrids displacing a DNA strand. In this work, we show that the human PNPase (hPNPase) expressed in E. coli causes oxidative stress, SOS response activation and R-loops accumulation. Hundreds of E. coli RNAs are stabilized in presence of hPNPase, whereas only few transcripts are destabilized. Moreover, phenotypic traits typical of E. coli strains lacking PNPase are strengthened in presence of the human enzyme. We discuss the hypothesis that hPNPase expressed in E. coli may bind, but not degrade, the RNA, in agreement with previous in vitro data showing that phosphate concentrations in the range of those found in the bacterial cytoplasm and, more relevant, in the mitochondria, inhibit its activity.
Collapse
Affiliation(s)
- Federica A Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Cristina Carnelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Aurelia Genco
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Roberto Pizzoccheri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
13
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Łazowski K, Faraz M, Vaisman A, Ashton NW, Jonczyk P, Fijalkowska IJ, Clausen AR, Woodgate R, Makiela-Dzbenska K. Strand specificity of ribonucleotide excision repair in Escherichia coli. Nucleic Acids Res 2023; 51:1766-1782. [PMID: 36762476 PMCID: PMC9976901 DOI: 10.1093/nar/gkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Piotr Jonczyk
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
15
|
Portela R, A. Faria N, Mwangi M, Miragaia M, de Lencastre H, Tomasz A, Gonçalves Sobral R. Analysis of a Cell Wall Mutant Highlights Rho-Dependent Genome Amplification Events in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0248321. [PMID: 36094182 PMCID: PMC9603463 DOI: 10.1128/spectrum.02483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to β-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosome. IMPORTANCE The cell wall of bacteria, namely, peptidoglycan, is the target of several antibiotic classes such as β-lactams. Staphylococcus aureus is well known for its capacity to adapt to antibiotic stress and develop resistance strategies, namely, to β-lactams. In this context, the construction of cell wall mutants provides useful models to study the development of such resistance mechanisms. Here, we characterized a collection of independent mutants, impaired in the same peptidoglycan biosynthetic step, obtained through the insertion of a plasmid in the coding region of murF gene. S. aureus demonstrated the capacity to overcome the cell wall damage by amplifying the copy number of the inserted plasmid, through an undescribed mechanism that involves the Rho transcription termination factor.
Collapse
Affiliation(s)
- Raquel Portela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuno A. Faria
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Michael Mwangi
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Rita Gonçalves Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Belotserkovskii BP, Hanawalt PC. Topology and kinetics of R-loop formation. Biophys J 2022; 121:3345-3357. [PMID: 36004778 PMCID: PMC9515371 DOI: 10.1016/j.bpj.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
R-loops are structures containing an RNA-DNA duplex and an unpaired DNA strand. They can be formed upon "invasion" of an RNA strand into a DNA duplex, during which the RNA displaces the homologous DNA strand and binds the complementary strand. R-loops have many significant beneficial or deleterious biological effects, so it is important to understand the mechanisms for their generation and processing. We propose a model for co-transcriptional R-loop formation, in which their generation requires passage of the nascent RNA "tail" through the gap between the separated DNA strands. This passage becomes increasingly difficult with lengthening of the RNA tail. The length of the tail increases upon increasing distance between the transcription start site and the site of R-loop initiation. This causes reduced yields of R-loops with greater distance from the transcription start site. However, alternative pathways for R-loop formation are possible, involving either transient disruption of the transcription complex or the hypothetical formation of a triple-stranded structure, as a "collapsed R-loop." These alternative pathways could account for the fact that in many systems R-loops are observed very far from the transcription start site. Our model is consistent with experimental data and makes general predictions about the kinetics of R-loop formation.
Collapse
|
17
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
18
|
Modulation of RecFORQ- and RecA-Mediated Homologous Recombination in Escherichia coli by Isoforms of Translation Initiation Factor IF2. J Bacteriol 2022; 204:e0056921. [PMID: 35343793 DOI: 10.1128/jb.00569-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Homologous recombination (HR) is critically important for chromosomal replication, as well as DNA damage repair in all life forms. In Escherichia coli, the process of HR comprises (i) two parallel presynaptic pathways that are mediated, respectively, by proteins RecB/C/D and RecF/O/R/Q; (ii) a synaptic step mediated by RecA that leads to generation of Holliday junctions (HJs); and (iii) postsynaptic steps mediated sequentially by HJ-acting proteins RuvA/B/C followed by proteins PriA/B/C of replication restart. Combined loss of RuvA/B/C and a DNA helicase UvrD is synthetically lethal, which is attributed to toxicity caused by accumulated HJs since viability in these double mutant strains is restored by removal of the presynaptic or synaptic proteins RecF/O/R/Q or RecA, respectively. Here we show that, as in ΔuvrD strains, ruv mutations confer synthetic lethality in cells deficient for transcription termination factor Rho, and that loss of RecFORQ presynaptic pathway proteins or of RecA suppresses this lethality. Furthermore, loss of IF2-1 (which is one of three isoforms [IF2-1, IF2-2, and IF2-3] of the essential translation initiation factor IF2 that are synthesized from three in-frame initiation codons in infB) also suppressed uvrD-ruv and rho-ruv lethalities, whereas deficiency of IF2-2 and IF2-3 exacerbated the synthetic defects. Our results suggest that Rho deficiency is associated with an increased frequency of HR that is mediated by the RecFORQ pathway along with RecA. They also lend support to earlier reports that IF2 isoforms participate in DNA transactions, and we propose that they do so by modulation of HR functions. IMPORTANCE The process of homologous recombination (HR) is important for maintenance of genome integrity in all cells. In Escherichia coli, the RecA protein is a critical participant in HR, which acts at a step common to and downstream of two HR pathways mediated by the RecBCD and RecFOR proteins, respectively. In this study, an isoform (IF2-1) of the translation initiation factor IF2 has been identified as a novel facilitator of RecA's function in vivo during HR.
Collapse
|
19
|
Abstract
Despite their ubiquitous nature, few antisense RNAs have been functionally characterized, and this class of RNAs is considered by some to be transcriptional noise. Here, we report that an antisense RNA (asRNA), aMEF (antisense mazEF), functions as a dual regulator for the type II toxin-antitoxin (TA) system mazEF. Unlike type I TA systems and many other regulatory asRNAs, aMEF stimulates the synthesis and translation of mazEF rather than inhibition and degradation. Our data indicate that a double-stranded RNA intermediate and RNase III are not necessary for aMEF-dependent regulation of mazEF expression. The lack of conservation of asRNA promoters has been used to support the hypothesis that asRNAs are spurious transcriptional noise and nonfunctional. We demonstrate that the aMEF promoter is active and functional in Escherichia coli despite poor sequence conservation, indicating that the lack of promoter sequence conservation should not be correlated with functionality. IMPORTANCE Next-generation RNA sequencing of numerous organisms has revealed that transcription is widespread across the genome, termed pervasive transcription, and does not adhere to annotated gene boundaries. The function of pervasive transcription is enigmatic and has generated considerable controversy as to whether it is transcriptional noise or biologically relevant. Antisense transcription is one class of pervasive transcription that occurs from the DNA strand opposite an annotated gene. Relatively few pervasively transcribed asRNAs have been functionally characterized, and their regulatory roles or lack thereof remains unknown. It is important to study examples of these asRNAs and determine if they are functional regulators. In this study, we elucidate the function of an asRNA (aMEF) demonstrating that pervasive transcripts can be functional.
Collapse
|
20
|
Mechanism for R-loop formation remote from the transcription start site: Topological issues and possible facilitation by dissociation of RNA polymerase. DNA Repair (Amst) 2022; 110:103275. [DOI: 10.1016/j.dnarep.2022.103275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
21
|
Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli. J Bacteriol 2021; 203:e0019521. [PMID: 34124945 DOI: 10.1128/jb.00195-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topoisomerase I (Topo I) of Escherichia coli, encoded by topA, acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC-independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here, we show that several topA alleles, including ΔtopA, confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in the absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain (MDS42) or (ii) by an RNA polymerase (RNAP) mutation, rpoB*35, that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) one of the topA alleles rescued ΔdnaA lethality; (ii) in dnaA+ derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by ΔdnaA. We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn leads to transcription-replication conflicts and to cSDR. IMPORTANCE In all life forms, double-helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli. That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability and suggests that in its absence, aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
Collapse
|
22
|
Becker K, Meyer A, Roberts TM, Panke S. Plasmid replication based on the T7 origin of replication requires a T7 RNAP variant and inactivation of ribonuclease H. Nucleic Acids Res 2021; 49:8189-8198. [PMID: 34255845 PMCID: PMC8373140 DOI: 10.1093/nar/gkab596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
T7 RNA polymerase (RNAP) is a valuable tool in biotechnology, basic research and synthetic biology due to its robust, efficient and selective transcription of genes. Here, we expand the scope of T7 RNAP to include plasmid replication. We present a novel type of plasmid, termed T7 ori plasmids that replicate, in an engineered Escherichia coli, with a T7 phage origin as the sole origin of replication. We find that while the T7 replication proteins; T7 DNA polymerase, T7 single-stranded binding proteins and T7 helicase-primase are dispensable for replication, T7 RNAP is required, although dependent on a T7 RNAP variant with reduced activity. We also find that T7 RNAP-dependent replication of T7 ori plasmids requires the inactivation of cellular ribonuclease H. We show that the system is portable among different plasmid architectures and ribonuclease H-inactivated E. coli strains. Finally, we find that the copy number of T7 ori plasmids can be tuned based on the induction level of RNAP. Altogether, this study assists in the choice of an optimal genetic tool by providing a novel plasmid that requires T7 RNAP for replication.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Andreas Meyer
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland.,FGen GmbH, Basel 4057, Switzerland
| | | | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
23
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
24
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
26
|
R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun 2020; 11:3392. [PMID: 32636376 PMCID: PMC7341879 DOI: 10.1038/s41467-020-17176-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/17/2020] [Indexed: 01/06/2023] Open
Abstract
G-quadruplex (G4) is a noncanonical secondary structure of DNA or RNA which can enhance or repress gene expression, yet the underlying molecular mechanism remains uncertain. Here we show that when positioned downstream of transcription start site, the orientation of potential G4 forming sequence (PQS), but not the sequence alters transcriptional output. Ensemble in vitro transcription assays indicate that PQS in the non-template increases mRNA production rate and yield. Using sequential single molecule detection stages, we demonstrate that while binding and initiation of T7 RNA polymerase is unchanged, the efficiency of elongation and the final mRNA output is higher when PQS is in the non-template. Strikingly, the enhanced elongation arises from the transcription-induced R-loop formation, which in turn generates G4 structure in the non-template. The G4 stabilized R-loop leads to increased transcription by a mechanism involving successive rounds of R-loop formation. G-quadruplex (G4) forming sequences are highly enriched in the human genome and function as important regulators of diverse range of biological processes. Here the authors show that while G4 structures on template strand block transcription, folding on the non-template strand enhances transcription by means of successive R-loop formation.
Collapse
|
27
|
Veetil RT, Malhotra N, Dubey A, Seshasayee ASN. Laboratory Evolution Experiments Help Identify a Predominant Region of Constitutive Stable DNA Replication Initiation. mSphere 2020; 5:e00939-19. [PMID: 32102945 PMCID: PMC7045392 DOI: 10.1128/msphere.00939-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 01/06/2023] Open
Abstract
The bacterium Escherichia coli can initiate replication in the absence of the replication initiator protein DnaA and/or the canonical origin of replication oriC in a ΔrnhA background. This phenomenon, which can be primed by R-loops, is called constitutive stable DNA replication (cSDR). Whether DNA replication during cSDR initiates in a stochastic manner through the length of the chromosome or at specific sites and how E. coli can find adaptations to loss of fitness caused by cSDR remain inadequately answered. We use laboratory evolution experiments of ΔrnhA-ΔdnaA strains followed by deep sequencing to show that DNA replication preferentially initiates within a broad region located ∼0.4 to 0.7 Mb clockwise of oriC. This region includes many bisulfite-sensitive sites, which have been previously defined as R-loop-forming regions, and includes a site containing sequence motifs that favor R-loop formation. Initiation from this region would result in head-on replication-transcription conflicts at rRNA loci. Inversions of these rRNA loci, which can partly resolve these conflicts, help the bacterium suppress the fitness defects of cSDR. These inversions partially restore the gene expression changes brought about by cSDR. The inversion, however, increases the possibility of conflicts at essential mRNA genes, which would utilize only a minuscule fraction of RNA polymerase molecules, most of which transcribe rRNA genes. Whether subsequent adaptive strategies would attempt to resolve these conflicts remains an open question.IMPORTANCE The bacterium E. coli can replicate its DNA even in the absence of the molecules that are required for canonical replication initiation. This often requires the formation of RNA-DNA hybrid structures and is referred to as constitutive stable DNA replication (cSDR). Where on the chromosome does cSDR initiate? We answer this question using laboratory evolution experiments and genomics and show that selection favors cSDR initiation predominantly at a region ∼0.6 Mb clockwise of oriC. Initiation from this site will result in more head-on collisions of DNA polymerase with RNA polymerase operating on rRNA loci. The bacterium adapts to this problem by inverting a region of the genome including several rRNA loci such that head-on collisions between the two polymerases are minimized. Understanding such evolutionary strategies in the context of cSDR can provide insights into the potential causes of resistance to antibiotics that target initiation of DNA replication.
Collapse
Affiliation(s)
- Reshma T Veetil
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bengaluru, Karnataka, India
- School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, Karnataka, India
| | - Nitish Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bengaluru, Karnataka, India
| | - Akshara Dubey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bengaluru, Karnataka, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Lawarée E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM. DNA ADP-Ribosylation Stalls Replication and Is Reversed by RecF-Mediated Homologous Recombination and Nucleotide Excision Repair. Cell Rep 2020; 30:1373-1384.e4. [PMID: 32023456 PMCID: PMC7003065 DOI: 10.1016/j.celrep.2020.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
ADP-ribosylation of proteins is crucial for fundamental cellular processes. Despite increasing examples of DNA ADP-ribosylation, the impact of this modification on DNA metabolism and cell physiology is unknown. Here, we show that the DarTG toxin-antitoxin system from enteropathogenic Escherichia coli (EPEC) catalyzes reversible ADP-ribosylation of single-stranded DNA (ssDNA). The DarT toxin recognizes specific sequence motifs. EPEC DarG abrogates DarT toxicity by two distinct mechanisms: removal of DNA ADP-ribose (ADPr) groups and DarT sequestration. Furthermore, we investigate how cells recognize and deal with DNA ADP-ribosylation. We demonstrate that DNA ADPr stalls replication and is perceived as DNA damage. Removal of ADPr from DNA requires the sequential activity of two DNA repair pathways, with RecF-mediated homologous recombination likely to transfer ADP-ribosylation from single- to double-stranded DNA (dsDNA) and subsequent nucleotide excision repair eliminating the lesion. Our work demonstrates that these DNA repair pathways prevent the genotoxic effects of DNA ADP-ribosylation.
Collapse
Affiliation(s)
- Emeline Lawarée
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Charles Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
29
|
Drolet M, Brochu J. R-loop-dependent replication and genomic instability in bacteria. DNA Repair (Amst) 2019; 84:102693. [DOI: 10.1016/j.dnarep.2019.102693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
30
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
31
|
Raghunathan N, Goswami S, Leela JK, Pandiyan A, Gowrishankar J. A new role for Escherichia coli Dam DNA methylase in prevention of aberrant chromosomal replication. Nucleic Acids Res 2019; 47:5698-5711. [PMID: 30957852 PMCID: PMC6582345 DOI: 10.1093/nar/gkz242] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/20/2023] Open
Abstract
The Dam DNA methylase of Escherichia coli is required for methyl-directed mismatch repair, regulation of chromosomal DNA replication initiation from oriC (which is DnaA-dependent), and regulation of gene expression. Here, we show that Dam suppresses aberrant oriC-independent chromosomal replication (also called constitutive stable DNA replication, or cSDR). Dam deficiency conferred cSDR and, in presence of additional mutations (Δtus, rpoB*35) that facilitate retrograde replication fork progression, rescued the lethality of ΔdnaA mutants. The DinG helicase was required for rescue of ΔdnaA inviability during cSDR. Viability of ΔdnaA dam derivatives was dependent on the mismatch repair proteins, since such viability was lost upon introduction of deletions in mutS, mutH or mutL; thus generation of double strand ends (DSEs) by MutHLS action appears to be required for cSDR in the dam mutant. On the other hand, another DSE-generating agent phleomycin was unable to rescue ΔdnaA lethality in dam+ derivatives (mutS+ or ΔmutS), but it could do so in the dam ΔmutS strain. These results point to a second role for Dam deficiency in cSDR. We propose that in Dam-deficient strains, there is an increased likelihood of reverse replication restart (towards oriC) following recombinational repair of DSEs on the chromosome.
Collapse
Affiliation(s)
- Nalini Raghunathan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sayantan Goswami
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jakku K Leela
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Apuratha Pandiyan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
32
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
33
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
34
|
Belotserkovskii BP, Tornaletti S, D'Souza AD, Hanawalt PC. R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair (Amst) 2018; 71:69-81. [PMID: 30190235 PMCID: PMC6340742 DOI: 10.1016/j.dnarep.2018.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA "threadback" invasion into the DNA duplex to displace the non-template strand. Although R-loops occur naturally in all kingdoms of life and serve regulatory roles, they are often deleterious and can cause genomic instability. Of particular importance are the disastrous consequences when replication forks or transcription complexes collide with R-loops. The appropriate processing of R-loops is essential to avoid a number of human neurodegenerative and other clinical disorders. We provide a perspective on mechanistic aspects of R-loop formation and their resolution learned from studies in model systems. This should contribute to improved understanding of R-loop biological functions and enable their practical applications. We propose the novel employment of artificially-generated stable R-loops to selectively inactivate tumor cells.
Collapse
Affiliation(s)
- Boris P Belotserkovskii
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Silvia Tornaletti
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Alicia D D'Souza
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Philip C Hanawalt
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States.
| |
Collapse
|
35
|
Georg J, Hess WR. Widespread Antisense Transcription in Prokaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0029-2018. [PMID: 30003872 PMCID: PMC11633618 DOI: 10.1128/microbiolspec.rwr-0029-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Although bacterial genomes are usually densely protein-coding, genome-wide mapping approaches of transcriptional start sites revealed that a significant fraction of the identified promoters drive the transcription of noncoding RNAs. These can be trans-acting RNAs, mainly originating from intergenic regions and, in many studied examples, possessing regulatory functions. However, a significant fraction of these noncoding RNAs consist of natural antisense transcripts (asRNAs), which overlap other transcriptional units. Naturally occurring asRNAs were first observed to play a role in bacterial plasmid replication and in bacteriophage λ more than 30 years ago. Today's view is that asRNAs abound in all three domains of life. There are several examples of asRNAs in bacteria with clearly defined functions. Nevertheless, many asRNAs appear to result from pervasive initiation of transcription, and some data point toward global functions of such widespread transcriptional activity, explaining why the search for a specific regulatory role is sometimes futile. In this review, we give an overview about the occurrence of antisense transcription in bacteria, highlight particular examples of functionally characterized asRNAs, and discuss recent evidence pointing at global relevance in RNA processing and transcription-coupled DNA repair.
Collapse
MESH Headings
- Bacteria/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- DNA Repair/physiology
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Plasmids
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Untranslated
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Jens Georg
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| |
Collapse
|
36
|
Raghunathan N, Kapshikar RM, Leela JK, Mallikarjun J, Bouloc P, Gowrishankar J. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli. Nucleic Acids Res 2018; 46:3400-3411. [PMID: 29474582 PMCID: PMC5909445 DOI: 10.1093/nar/gky118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA-DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW. We also provide evidence that in Rho-deficient cells, R-loop formation blocks subsequent rounds of antisense transcription at more than 500 chromosomal loci. Hence these antisense transcripts, which can extend beyond 10 kb in their length, are only detected when Rho function is absent or compromised and the UvsW helicase is concurrently expressed. Thus the potential for antisense transcription in bacteria is much greater than hitherto recognized; and the cells are able to retain viability even when nearly one-quarter of their total non-rRNA abundance is accounted for by antisense transcripts, provided that R-loop formation from them is curtailed.
Collapse
Affiliation(s)
- Nalini Raghunathan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rajvardhan M Kapshikar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jakku K Leela
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| | - Jillella Mallikarjun
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| |
Collapse
|
37
|
Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli. G3-GENES GENOMES GENETICS 2017; 7:3955-3966. [PMID: 29046437 PMCID: PMC5714492 DOI: 10.1534/g3.117.300284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants.
Collapse
|
38
|
Kuzminov A. When DNA Topology Turns Deadly - RNA Polymerases Dig in Their R-Loops to Stand Their Ground: New Positive and Negative (Super)Twists in the Replication-Transcription Conflict. Trends Genet 2017; 34:111-120. [PMID: 29179918 DOI: 10.1016/j.tig.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
Head-on replication-transcription conflict is especially bitter in bacterial chromosomes, explaining why actively transcribed genes are always co-oriented with replication. The mechanism of this conflict remains unclear, besides the anticipated accumulation of positive supercoils between head-on-conflicting polymerases. Unexpectedly, experiments in bacterial and human cells reveal that head-on replication-transcription conflict induces R-loops, indicating hypernegative supercoiling [(-)sc] in the region - precisely the opposite of that assumed. Further, as a result of these R-loops, both replication and transcription in the affected region permanently stall, so the failure of R-loop removal in RNase H-deficient bacteria becomes lethal. How hyper(-)sc emerges in the middle of a positively supercoiled chromosomal domain is a mystery that requires rethinking of topoisomerase action around polymerases.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
39
|
Zheng KW, He YD, Liu HH, Li XM, Hao YH, Tan Z. Superhelicity Constrains a Localized and R-Loop-Dependent Formation of G-Quadruplexes at the Upstream Region of Transcription. ACS Chem Biol 2017; 12:2609-2618. [PMID: 28846373 DOI: 10.1021/acschembio.7b00435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription induces formation of intramolecular G-quadruplex structures at the upstream region of a DNA duplex by an upward transmission of negative supercoiling through the DNA. Currently the regulation of such G-quadruplex formation remains unclear. Using plasmid as a model, we demonstrate that while it is the dynamic negative supercoiling generated by a moving RNA polymerase that triggers a formation of a G-quadruplex, the constitutional superhelicity determines the potential and range of the formation of a G-quadruplex by constraining the propagation of the negative supercoiling. G-quadruplex formation is maximal in negatively supercoiled and nearly abolished in relaxed plasmids while being moderate in nicked and linear ones. The formation of a G-quadruplex strongly correlates with the presence of an R-loop. Preventing R-loop formation virtually abolished G-quadruplex formation even in the negatively supercoiled plasmid. Enzymatic action and protein binding that manipulate supercoiling or its propagation all impact the formation of G-quadruplexes. Because chromosomes and plasmids in cells in their natural form are maintained in a supercoiled state, our findings reveal a physical basis that justifies the formation and regulation of G-quadruplexes in vivo. The structural features involved in G-quadruplex formation may all serve as potential targets in clinical and therapeutic applications.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yi-de He
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hong-he Liu
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xin-min Li
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
40
|
Abstract
At the end of the multistep transcription process, the elongating RNA polymerase (RNAP) is dislodged from the DNA template either at specific DNA sequences, called the terminators, or by a nascent RNA-dependent helicase, Rho. In Escherichia coli, about half of the transcription events are terminated by the Rho protein. Rho utilizes its RNA-dependent ATPase activities to translocate along the mRNA and eventually dislodges the RNAP via an unknown mechanism. The transcription elongation factor NusG facilitates this termination process by directly interacting with Rho. In this review, we discuss current models describing the mechanism of action of this hexameric transcription terminator, its regulation by different cis and trans factors, and the effects of the termination process on physiological processes in bacterial cells, particularly E. coli and Salmonella enterica Typhimurium.
Collapse
Affiliation(s)
- Pallabi Mitra
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| | - Gairika Ghosh
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Md Hafeezunnisa
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| |
Collapse
|
41
|
Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell 2017; 167:1455-1467. [PMID: 27912056 DOI: 10.1016/j.cell.2016.09.053] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Abstract
The complex machineries involved in replication and transcription translocate along the same DNA template, often in opposing directions and at different rates. These processes routinely interfere with each other in prokaryotes, and mounting evidence now suggests that RNA polymerase complexes also encounter replication forks in higher eukaryotes. Indeed, cells rely on numerous mechanisms to avoid, tolerate, and resolve such transcription-replication conflicts, and the absence of these mechanisms can lead to catastrophic effects on genome stability and cell viability. In this article, we review the cellular responses to transcription-replication conflicts and highlight how these inevitable encounters shape the genome and impact diverse cellular processes.
Collapse
|
42
|
Krishnan S, Petchiappan A, Singh A, Bhatt A, Chatterji D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol Microbiol 2016; 102:168-82. [PMID: 27349932 DOI: 10.1111/mmi.13453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Abstract
Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.
Collapse
Affiliation(s)
- Sushma Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anushya Petchiappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
43
|
Grylak-Mielnicka A, Bidnenko V, Bardowski J, Bidnenko E. Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. Microbiology (Reading) 2016; 162:433-447. [DOI: 10.1099/mic.0.000244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Aleksandra Grylak-Mielnicka
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jacek Bardowski
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
44
|
Abstract
A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip‐based oligo synthesis was applied to build a large library of 5,668 terminator–promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 2015; 11:e1004909. [PMID: 25569209 PMCID: PMC4287441 DOI: 10.1371/journal.pgen.1004909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA–DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.
Collapse
|
46
|
Wiedermannová J, Sudzinová P, Kovaľ T, Rabatinová A, Šanderova H, Ramaniuk O, Rittich Š, Dohnálek J, Fu Z, Halada P, Lewis P, Krásny L. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res 2014; 42:5151-63. [PMID: 24520113 PMCID: PMC4005671 DOI: 10.1093/nar/gku113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) is an essential multisubunit protein complex required for gene expression. Here, we characterize YvgS (HelD) from Bacillus subtilis, a novel binding partner of RNAP. We show that HelD interacts with RNAP-core between the secondary channel of RNAP and the alpha subunits. Importantly, we demonstrate that HelD stimulates transcription in an ATP-dependent manner by enhancing transcriptional cycling and elongation. We demonstrate that the stimulatory effect of HelD can be amplified by a small subunit of RNAP, delta. In vivo, HelD is not essential but it is required for timely adaptations of the cell to changing environment. In summary, this study establishes HelD as a valid component of the bacterial transcription machinery.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic, Department of Structure Analysis of Biomacromolecules, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 16206, Czech Republic, Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia and Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|