1
|
Wei H, Weaver YM, Yang C, Zhang Y, Hu G, Karner CM, Sieber M, DeBerardinis RJ, Weaver BP. Proteolytic activation of fatty acid synthase signals pan-stress resolution. Nat Metab 2024; 6:113-126. [PMID: 38167727 PMCID: PMC10822777 DOI: 10.1038/s42255-023-00939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, UT Southwestern, Dallas, TX, USA
| | | | - Matthew Sieber
- Department of Physiology, UT Southwestern, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern, Dallas, TX, USA
| | | |
Collapse
|
2
|
Zhu Y, Li W, Dong Y, Xia C, Fu R. C. elegans Hemidesmosomes Sense Collagen Damage to Trigger Innate Immune Response in the Epidermis. Cells 2023; 12:2223. [PMID: 37759445 PMCID: PMC10526450 DOI: 10.3390/cells12182223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans epidermis as the model to address this question. The C. elegans epidermis is covered with a collagen-rich cuticle exoskeleton and can produce antimicrobial peptides (AMPs) against invading pathogens or physical injury. Through an RNAi screen against collagen-encoding genes, we found that except the previously reported six DPY collagens and the BLI-1 collagen, the majority of collagens tested appear unable to trigger epidermal immune defense when damaged. Further investigation suggests that the six DPY collagens form a specific substructure, which regulates the interaction between BLI-1 and the hemidesmosome receptor MUP-4. The separation of BLI-1 with MUP-4 caused by collagen damage leads to the detachment of the STAT transcription factor-like protein STA-2 from hemidesmosomes and the induction of AMPs. Our findings uncover the mechanism how collagens are organized into a damage sensor and how the epidermis senses collagen damage to mount an immune defense.
Collapse
Affiliation(s)
| | | | | | | | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.)
| |
Collapse
|
3
|
Wang Q, Fu R, Li G, Xiong S, Zhu Y, Zhang H. Hedgehog receptors exert immune-surveillance roles in the epidermis across species. Cell Rep 2023; 42:112929. [PMID: 37527037 DOI: 10.1016/j.celrep.2023.112929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/29/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in the development and homeostasis of epithelial barrier tissues. However, whether and how Hedgehog signaling directly regulates innate immunity in epithelial cells remains unknown. By utilizing C. elegans epidermis as the model, we found that several Hedgehog receptors are involved in cell-autonomous regulation of the innate immune response in the epidermis. Particularly, loss of the Patched family receptor induces aberrant up-regulation of epidermal antimicrobial peptides in a STAT-dependent manner. External or internal insult to the epidermis triggers rapid rearrangement of Patched distribution along the plasma membrane, indicating that the Hedgehog (Hh) receptor is likely involved in recognition and defense against epidermal damage. Loss of PTCH1 function in primary human keratinocytes and intact mouse skin also results in STAT-dependent immune activation. These findings reveal an evolutionally conserved immune-surveillance function of Hedgehog receptors and an insult-sensing and response strategy of epithelial tissues.
Collapse
Affiliation(s)
- Qin Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shaojie Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Jordan JM, Webster AK, Chen J, Chitrakar R, Ryan Baugh L. Early-life starvation alters lipid metabolism in adults to cause developmental pathology in Caenorhabditis elegans. Genetics 2023; 223:iyac172. [PMID: 36449523 PMCID: PMC9910403 DOI: 10.1093/genetics/iyac172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/25/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
Early-life malnutrition increases adult disease risk in humans, but the causal changes in gene regulation, signaling, and metabolism are unclear. In the roundworm Caenorhabditis elegans, early-life starvation causes well-fed larvae to develop germline tumors and other gonad abnormalities as adults. Furthermore, reduced insulin/IGF signaling during larval development suppresses these starvation-induced abnormalities. How early-life starvation and insulin/IGF signaling affect adult pathology is unknown. We show that early-life starvation has pervasive effects on adult gene expression which are largely reversed by reduced insulin/IGF signaling following recovery from starvation. Early-life starvation increases adult fatty-acid synthetase fasn-1 expression in daf-2 insulin/IGF signaling receptor-dependent fashion, and fasn-1/FASN promotes starvation-induced abnormalities. Lipidomic analysis reveals increased levels of phosphatidylcholine in adults subjected to early-life starvation, and supplementation with unsaturated phosphatidylcholine during development suppresses starvation-induced abnormalities. Genetic analysis of fatty-acid desaturases reveals positive and negative effects of desaturation on development of starvation-induced abnormalities. In particular, the ω3 fatty-acid desaturase fat-1 and the Δ5 fatty-acid desaturase fat-4 inhibit and promote development of abnormalities, respectively. fat-4 is epistatic to fat-1, suggesting that arachidonic acid-containing lipids promote development of starvation-induced abnormalities, and supplementation with ARA enhanced development of abnormalities. This work shows that early-life starvation and insulin/IGF signaling converge on regulation of adult lipid metabolism, affecting stem-cell proliferation and tumor formation.
Collapse
Affiliation(s)
- James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Jingxian Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Wimberly K, Choe KP. An extracellular matrix damage sensor signals through membrane-associated kinase DRL-1 to mediate cytoprotective responses in Caenorhabditis elegans. Genetics 2022; 220:iyab217. [PMID: 34849856 PMCID: PMC9208646 DOI: 10.1093/genetics/iyab217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Collapse
Affiliation(s)
- Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
7
|
Karengera A, Bao C, Riksen JAG, van Veelen HPJ, Sterken MG, Kammenga JE, Murk AJ, Dinkla IJT. Development of a transcription-based bioanalytical tool to quantify the toxic potencies of hydrophilic compounds in water using the nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112923. [PMID: 34700171 DOI: 10.1016/j.ecoenv.2021.112923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 05/14/2023]
Abstract
Low concentrations of environmental contaminants can be difficult to detect with current analytical tools, yet they may pose a risk to human and environmental health. The development of bioanalytical tools can help to quantify toxic potencies of biologically active compounds even of hydrophilic contaminants that are hard to extract from water samples. In this study, we exposed the model organism Caenorhabditis elegans synchronized in larval stage L4 to hydrophilic compounds via the water phase and analyzed the effect on gene transcription abundance. The nematodes were exposed to three direct-acting genotoxicants (1 mM and 5 mM): N-ethyl-N-nitrosourea (ENU), formaldehyde (HCHO), and methyl methanesulfonate (MMS). Genome-wide gene expression analysis using microarrays revealed significantly altered transcription levels of 495 genes for HCHO, 285 genes for ENU, and 569 genes for MMS in a concentration-dependent manner. A relatively high number of differentially expressed genes was downregulated, suggesting a general stress in nematodes treated with toxicants. Gene ontology and Kyoto encyclopedia of genes and genomes analysis demonstrated that the upregulated genes were primarily associated with metabolism, xenobiotic detoxification, proteotoxic stress, and innate immune response. Interestingly, genes downregulated by MMS were linked to the inhibition of neurotransmission, and this is in accordance with the observed decreased locomotion in MMS-exposed nematodes. Unexpectedly, the expression level of DNA damage response genes such as cell-cycle checkpoints or DNA-repair proteins were not altered. Overall, the current study shows that gene expression profiling of nematodes can be used to identify the potential mechanisms underlying the toxicity of chemical compounds. C. elegans is a promising test organism to further develop into a bioanalytical tool for quantification of the toxic potency of a wide array of hydrophilic contaminants.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.
| | - Cong Bao
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
8
|
Courtine D, Zhang X, Ewbank JJ. Increased Pathogenicity of the Nematophagous Fungus Drechmeria coniospora Following Long-Term Laboratory Culture. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:778882. [PMID: 37744153 PMCID: PMC10512298 DOI: 10.3389/ffunb.2021.778882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/22/2021] [Indexed: 09/26/2023]
Abstract
Domestication provides a window into adaptive change. Over the course of 2 decades of laboratory culture, a strain of the nematode-specific fungus Drechmeria coniospora became more virulent during its infection of Caenorhabditis elegans. Through a close comparative examination of the genome sequences of the original strain and its more pathogenic derivative, we identified a small number of non-synonymous mutations in protein-coding genes. In one case, the mutation was predicted to affect a gene involved in hypoxia resistance and we provide direct corroborative evidence for such an effect. The mutated genes with functional annotation were all predicted to impact the general physiology of the fungus and this was reflected in an increased in vitro growth, even in the absence of C. elegans. While most cases involved single nucleotide substitutions predicted to lead to a loss of function, we also observed a predicted restoration of gene function through deletion of an extraneous tandem repeat. This latter change affected the regulatory subunit of a cAMP-dependent protein kinase. Remarkably, we also found a mutation in a gene for a second protein of the same, protein kinase A, pathway. Together, we predict that they result in a stronger repression of the pathway for given levels of ATP and adenylate cyclase activity. Finally, we also identified mutations in a few lineage-specific genes of unknown function that are candidates for factors that influence virulence in a more direct manner.
Collapse
|
9
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
10
|
Cooper JF, Guasp RJ, Arnold ML, Grant BD, Driscoll M. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Proc Natl Acad Sci U S A 2021; 118:e2101410118. [PMID: 34475208 PMCID: PMC8433523 DOI: 10.1073/pnas.2101410118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023] Open
Abstract
In human neurodegenerative diseases, neurons can transfer toxic protein aggregates to surrounding cells, promoting pathology via poorly understood mechanisms. In Caenorhabditis elegans, proteostressed neurons can expel neurotoxic proteins in large, membrane-bound vesicles called exophers. We investigated how specific stresses impact neuronal trash expulsion to show that neuronal exopher production can be markedly elevated by oxidative and osmotic stress. Unexpectedly, we also found that fasting dramatically increases exophergenesis. Mechanistic dissection focused on identifying nonautonomous factors that sense and activate the fasting-induced exopher response revealed that DAF16/FOXO-dependent and -independent processes are engaged. Fasting-induced exopher elevation requires the intestinal peptide transporter PEPT-1, lipid synthesis transcription factors Mediator complex MDT-15 and SBP-1/SREPB1, and fatty acid synthase FASN-1, implicating remotely initiated lipid signaling in neuronal trash elimination. A conserved fibroblast growth factor (FGF)/RAS/MAPK signaling pathway that acts downstream of, or in parallel to, lipid signaling also promotes fasting-induced neuronal exopher elevation. A germline-based epidermal growth factor (EGF) signal that acts through neurons is also required for exopher production. Our data define a nonautonomous network that links food availability changes to remote, and extreme, neuronal homeostasis responses relevant to aggregate transfer biology.
Collapse
Affiliation(s)
- Jason F Cooper
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854;
| |
Collapse
|
11
|
Tang H, Cui M, Han M. Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis. Cell Rep 2021; 36:109539. [PMID: 34407398 PMCID: PMC8404530 DOI: 10.1016/j.celrep.2021.109539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Decreased ability to maintain tissue integrity is critically involved in aging and degenerative diseases. Fatty acid (FA) metabolism has a profound impact on animal development and tissue maintenance, but our understanding of the underlying mechanisms is limited. We investigated whether and how FA abundance affects muscle integrity using Caenorhabditis elegans. We show that reducing the overall FA level by blocking FA biosynthesis or inhibiting protein myristoylation leads to disorganization of sarcomere structure and adult-onset paralysis. Further analysis indicates that myristoylation of two ARF guanosine triphosphatases (GTPases) critically mediates the effect of FA deficiency on sarcomere integrity through inducing endoplasmic reticulum (ER) stress and ER unfolded protein response (UPRER), which in turn leads to reduction of the level of sarcomere component PINCH and myosin disorganization. We thus present a mechanism that links FA signal, protein myristoylation, and ER homeostasis with muscle integrity, which provides valuable insights into the regulatory role of nutrients and ER homeostasis in muscle maintenance.
Collapse
Affiliation(s)
- Hongyun Tang
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA; Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Mingxue Cui
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
12
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
13
|
Spanier B, Laurençon A, Weiser A, Pujol N, Omi S, Barsch A, Korf A, Meyer SW, Ewbank JJ, Paladino F, Garvis S, Aguilaniu H, Witting M. Comparison of lipidome profiles of Caenorhabditis elegans-results from an inter-laboratory ring trial. Metabolomics 2021; 17:25. [PMID: 33594638 PMCID: PMC7886748 DOI: 10.1007/s11306-021-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.
Collapse
Affiliation(s)
- Britta Spanier
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Anne Laurençon
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | - Anna Weiser
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Nathalie Pujol
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Ansgar Korf
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Sven W Meyer
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Jonathan J Ewbank
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Francesca Paladino
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Steve Garvis
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Hugo Aguilaniu
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
- Instituto Serrapilheira, Rua Dias Ferreira 78, Leblon, Rio de Janeiro, Brazil
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
14
|
Bai X, Woodbury D, Golden A. The fasn-1(g14ts) allele is a Gly1830Arg missense mutation in C. elegans FASN-1. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000244. [PMID: 32550489 PMCID: PMC7252273 DOI: 10.17912/micropub.biology.000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaofei Bai
- Laboratory of Biochemistry and Genetics/NIDDK/NIH
| | | | - Andy Golden
- Laboratory of Biochemistry and Genetics/NIDDK/NIH,
Correspondence to: Andy Golden ()
| |
Collapse
|
15
|
Weaver BP, Weaver YM, Omi S, Yuan W, Ewbank JJ, Han M. Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Dev Cell 2020; 53:358-369.e6. [PMID: 32302544 PMCID: PMC7641037 DOI: 10.1016/j.devcel.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 03/15/2020] [Indexed: 02/02/2023]
Abstract
Recent studies have revealed non-canonical activities of apoptotic caspases involving specific modulation of gene expression, such as limiting asymmetric divisions of stem-like cell types. Here we report that CED-3 caspase negatively regulates an epidermal p38 stress-responsive MAPK pathway to promote larval development in C. elegans. We show that PMK-1 (p38 MAPK) primes animals for encounters with hostile environments at the expense of retarding post-embryonic development. CED-3 counters this function by directly cleaving PMK-1 to promote development. Moreover, we found that CED-3 and PMK-1 oppose each other to balance developmental and stress-responsive gene expression programs. Specifically, expression of more than 300 genes is inversely regulated by CED-3 and PMK-1. Analyses of these genes showed enrichment for epidermal stress-responsive factors, including the fatty acid synthase FASN-1, anti-microbial peptides, and genes involved in lethargus states. Our findings demonstrate a non-canonical role for a caspase in promoting development by limiting epidermal stress response programs.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA.
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Shizue Omi
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan J Ewbank
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA
| |
Collapse
|
16
|
The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nat Commun 2019; 10:3042. [PMID: 31316054 PMCID: PMC6637209 DOI: 10.1038/s41467-019-10759-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging. Resistance to stress is often associated with increased longevity. Using the model organism C. elegans the authors here show that TCER-1 enhances lifespan while at the same time increasing sensitivity to a number of biotic and abiotic stressors.
Collapse
|
17
|
Penkov S, Mitroulis I, Hajishengallis G, Chavakis T. Immunometabolic Crosstalk: An Ancestral Principle of Trained Immunity? Trends Immunol 2018; 40:1-11. [PMID: 30503793 DOI: 10.1016/j.it.2018.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023]
Abstract
Memory was traditionally considered an exclusive hallmark of adaptive immunity. This dogma was challenged by recent reports that myeloid cells can retain 'memory' of earlier challenges, enabling them to respond strongly to a secondary stimulus. This process, designated 'trained immunity', is initiated by modulation of precursors of myeloid cells in the bone marrow. The ancestral innate immune system of lower organisms (e.g., Caenorhabditis elegans) can build long-lasting memory that modifies responses to secondary pathogen encounters. We posit that changes in cellular metabolism may be a common denominator of innate immune memory from lower animals to mammals. We discuss evidence from C. elegans and murine/human systems supporting the concept of an ancestral principle regulating innate immune memory by controlling cellular metabolism.
Collapse
Affiliation(s)
- Sider Penkov
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; Equal contribution.
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany of the German Cancer Research Center (DKFZ), Heidelberg, Germany, and of the Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, and of the Helmholtz Association/Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Haematology, Democritus University of Thrace, Alexandroupolis, Greece; Equal contribution
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany of the German Cancer Research Center (DKFZ), Heidelberg, Germany, and of the Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, and of the Helmholtz Association/Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
18
|
Yuan P, Pan LY, Xiong LG, Tong JW, Li J, Huang JA, Gong YS, Liu ZH. Black tea increases hypertonic stress resistance in C. elegans. Food Funct 2018; 9:3798-3806. [PMID: 29932178 DOI: 10.1039/c7fo02017a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here we identified that BTE (black tea extract), within the studied concentration range, is more effective than GTE (green tea extract) in protecting C. elegans against hypertonic stress, by enhancing survival after exposure to various salts, and alleviating suffered motility loss and body shrinkage. The mechanism of such protection may be due to the ability of black tea to induce the conserved WNK/GCK signaling pathway and down-regulation of the expression levels of nlp-29. Intriguingly, black tea does not relieve hypertonicity-induced protein damage. The findings implicate the potential health benefits of black tea consumed worldwide.
Collapse
Affiliation(s)
- Pei Yuan
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Polanowska J, Chen JX, Soulé J, Omi S, Belougne J, Taffoni C, Pujol N, Selbach M, Zugasti O, Ewbank JJ. Evolutionary plasticity in the innate immune function of Akirin. PLoS Genet 2018; 14:e1007494. [PMID: 30036395 PMCID: PMC6072134 DOI: 10.1371/journal.pgen.1007494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/02/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.
Collapse
Affiliation(s)
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Julien Soulé
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Clara Taffoni
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
20
|
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 2018; 208:1467-1482. [PMID: 29487136 PMCID: PMC5887142 DOI: 10.1534/genetics.118.300827] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
Although extracellular matrices function as protective barriers to many types of environmental insult, their role in sensing stress and regulating adaptive gene induction responses has not been studied carefully... Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Collapse
|
21
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
22
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
23
|
Sheng M, Gorzsás A, Tuck S. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms. WORM 2016; 5:e1132978. [PMID: 27073735 DOI: 10.1080/21624054.2015.1132978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.
Collapse
Affiliation(s)
- Ming Sheng
- Umeå Center for Molecular Medicine, Umeå University , Umeå, Sweden
| | | | - Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University , Umeå, Sweden
| |
Collapse
|
24
|
DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. PLoS Genet 2016; 12:e1005788. [PMID: 26862916 PMCID: PMC4749232 DOI: 10.1371/journal.pgen.1005788] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. The balance between production and breakdown of fats is critical for health, especially during reproduction-related changes such as onset of puberty or menopause. However, little is known about how animals retain a balanced metabolism when undergoing major life events. Here, we have used a C. elegans mutant that successfully adapts to loss of reproductive cells to address this question. Our data suggest that the conserved proteins DAF-16/FOXO3A and TCER-1/TCERG1 mediate a coordinated increase in fat synthesis and degradation when the reproductive cells are lost. This coupling likely helps the animal to manage the lipids that would have been deposited in eggs as yolk, thus preventing metabolic disarray. These proteins also inhibit processes that would have normally supported reproduction. Together the activities of these transcription regulators allow the mutant to convert a debilitating loss of fertility into improved health and longevity. We also report that TCER-1 promotes reproductive health in normal adults, whereas when procreation is impeded, it switches roles to repress fertility and enhance lipid equilibrium. These observations offer insights into how complex organisms coordinate their metabolism to suit their reproductive needs.
Collapse
|
25
|
Characterization of innate immunity genes in the parasitic nematode Brugia malayi. Symbiosis 2016; 68:145-155. [PMID: 27110057 PMCID: PMC4826884 DOI: 10.1007/s13199-015-0374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/24/2015] [Indexed: 01/11/2023]
Abstract
The filarial nematode Brugia malayi is one of the causative agents of lymphatic filariasis, a neglected tropical disease that affects 120 million people worldwide. The limited effectiveness of available anthelmintics and the absence of a vaccine have prompted extensive research on the interaction between Brugia and its obligate bacterial endosymbiont, Wolbachia. Recent studies suggest that Wolbachia is able to manipulate its nematode host immunity but relatively little is known about the immune system of filarial nematodes. Therefore, elucidation of the mechanisms underlying the immune system of B. malayi may be useful for understanding how the symbiotic relationship is maintained and help in the identification of new drug targets. In order to characterize the main genetic pathways involved in B. malayi immunity, we exposed adult female worms to two bacterial lysates (Escherichia coli and Bacillus amyloliquefaciens), dsRNA and dsDNA. We performed transcriptome sequencing of worms exposed to each immune elicitor at two different timepoints. Gene expression analysis of untreated and immune-challenged worms was performed to characterize gene expression patterns associated with each type of immune stimulation. Our results indicate that different immune elicitors produced distinct expression patterns in B. malayi, with changes in the expression of orthologs of well-characterized C. elegans immune pathways such as insulin, TGF-β, and p38 MAPK pathways, as well as C-type lectins and several stress-response genes.
Collapse
|
26
|
Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response. Immunity 2015; 42:309-320. [PMID: 25692704 DOI: 10.1016/j.immuni.2015.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022]
Abstract
The epidermis constantly encounters invasions that disrupt its architecture, yet whether the epidermal immune system utilizes damaged structures as danger signals to activate self-defense is unclear. Here, we used a C. elegans epidermis model in which skin-penetrating infection or injury activates immune defense and antimicrobial peptide (AMP) production. By systemically disrupting each architectural component, we found that only disturbance of the apical hemidesmosomes triggered an immune response and robust AMP expression. The epidermis recognized structural damage through hemidesmosomes associated with a STAT-like protein, whose disruption led to detachment of STA-2 molecules from hemidesmosomes and transcription of AMPs. This machinery enabled the epidermis to bypass certain signaling amplification and directly trigger AMP production when subjected to extensive architectural damage. Together, our findings uncover an evolutionarily conserved mechanism for the epithelial barriers to detect danger and activate immune defense.
Collapse
|
27
|
Rapid and Efficient Identification of Caenorhabditis elegans Legacy Mutations Using Hawaiian SNP-Based Mapping and Whole-Genome Sequencing. G3-GENES GENOMES GENETICS 2015; 5:1007-19. [PMID: 25740937 PMCID: PMC4426357 DOI: 10.1534/g3.115.017038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The production of viable embryos requires the coordination of many cellular processes, including protein synthesis, cytoskeletal reorganization, establishment of polarity, cell migration, cell division, and in Caenorhabditis elegans, eggshell formation. Defects in any of these processes can lead to embryonic lethality. We examined six temperature-sensitive mutants as well as one nonconditional mutant that were previously identified in genetic screens as either embryonic lethal (maternal-effect or zygotic lethal) or eggshell defective. The responsible molecular lesion for each had never been determined. After confirmation of temperature sensitivity and lethality, we performed whole-genome sequencing using a single-nucleotide polymorphism mapping strategy to pinpoint the molecular lesions. Gene candidates were confirmed by RNA interference phenocopy and/or complementation tests and one mutant was further validated by CRISPR (Clustered Regularly Interspaced Short Palidromic Repeats)/Cas9 gene editing. This approach identified new alleles of several genes that had only been previously studied by RNA interference depletion. Our identification of temperature-sensitive alleles for all of these essential genes provides an extremely useful tool for further investigation for the C. elegans community, such as the ability to address mutant phenotypes at various developmental stages and the ability to carry out suppressor/enhancer screens to identify other genes that function in a specific cellular process.
Collapse
|
28
|
Abstract
Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute (TSRI), La Jolla, California 92037;
| |
Collapse
|
29
|
Keith SA, Amrit FRG, Ratnappan R, Ghazi A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 2014; 68:476-86. [PMID: 24727065 DOI: 10.1016/j.ymeth.2014.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
A wealth of knowledge on the genetic mechanisms that govern aging has emerged from the study of mutants that exhibit enhanced longevity and exceptional resilience to adverse environmental conditions. In these studies, lifespan has been an excellent proxy for establishing the rate of aging, but it is not always correlated with qualitative measures of healthy aging or 'healthspan'. Although the attributes of healthspan have been challenging to define, they share some universal features that are increasingly being incorporated into aging studies. Here we describe methods used to determine Caenorhabditis elegans healthspan. These include assessments of tissue integrity and functionality and resistance to a variety of biotic and abiotic stressors. We have chosen to include simple, rapid assays in this collection that can be easily undertaken in any C. elegans laboratory, and can be relied on to provide a preliminary but thorough insight into the healthspan of a population.
Collapse
Affiliation(s)
- Scott Alexander Keith
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Francis Raj Gandhi Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, 7129 Rangos Research Centre, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| |
Collapse
|
30
|
Defects in the C. elegans acyl-CoA synthase, acs-3, and nuclear hormone receptor, nhr-25, cause sensitivity to distinct, but overlapping stresses. PLoS One 2014; 9:e92552. [PMID: 24651852 PMCID: PMC3961378 DOI: 10.1371/journal.pone.0092552] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/25/2014] [Indexed: 12/13/2022] Open
Abstract
Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development.
Collapse
|
31
|
Julien-Gau I, Schmidt M, Kurz CL. f57f4.4p::gfp as a fluorescent reporter for analysis of the C. elegans response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:132-137. [PMID: 24012871 DOI: 10.1016/j.dci.2013.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
Host defense mechanisms are multi-layered and involve constitutive as well as inducible components. The dissection of these complex processes can be greatly facilitated using a reporter gene strategy with a transparent animal. In this study, we use Caenorhabditis elegans as a model host and introduce a new pathogen-inducible fluorescent reporter involving the promoter of f57f4.4, a gene encoding a putative component of the glycocalyx. We show that this reporter construct does not respond to heavy metal or hypertonic environments, but is specifically and locally induced in the intestine upon Photorhabus luminescens and Pseudomonas aeruginosa infections. We further demonstrate that its upregulation requires live pathogens as well as elements of the nematode p38 MAP kinase and TGF-beta pathways. In addition to introducing a new tool for the study of the interactions between C. elegans and a pathogen, our results suggest a role for the glycocalyx in gut immunity.
Collapse
Affiliation(s)
- Ingrid Julien-Gau
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Case 906, 13288 Marseille Cedex 9, France; INSERM, U1104, 13288 Marseille, France; CNRS, UMR7280, 13288 Marseille, France
| | | | | |
Collapse
|
32
|
Siew K, O'Shaughnessy KM. Extrarenal roles of the with-no-lysine[K] kinases (WNKs). Clin Exp Pharmacol Physiol 2013; 40:885-94. [DOI: 10.1111/1440-1681.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Keith Siew
- Clinical Pharmacology Unit; Department of Medicine; University of Cambridge; Cambridge UK
| | - Kevin M O'Shaughnessy
- Clinical Pharmacology Unit; Department of Medicine; University of Cambridge; Cambridge UK
| |
Collapse
|
33
|
Garcia-Garcia E, Galindo-Villegas J, Mulero V. Mucosal immunity in the gut: the non-vertebrate perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:278-288. [PMID: 23537860 DOI: 10.1016/j.dci.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Much is now known about the vertebrate mechanisms involved in mucosal immunity, and the requirement of commensal microbiota at mucosal surfaces for the proper functioning of the immune system. In comparison, very little is known about the mechanisms of immunity at the barrier epithelia of non-vertebrate organisms. The purpose of this review is to summarize key experimental evidence illustrating how non-vertebrate immune mechanisms at barrier epithelia compare to those of higher vertebrates, using the gut as a model organ. Not only effector mechanisms of gut immunity are similar between vertebrates and non-vertebrates, but it also seems that the proper functioning of non-vertebrate gut defense mechanisms requires the presence of a resident microbiota. As more information becomes available, it will be possible to obtain a more accurate picture of how mucosal immunity has evolved, and how it adapts to the organisms' life styles.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | | | | |
Collapse
|
34
|
Lee ECH, Strange K. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling. Am J Physiol Cell Physiol 2012; 303:C1269-77. [PMID: 23076791 DOI: 10.1152/ajpcell.00294.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.
Collapse
Affiliation(s)
- Elaine Choung-Hee Lee
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | | |
Collapse
|
35
|
Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect Immun 2012; 80:2500-8. [PMID: 22585961 DOI: 10.1128/iai.06350-11] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits.
Collapse
|
36
|
Couillault C, Fourquet P, Pophillat M, Ewbank JJ. A UPR-independent infection-specific role for a BiP/GRP78 protein in the control of antimicrobial peptide expression in C. elegans epidermis. Virulence 2012; 3:299-308. [PMID: 22546897 PMCID: PMC3442842 DOI: 10.4161/viru.20384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nematode C. elegans responds to infection by the fungus Drechmeria coniospora with a rapid increase in the expression of antimicrobial peptide genes. To investigate further the molecular basis of this innate immune response, we took a two-dimensional difference in-gel electrophoresis (2D-DIGE) approach to characterize the changes in host protein that accompany infection. We identified a total of 68 proteins from differentially represented spots and their corresponding genes. Through class testing, we identified functional categories that were enriched in our proteomic data set. One of these was “protein processing in endoplasmic reticulum,” pointing to a potential link between innate immunity and endoplasmic reticulum function. This class included HSP-3, a chaperone of the BiP/GRP78 family known to act coordinately in the endoplasmic reticulum with its paralog HSP-4 to regulate the unfolded protein response (UPR). Other studies have shown that infection of C. elegans can provoke a UPR. We observed, however, that in adult C. elegans infection with D. coniospora did not induce a UPR, and conversely, triggering a UPR did not lead to an increase in expression of the well-characterized antimicrobial peptide gene nlp-29. On the other hand, we demonstrated a specific role for hsp-3 in the regulation of nlp-29 after infection that is not shared with hsp-4. Epistasis analysis allowed us to place hsp-3 genetically between the Tribbles-like kinase gene nipi-3 and the protein kinase C delta gene tpa-1. The precise function of hsp-3 has yet to be determined, but these results uncover a hitherto unsuspected link between a BiP/GRP78 family protein and innate immune signaling.
Collapse
Affiliation(s)
- Carole Couillault
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
37
|
Squiban B, Belougne J, Ewbank J, Zugasti O. Quantitative and automated high-throughput genome-wide RNAi screens in C. elegans. J Vis Exp 2012:3448. [PMID: 22395785 PMCID: PMC3399495 DOI: 10.3791/3448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNA interference is a powerful method to understand gene function, especially when conducted at a whole-genome scale and in a quantitative context. In C. elegans, gene function can be knocked down simply and efficiently by feeding worms with bacteria expressing a dsRNA corresponding to a specific gene (1). While the creation of libraries of RNAi clones covering most of the C. elegans genome (2,3) opened the way for true functional genomic studies (see for example (4-7)), most established methods are laborious. Moy and colleagues have developed semi-automated protocols that facilitate genome-wide screens (8). The approach relies on microscopic imaging and image analysis. Here we describe an alternative protocol for a high-throughput genome-wide screen, based on robotic handling of bacterial RNAi clones, quantitative analysis using the COPAS Biosort (Union Biometrica (UBI)), and an integrated software: the MBioLIMS (Laboratory Information Management System from Modul-Bio) a technology that provides increased throughput for data management and sample tracking. The method allows screens to be conducted on solid medium plates. This is particularly important for some studies, such as those addressing host-pathogen interactions in C. elegans, since certain microbes do not efficiently infect worms in liquid culture. We show how the method can be used to quantify the importance of genes in anti-fungal innate immunity in C. elegans. In this case, the approach relies on the use of a transgenic strain carrying an epidermal infection-inducible fluorescent reporter gene, with GFP under the control of the promoter of the antimicrobial peptide gene nlp 29 and a red fluorescent reporter that is expressed constitutively in the epidermis. The latter provides an internal control for the functional integrity of the epidermis and nonspecific transgene silencing(9). When control worms are infected by the fungus they fluoresce green. Knocking down by RNAi a gene required for nlp 29 expression results in diminished fluorescence after infection. Currently, this protocol allows more than 3,000 RNAi clones to be tested and analyzed per week, opening the possibility of screening the entire genome in less than 2 months.
Collapse
Affiliation(s)
- Barbara Squiban
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée
| | | | | | | |
Collapse
|
38
|
Muhammed M, Fuchs BB, Wu MP, Breger J, Coleman JJ, Mylonakis E. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system. Med Mycol 2012; 50:488-96. [PMID: 22225407 DOI: 10.3109/13693786.2011.648217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen.
Collapse
Affiliation(s)
- Maged Muhammed
- Harvard Medical School, Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Coleman JJ, Ghosh S, Okoli I, Mylonakis E. Antifungal activity of microbial secondary metabolites. PLoS One 2011; 6:e25321. [PMID: 21966496 PMCID: PMC3178648 DOI: 10.1371/journal.pone.0025321] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/31/2011] [Indexed: 01/03/2023] Open
Abstract
Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi.
Collapse
Affiliation(s)
- Jeffrey J. Coleman
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Suman Ghosh
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ikechukwu Okoli
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Harvard Medical School, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Dierking K, Polanowska J, Omi S, Engelmann I, Gut M, Lembo F, Ewbank JJ, Pujol N. Unusual regulation of a STAT protein by an SLC6 family transporter in C. elegans epidermal innate immunity. Cell Host Microbe 2011; 9:425-35. [PMID: 21575913 DOI: 10.1016/j.chom.2011.04.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/03/2011] [Accepted: 04/25/2011] [Indexed: 11/25/2022]
Abstract
The cuticle and epidermis of Caenorhabditis elegans provide the first line of defense against invading pathogens. Upon invasion by the fungal pathogen Drechmeria coniospora, C. elegans responds by upregulating the expression of antimicrobial peptides (AMPs) in the epidermis via activation of at least two pathways, a neuroendocrine TGF-β pathway and a p38 MAPK pathway. Here, we identify the sodium-neurotransmitter symporter SNF-12, a member of the solute carrier family (SLC6), as being essential for both these immune signaling pathways. We also identify the STAT transcription factor-like protein STA-2 as a direct physical interactor of SNF-12 and show that the two proteins function together to regulate AMP gene expression in the epidermis. Both SNF-12 and STA-2 act cell autonomously and specifically in the epidermis to govern the transcriptional response to fungal infection. These findings reveal an unorthodox mode of regulation for a STAT factor and highlight the molecular plasticity of innate immune signaling.
Collapse
Affiliation(s)
- Katja Dierking
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The nematode Caenorhabditis elegans is proving to be a powerful invertebrate model to study host-pathogen interactions. In common with other invertebrates, C. elegans relies solely on its innate immune system to defend itself against pathogens. Studies of the nematode response to infection with various fungal and bacterial pathogens have revealed that the innate immune system of C. elegans employs evolutionary conserved signalling pathways. They regulate the expression of various effectors molecules, some of which are also conserved. Here, we summarize the current knowledge of the pathways and effector molecules involved in the nematode immune response, with a particular focus on the antifungal immune response of the C. elegans epidermis.
Collapse
|
42
|
Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang G, Reinke V, Waterston RH, Hillier LW, Ewbank JJ. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 2011; 6:e19055. [PMID: 21602919 PMCID: PMC3094335 DOI: 10.1371/journal.pone.0019055] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/), to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.
Collapse
Affiliation(s)
- Ilka Engelmann
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Aurélien Griffon
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | | | - Frédéric Montañana-Sanchis
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - LaDeana W. Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
43
|
Ewbank JJ, Pujol N. Cellular Homeostasis: Coping with ER Overload During an Immune Response. Curr Biol 2010; 20:R452-5. [DOI: 10.1016/j.cub.2010.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|