1
|
Sagae SC, Paz EDR, Zanardini B, Amaral AC, Bronczek GA, Koehler-Santos P, de Oliveira JR, Franci CR, Donadio MVF, Holman PJ, Raineki C. Alternate-day fasting differentially affects body composition, metabolic and immune response to fasting in male rats exposed to early-life adversity: Modulatory role of cafeteria diet. PLoS One 2025; 20:e0313103. [PMID: 40029907 PMCID: PMC11875342 DOI: 10.1371/journal.pone.0313103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 03/06/2025] Open
Abstract
The increased risk for obesity and metabolic disorders following early-life adversity is aggravated by poor diet (e.g., cafeteria diet). Alternate-day fasting (ADF) is a dietary regimen shown to improve immune and metabolic dysfunction related to obesity. Here, we evaluate if ADF can ameliorate the negative effects of early-life adversity and/or cafeteria diet on biological, immune and metabolic parameters. At weaning, animals reared under normal or adverse conditions (i.e., low bedding) were fed either standard chow or cafeteria diets ad libitum or subjected to an ADF regimen. In adulthood, we measured 24-hour fasted cholesterol, triglycerides, cytokines, oxidative stress markers, and body composition parameters including perigonadal, retroperitoneal, and brown fat pad weight. Animals exposed to early-life adversity respond differently to cafeteria diet and ADF. Adverse reared animals fed chow diet in the ADF regimen showed the largest reduction in body weight and perigonadal and retroperitoneal fat pad weight, the smallest increase in corticosterone levels, and the largest increase in TNF-α levels. However, the differential effects of the ADF regimen on body, perigonadal and retroperitoneal fat weight observed in adversely reared animals fed chow diet compared to controls were not present if the adversely reared animals were fed cafeteria diet in the ADF regimen. Furthermore, adversely reared animals fed cafeteria diet in the ADF regimen showed high IL-1β and IL-6 levels. Together, the data suggest that the altered vulnerability to metabolic and immune dysfunction following early-life adversity is not just due to the type of diet but also how the diet is consumed.
Collapse
Affiliation(s)
- Sara C. Sagae
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Edson D. R. Paz
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Departamento de Fisiologia Geral do Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Bárbara Zanardini
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Ana Claudia Amaral
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Gabriela A. Bronczek
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Departmento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Patrícia Koehler-Santos
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jarbas R. de Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Celso R. Franci
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcio V. F. Donadio
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Departmento de Fisioterapia, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Parker J. Holman
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
2
|
Suzuki Y, Itagaki S, Nodera M, Suyama K, Yabe H, Hosoya M. Comparison of metabolic parameters between oral and total parenteral nutrition in children with severe eating disorders. Fukushima J Med Sci 2024; 70:75-85. [PMID: 38599829 PMCID: PMC11140198 DOI: 10.5387/fms.2023-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND This study investigated changes of lipid parameters in children with severe eating disorders during refeeding in order to explore the optimal timing for lipid preparation administration. METHODS We prospectively assessed the physical conditions of patients with eating disorders after the start of nutrition therapy. The assessments were performed at admission and at 2 and 4 weeks. Lipid metabolism was assessed based on triglyceride (TG), total cholesterol (TC), and free carnitine (FC) levels, as well as acylcarnitine/free carnitine (AC/FC) ratio. RESULTS A total of 18 patients were included. Of these, 12 and 6 received an oral diet (OD group) and total parenteral nutrition (TPN group), respectively. The mean body mass indexes at hospital admission were 12.8 kg/m2 in the OD group and 12.7 kg/m2 in the TPN group. At 2 weeks after the start of refeeding, TC, TG, and AC/FC levels were significantly lower in the TPN group than in the OD group. Other blood test results did not show any significant differences between the two groups. CONCLUSIONS Fat-free glucose-based nutrition promoted lipid metabolism over a 2-week period after the start of refeeding, suggesting that balanced energy and lipid intake are essential, even in TPN.
Collapse
Affiliation(s)
- Yuichi Suzuki
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Shuntaro Itagaki
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine
| | - Maki Nodera
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Kazuhide Suyama
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine
| |
Collapse
|
3
|
Suzuki Y, Itagaki S, Nodera M, Suyama K, Yabe H, Hosoya M. Comparison of metabolic parameters between oral and total parenteral nutrition in children with severe eating disorders. Fukushima J Med Sci 2024:2023_02. [PMID: 38522893 DOI: 10.5387/fms.2023_02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND This study investigated changes of lipid parameters in children with severe eating disorders during refeeding in order to explore the optimal timing for lipid preparation administration. METHODS We prospectively assessed the physical conditions of patients with eating disorders after the start of nutrition therapy. The assessments were performed at admission and at 2 and 4 weeks. Lipid metabolism was assessed based on triglyceride (TG), total cholesterol (TC), and free carnitine (FC) levels, as well as acylcarnitine/free carnitine (AC/FC) ratio. RESULTS A total of 18 patients were included. Of these, 12 and 6 received an oral diet (OD group) and total parenteral nutrition (TPN group), respectively. The mean body mass indexes at hospital admission were 12.8 kg/m2 in the OD group and 12.7 kg/m2 in the TPN group. At 2 weeks after the start of refeeding, TC, TG, and AC/FC levels were significantly lower in the TPN group than in the OD group. Other blood test results did not show any significant differences between the two groups. CONCLUSIONS Fat-free glucose-based nutrition promoted lipid metabolism over a 2-week period after the start of refeeding, suggesting that balanced energy and lipid intake are essential, even in TPN.
Collapse
Affiliation(s)
- Yuichi Suzuki
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Shuntaro Itagaki
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine
| | - Maki Nodera
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Kazuhide Suyama
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine
| |
Collapse
|
4
|
Yang G, Li C, Wang S, Liang X, Yang B, Zhang Y, Zhang X, Chang X, Meng X. Molecular characterization of the grass carp bscl2 gene and its expression response to lipid accumulation, nutritional status, insulin and glucagon. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110931. [PMID: 38070669 DOI: 10.1016/j.cbpb.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Bscl2 plays a role in lipid metabolism of mammals, however its role in teleost fish remains unclear. Using the grass carp (Ctenopharyngodon idella) as a model, the bscl2 gene was isolated from the brain and characterized. Thereafter, the tissue distribution of the gene was examined, before expression was analyzed as a function of fasting, refeeding, oral glucose administration and overfeeding. In addition, bscl2 mRNA levels were evaluated in grass carp primary hepatocytes treated with glucagon, insulin, oleic acid, and glucose. Results showed that the cloned bscl2 gene was 1341 bp, encoding 446 amino acids, and was highly expressed in the brain, heart, and gonad. Following oral glucose administration, bscl2 expression increased. Expression of bscl2 decreased in fasted fish but increased following refeeding. Overfeeding, which resulted in elevated lipid accumulation, also stimulated bscl2 expression. In primary hepatocytes, bscl2 levels were increased by glucose, oleic acid, and insulin treatments, and reduced by glucagon treatment. These data suggest that bscl2 may play an important role in nutrient metabolism in teleost fish.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Sunan Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
5
|
Chen Y, He R, Han Z, Wu Y, Wang Q, Zhu X, Huang Z, Ye J, Tang Y, Huang H, Chen J, Shan H, Xiao F. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation. Cell Biol Toxicol 2022; 38:741-763. [PMID: 33950334 DOI: 10.1007/s10565-021-09608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Adipogenesis is a multi-step process orchestrated by activation of numerous TFs, whose cooperation and regulatory network remain elusive. Activating transcription factor 4 (ATF4) is critical for adipogenesis, yet its regulatory network is unclarified. Here, we mapped genome-wide ATF4 binding landscape and its regulatory network by Chip-seq and RNA-seq and found ATF4 directly modulated transcription of genes enriching in fat cell differentiation. Motifs of TFs especially CTCF were found from ATF4 binding sites, suggesting a direct role of ATF4 in regulating adipogenesis associated with CTCF and other TFs. Deletion of CTCF attenuated adipogenesis while overexpression enhanced adipocyte differentiation, indicating CTCF is indispensable for adipogenesis. Intriguingly, combined analysis of Chip-seq data of these two TFs showed that ATF4 co-localized with CTCF in the promoters of key adipogenic genes including Cebpd and PPARg and co-regulated their transactivation. Moreover, ATF4 directly regulated CTCF expression and interacted with CTCF in differentiated 3T3-L1 cells. In vivo, downregulation of ATF4 suppressed the expression of CTCF, Cebpd, and PPARg, leading to reduced adipose tissue expansion in refeeding mice. Consistently, mRNA expression of ATF4 and CTCF was positively correlated with each other in human subcutaneous adipose tissue and inversely associated with BMI, indicating a possible involvement of these two TFs in adipose development. Taken together, our data propose for the first time that ATF4 and CTCF work cooperatively to control adipogenesis and adipose development via orchestrating transcription of adipogenic genes. Our findings reveal novel therapeutic targets in obesity treatment.
Collapse
Affiliation(s)
- Yingchun Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhiqiang Han
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yanyan Wu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Xiujuan Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Zhiguang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 53002, People's Republic of China
| | - Juan Ye
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Yao Tang
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Hongbin Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Jianxu Chen
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
- Department of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Ye H, Sun D, Meng T, Cao L, Wu M, Zhao M, Wang Y, Chen B, Xu X, Wang G, Hao H. Metabolic Pathway Extension Approach for Metabolomic Biomarker Identification. Anal Chem 2016; 89:1229-1237. [PMID: 27983783 DOI: 10.1021/acs.analchem.6b03757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discovery of metabolomic biomarkers represents an important task in disease diagnosis and therapy. Although the development of various analytical tools and online libraries facilitates the identification of biomarkers, the fast and reliable identification of new biomarkers that are not included in databases still represents a major bottleneck in the field of metabolomics. Here, we developed a metabolic pathway extension (MPE) approach to the fast characterization of metabolomic biomarkers. This approach was proposed based on a core concept that the whole metabolome is built from a limited number of initial metabolites via various kinds and multiple steps of metabolic reactions, and thus, theoretically, the whole metabolome might be mapped from the initial metabolites and metabolic reactions. Carnitine was used as an example of initial metabolites to validate this concept and the usefulness of MPE approach. The intragastric dosing of carnitine to mice induced a significant alternation of a total of 97 metabolites. Mass differences between each pair of metabolites were calculated and then matched with those of typical metabolic pathways automatically by an in-house developed program. Diagnostic ions and neutral losses were used for validating the matches. With this approach, 93 out of a total of 97 metabolites were putatively identified, while only half of them could be traced from the currently available online database. The MPE approach was further validated by applying to the identification of carnitine-associated biomarkers in a typical mice model of fasting, and extended to the development of bile acids submetabolome. Our study indicates that the MPE approach is highly useful for rapid and reliable identification of metabolically and structurally associated biomarkers.
Collapse
Affiliation(s)
- Lin Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Hui Ye
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Di Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Tuo Meng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Lijuan Cao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Mengqiu Wu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Min Zhao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Yun Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Baoqiang Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Xiaowei Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| | - Haiping Hao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Tongjiaxiang #24, Nanjing 21009, China
| |
Collapse
|
7
|
Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS One 2015; 10:e0121956. [PMID: 26034989 PMCID: PMC4452704 DOI: 10.1371/journal.pone.0121956] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.
Collapse
|
8
|
Chen YC, Zeng XY, He Y, Liu H, Wang B, Zhou H, Chen JW, Liu PQ, Gu LQ, Ye JM, Huang ZS. Rutaecarpine analogues reduce lipid accumulation in adipocytes via inhibiting adipogenesis/lipogenesis with AMPK activation and UPR suppression. ACS Chem Biol 2013; 8:2301-2311. [PMID: 23962138 DOI: 10.1021/cb4003893] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is characterized by expansion of adipose tissue, which results from an increase in adipocyte number (adipogenesis) and adipocyte size (lipogenesis). A reversal of these processes has been suggested to be a potential antiobetic therapy. Rutaecarpine (Rut) and its novel analogues (R17 and R18) were identified to exert potent effect in reducing lipid accumulation during adipocyte differentiation in 3T3-L1 adipocytes with little cytotoxicity. All three compounds reduced lipid accumulation in a dose-dependent manner, while R17 and R18 exhibited much more potent inhibitory effects compared to that of Rut. Further studies showed that R17 suppressed both adipogenesis and lipogenesis during all stages of adipocyte differentiation as indicated by the reduced protein and mRNA levels of key regulators of adipogenesis/lipogenesis, including PPARγ, C/EBPα, SREBP-1c, ACC, FAS, and SCD-1. We next examined the effect of R17 on the UPR pathway and the results showed that the UPR markers (PERK, eIF2α, IRE1α, and spliced XBP1 mRNA) were all significantly reduced by R17. Further studies revealed that R17 persistently activated AMPK during differentiation, suggesting that the AMPK may be an upstream mechanism for the effect of R17 on adipogenesis and lipogenesis via the adipogenic/lipogenic markers and the UPR pathway. Finally, studies in fast/refeeding mice demonstrated that R17 administration was able to reduce epididymal fat mass and the levels of plasma TG and FFA in vivo. Our results suggest that rutaecarpine analogues may have therapeutic potential for obesity and related metabolic disorders. The mechanism involves the suppression of adipogenic/lipogenic proteins and the suppression of the UPR pathway possibly via the AMPK.
Collapse
Affiliation(s)
- Ying-Chun Chen
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Sun Yat-sen University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|