1
|
Xiao H, Yan Y, Gu Y, Zhang Y. Strategy for sodium-salt substitution: On the relationship between hypertension and dietary intake of cations. Food Res Int 2022; 156:110822. [PMID: 35650987 DOI: 10.1016/j.foodres.2021.110822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Chronic diseases, especially cardiovascular diseases (CVD), have become one of the main causes affecting human health. Hypertension is a prominent representative of CVD. The formation and development of hypertension is closely related to people's daily diet. A large number of studies have shown that excessive intake of salt (NaCl) could increase the risk of hypertension. In recent years, more and more investigations have focused on other cations that may be contained in edible salt, exploring whether they have an effect on hypertension and the underlying mechanism. This article focuses on the relationship between four metal elements (potassium, calcium, magnesium, and zinc) and hypertension, by discussing the main metabolic pathway, the impact of diet intake on blood pressure, and especially the regulation mechanisms on blood pressure in detail. At the same time, some opinions and suggestions are put forward, combined with the current hot topics "salt reduction" and "salt substitution".
Collapse
Affiliation(s)
- Hongrui Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanpei Gu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Rathour R, Kumar H, Prasad K, Anerao P, Kumar M, Kapley A, Pandey A, Kumar Awasthi M, Singh L. Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective. Bioengineered 2022; 13:8893-8914. [PMID: 35333141 PMCID: PMC9161982 DOI: 10.1080/21655979.2022.2056689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing population, industrialization, and economic growth cause several adverse impacts on the existing environment and living being. Therefore, rising pollutants load and their mitigation strategies, as well as achieving energy requirements while reducing reliance on fossil fuels are the key areas, which needs significant consideration for sustainable environment. Since India has considerable biomass resources, bioenergy is a significant part of the country’s energy policy. However, the selection of feedstock is a crucial step in bioenergy production that could produce raw material without compromising food reserve along with the sustainable environment. Higher growth capacity of bamboo species makes them a suitable lignocellulosic substrate for the production of high-value greener products such as fuels, chemicals, and biomaterials as well as an appropriate candidate for eco-restoration of degraded land. In that context, the current review discusses the multidimensional applications of bamboo species in India. The bioenergy potency of bamboo and probability of aligning its production, cultivation, and operation with economic and social development agendas are also addressed, making it an exceptional crop in India. Additionally, its fast growth, perennial root systems, and capability to restore degraded land make it an essential part of ecological restoration. Furthermore, this review explores additional benefits of bamboo plantation on the environment, economy, and society along with future research prospects.
Collapse
Affiliation(s)
- Rashmi Rathour
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Hemant Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Komal Prasad
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Atya Kapley
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, India.,Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.,Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| |
Collapse
|
3
|
F El Azab E, Elguindy NM, Yacout GA, Elgamal DA. Hepatoprotective Impact of Geraniol Against CCl<sub>4</sub>-Induced Liver Fibrosis in Rats. Pak J Biol Sci 2020; 23:1650-1658. [PMID: 33274899 DOI: 10.3923/pjbs.2020.1650.1658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous experimental studies have shown various pharmacological activities including geraniol's cancer prevention agent and antioxidant capacity. The goal of this investigation is to mark the prospective defensive role of geraniol in rat's carbon tetrachloride (CCl4) instigated in liver fibrosis. MATERIALS AND METHODS Liver fibrosis was prompted by subcutaneous injections of CCl4, twice week by week and for about a month. Simultaneously, geraniol (200 mg kg-1) was orally regulated every day. Post-Hoc-Test were carried out where p<0.05 has been established as a significant value. RESULTS The biochemical results showed that geraniol reduced liver damage just as manifestations of liver fibrosis. The administration of geraniol diminished the CCl4-initiated the elevation in serum aminotransferase activities and alkaline phosphatase activity. Geraniol diminished the levels of TNF-α, NO and myeloperoxidase activity which were prompted by the CCl4 treatment. The rise of serum hyaluronidase activity and hepatic hydroxyproline content was also curtailed by geraniol treatment. Besides, geraniol fundamentally declined hepatic malondialdehyde (MDA) formation and increased reduced glutathione (GSH) in CCl4-treated rats. Geraniol has also increased the activity of hepatic antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) in the rats treated with CCl4. Finally, the histological analysis of the liver bolstered the biochemical results. CONCLUSION Our study has demonstrated that geraniol has a hepatoprotective upshot on liver fibrosis caused by CCl4, supposedly due to its free radical scavenging, antioxidant and anti-inflammatory characteristics.
Collapse
|
4
|
Park HS, Jo E, Han JH, Jung SH, Lee DH, Park I, Heo KS, Na M, Myung CS. Hepatoprotective effects of an Acer tegmentosum Maxim extract through antioxidant activity and the regulation of autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111912. [PMID: 31029758 DOI: 10.1016/j.jep.2019.111912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acer tegmentosum Maxim (AT), the East Asian stripe maple, is an herb used to treat liver disease and is approved as a functional food in Korea. AT protects against hepatic disorders, atopic dermatitis, and diabetes mellitus. AIM OF THE STUDY We explored the mechanism of the hepatoprotective effects of AT extract in in vitro and in vivo levels. MATERIALS AND METHODS AT extract from Acer tegmentosum Maxim was extracted by hot water. Hepatoprotective effects of AT extract were confirmed using carbon tetrachloride (CCl4)- or alcohol-induced mouse model, and H2O2- or alcohol-induced HepG2 (liver hepatocellular carcinoma cell line) cells by measuring GOT, GPT, TG, and MDA levels. Hematoxylin and eosin (H&E) staining was used to observe the pathological analysis. Cytotoxicity or protective effect of AT extract was confirmed using MTT assay in HepG2 cells. Antioxidant effect of AT extract was measured using DPPH or H2DCFDA assay. Mechanism study of antioxidant and autophagy was carried out using western blotting and immunofluorescence analysis. RESULTS AT extract increased the viability of HepG2 cells treated with H2O2 and ethanol, and protected the liver against damage induced by CCl4 and alcohol. The AT extract increased the levels of nuclear respiratory factor 2 (Nrf2) and heme oxygenase-1 (HO-1). The level of microtubule-associated protein light chain 3 (LC3)-Ⅱ, beclin-1, autophagy-related genes (Atg) such as Atg3 and Atg12-5 as markers of autophagy activation was also increased. Moreover, the AT extract increased activation of mitogen-activated protein kinase (MAPK), which regulated autophagy and HO-1. CONCLUSION Therefore, these results indicate that the AT extract has a hepatoprotective effect by increasing antioxidant activity and inducing autophagy.
Collapse
Affiliation(s)
- Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Eunji Jo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Sang-Hyuk Jung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Do-Hyung Lee
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - InWha Park
- Pharmacognosy, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - MinKyun Na
- Pharmacognosy, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea; Institute of Drug Research & Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea; Institute of Drug Research & Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Zhao X, Qi Y, Yi R, Park KY. Anti-ageing skin effects of Korean bamboo salt on SKH1 hairless mice. Int J Biochem Cell Biol 2018; 103:1-13. [PMID: 30053505 DOI: 10.1016/j.biocel.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Bamboo salt is generated by baking bamboo and sea salt and is used as a traditional food or medicine. The aim of this study was to investigate the anti-ageing skin effects of Korean bamboo salt and to compare the antioxidant, anti-ageing and anti-inflammatory effects of various salts, including purified salt, solar salt, bath solar salt, Masada solar salt, 1-time baked bamboo salt (1× bamboo salt), and 9-times baked bamboo salt (9× bamboo salt). Based on the content of mineral elements, pH, OH groups and redox potential amperometric analysis, the 9× bamboo salt showed the most antioxidant components and characteristics compared to the other salts. The in vitro results showed that the 9× bamboo salt could inhibit oxidative damage by hydrogen peroxide (H2O2) treatment in HaCaT keratinocytes, and its effect was better than that of the other salts. In an in vivo experiment, SHK-1 hairless mice were treated with UV (ultraviolet) radiation to induce ageing. The epidermal thickness and epidermal structures were then assessed by phenotypic and histological analyses. The 0.2% 9× bamboo salt- and 1× bamboo salt-treated mice had a thinner epidermis than the control mice, and the sebaceous glands were almost intact with a regular arrangement that was similar to those in the normal group. Compared with the UV-treated group (control group) and other salt-treated groups, the 9× bamboo salt- and 1× bamboo salt-treated groups had higher dermal collagen and elastic fibre content. Fewer mast cells were observed in the 9× bamboo salt- and 1× bamboo salt-treated groups than in the control group. The activities of the skin antioxidant-related enzymes superoxide dismutase (SOD) and catalase (CAT) in the 9× bamboo salt- and 1× bamboo salt-treated groups were higher than those in other groups and similar to those in the normal group, but lipid peroxide (LPO) activity and carbonylated protein levels showed the opposite trends. Furthermore, the 9× bamboo salt- and 1× bamboo salt-treated groups had protein contents similar to those of the normal group. In addition, the 9× bamboo salt and 1× bamboo salt effectively down-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and up-regulated the expression of tissue inhibitor expression of matrix metalloproteinase-1 (TIMP-1), matrix metalloproteinase-2 (TIMP-2), SOD and CAT compared to the other salts at a concentration of 0.2% (p < 0.05). These results suggest that at appropriate concentrations, bamboo salt could prevent skin ageing induced by ultraviolet radiation b (UVB) photodamage.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yongcai Qi
- Department of Food Science and Nutrition, Pusan National University, Busan, 609-735, South Korea
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, PR China
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, 400067, PR China; Department of Food Science and Biotechnology, Cha University, Gyeongghi-do, 487-010, South Korea.
| |
Collapse
|
6
|
Bisphenol A Causes Liver Damage and Selectively Alters the Neurochemical Coding of Intrahepatic Parasympathetic Nerves in Juvenile Porcine Models under Physiological Conditions. Int J Mol Sci 2017; 18:ijms18122726. [PMID: 29244763 PMCID: PMC5751327 DOI: 10.3390/ijms18122726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022] Open
Abstract
Bisphenol A (BPA) is an extremely common polymer that is used in typical everyday products throughout the world, especially in food and beverage containers. Within the last ten years, it has been found that the BPA monomer tends to leach into foodstuffs, and nanogram concentrations of it may cause a variety of deleterious health effects. These health problems are very evident in developing children and in young adults. The aim of this study was to expose developing pigs to dietary BPA at both legally acceptable and ten-fold higher levels. Livers that had been exposed to BPA showed vacuolar degeneration, sinusoidal dilatation, vascular congestion and glycogen depletion that increased with exposure levels. Furthermore, the livers of these models were then examined for irregularities and double-labeled immunofluorescence was used to check the innervated hepatic samples for varying neuronal expression of selected neuronal markers in the parasympathetic nervous system (PSNS). It was found that both the PSNS and all of the neuronal markers showed increased expression, with some of them being significant even at recommended safe exposure levels. The implications are quite serious since these effects have been observed at recommended safe levels with expression increasing in-line with exposure levels. The increased neuronal markers studied here have been previously correlated with behavioral/psychological disorders of children and young adults, as well as with childhood obesity and diabetes. However, further research must be performed in order to develop a mechanism for the above-mentioned correlations.
Collapse
|
7
|
Ju J, Lee GY, Kim YS, Chang HK, Do MS, Park KY. Bamboo Salt Suppresses Colon Carcinogenesis in C57BL/6 Mice with Chemically Induced Colitis. J Med Food 2017; 19:1015-1022. [PMID: 27845862 DOI: 10.1089/jmf.2016.3798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of our experiment was to evaluate the anticancer effect of bamboo salt (BS) on C57BL/6 mice in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer model. BS, solar salt, and purified salt were evaluated for their protective effects during AOM/DSS-induced colon carcinogenesis in C57BL/6 mice. BS, especially after baking for nine separate intervals (BS9x), suppressed colon carcinogenesis in the mice. BS9x decreased colon length shortening, weight-to-length ratios, and tumor counts. Pathological evidence from histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis. BS9x lowered serum levels of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) to close to those of the Normal group. Additionally, BS9x suppressed colon mRNA expression of proinflammatory factors and significantly regulated mRNA levels of the apoptosis-related factors, Bax and Bcl-2, and the cell cycle-related genes, p21 and p53. Additionally, immunohistochemistry showed that BS promoted p21 expression in the colon. Taken together, the results indicate that BS exhibited anticancer efficacy by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and repetition in baking cycles of BS enhanced its anticancer functionality.
Collapse
Affiliation(s)
- Jaehyun Ju
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea.,2 Department of Food Science and Biotechnology, Cha University , Seongnam, Korea
| | - Ga-Young Lee
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea
| | | | - Hee Kyung Chang
- 4 Department of Pathology, College of Medicine, Kosin University , Busan, Korea
| | - Myoung-Sool Do
- 5 School of Life Science, Handong Global University , Pohang, Korea
| | - Kun-Young Park
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea.,2 Department of Food Science and Biotechnology, Cha University , Seongnam, Korea.,6 Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education , Chongqing, China
| |
Collapse
|
8
|
Anti-inflammatory effect of egg white-chalcanthite and purple bamboo salts mixture on arthritis induced by monosodium iodoacetate in Sprague-Dawley rats. Lab Anim Res 2016; 32:91-8. [PMID: 27382377 PMCID: PMC4931042 DOI: 10.5625/lar.2016.32.2.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study is to investigate the potential of anti-osteoarthritis effects on egg white-chalcanthite (EC), purple bamboo salts (PBS), and a mixture of EC and PBS (EC+PBS). EC is a mixture of egg white and pulverized chalcanthite. PBS has been widely used as one of functional foods in Korea and shows unique features compared with common salt. Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate (MIA, 4mg/kg bw) in Sprague-Dawley (SD) rats. Test substances were administered once daily for 6 weeks at doses of 10 mg EC, EC+100 mg PBS, EC+200 mg PBS before and after MIA injection. Each substance was assessed by blood chemistry parameters, and by serum cytokines including IL-1β and IL-6, and nitric oxide (NO) and prostaglandin-E2 (PGE2). Structural changes of articular cartilage were also evaluated by histopathological examination. As a result, body weight and blood chemistry parameter were not different in all experimental groups. EC+PBS mixture reduced the production of PGE2, NO, IL-1β, and IL-6. In histological grade of osteoarthritis, EC+PBS mixture had a tendency to ameliorate damage of articular cartilage induced by MIA in a dose-dependent manner. In conclusion, EC+PBS mixture was demonstrated to have a potential for anti-inflammatory effect against osteoarthritis induced by MIA in a dose-dependent manner.
Collapse
|
9
|
Zhao X, Qian Y, Li GJ, Tan J. Preventive effects of the polysaccharide of Larimichthys crocea swim bladder on carbon tetrachloride (CCl4)-induced hepatic damage. Chin J Nat Med 2016; 13:521-8. [PMID: 26233842 DOI: 10.1016/s1875-5364(15)30046-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to determine the preventive effects of the polysaccharide of Larimichthys crocea swim bladder (PLCSB) on CCl4-induced hepatic damage in ICR mice. The in vitro preventive effects of PLCSB on CCl4-induced liver cytotoxic effect were evaluated in BRL 3A rat liver cells using the MTT assay. The serum levels of AST, ALT, and LDH in mice were determined using commercially available kits. The levels of IL-6, IL-12, TNF-α, and IFN-γ were determined using ELISA kits. The pathological analysis of hepatic tissues was performed with H and E staining, and the gene and protein expressions were determined by RT-PCR and Western blotting, respectively. PLCSB (20 μg·mL(-1)) could increase the growth of BRL 3A rat liver cells treated with CCl4. The serum levels of AST, ALT, and LDH were significantly decreased when the mice were treated with two doses of PLCSB, compared with the control mice (P < 0.05). PLCSB-treated groups also showed reduced levels of the serum pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ. PLCSB could decrease the liver weight, compared to the CCl4-treated control mice. The histopathology sections of liver tissues in the 100 mg·kg(-1) PLCSB group indicated that the animals were recovered well from CCl4 damage, but the 50 mg·kg(-1) PLCSB group showed necrosis to a more serious extent. The 100 mg·kg(-1) PLCSB group showed significantly decreased mRNA and protein expression levels of NF-κB, iNOS, and COX-2, and increased expression of IκB-α compared with the CCl4-treated control group. In conclusion, PLCSB prevented from CCl4-induced hepatic damage in vivo.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Gui-Jie Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
10
|
Liao Y, Zou X, Wang C, Zhao X. Insect tea extract attenuates CCl 4-induced hepatic damage through its antioxidant capacities in ICR mice. Food Sci Biotechnol 2016; 25:581-587. [PMID: 30263309 DOI: 10.1007/s10068-016-0081-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
The Insect tea extract (ITE) contained many polyphenols, the aim of the present study was to determine the preventive effects of ITE on CCl4-induced hepatic damage in mice. ITE treated mice could reduce hepatic injury compared to the control mice. The 200 mg/kg ITE increased TC, ALB, SOD, CAT, GSH-Px serum levels, and decreased ALT, AST, ALP, TG, BUN, NO, MDA levels compared to the control group. By histological observation, ITE reduced injury to hepatic cells, and these effects were close to that seen with the drug silymarin. The antioxidant related mRNA and protein expressions of Mn SOD, Gu/Zn SOD, CAT, and GSH-Px increased with ITE treatment in hepatic damage mice. ITE treated mice also showed higher IκB-α mRNA and protein expression, and lower NF-κB-p65, iNOS, COX-2 expressions than those of control mice. These results proved ITE has a prophylactic effect in protecting against hepatic injury through the antioxidant capacities.
Collapse
Affiliation(s)
- Yuanjiang Liao
- Department of Nephrology, The Ninth People's Hospital of Chongqing, Chongqing, 400700 China
| | - Xiaochuan Zou
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| | - Cun Wang
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| | - Xin Zhao
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| |
Collapse
|
11
|
GC/MS-based metabolomic analysis of the radish water kimchi, Dongchimi, with different salts. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
LI GUIJIE, SUN PENG, WANG QIANG, QIAN YU, ZHU KAI, ZHAO XIN. Dendrobium candidum Wall. ex Lindl. attenuates CCl 4-induced hepatic damage in imprinting control region mice. Exp Ther Med 2014; 8:1015-1021. [PMID: 25120640 PMCID: PMC4113641 DOI: 10.3892/etm.2014.1834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the preventive effect of the traditional Chinese medicine, Dendrobium candidum Wall ex Lindl. (D. candidum), on CCl4-induced hepatic damage in mice. The CCl4-induced hepatic damage mice were treated with D. candidum, and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), triglyceride (TG) and total cholesterol (TC) were determined. In addition, serum cytokine levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were analyzed with kits, while liver tissues were analyzed using hematoxylin and eosin staining and reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the contents of D. candidum were determined by nuclear magnetic resonance (NMR). D. candidum was demonstrated to successfully prevent hepatic damage in mice. The serum levels of AST, ALT and LDH were significantly decreased when the mice were treated with 200 and 400 mg/kg D. candidum, as compared with the control mice (P<0.05). The lowest enzymatic activities were exhibited in the 400 mg/kg D. candidum group, which produced similar results to the positive control drug, silymarin. In addition, in the 400 mg/kg D. candidum group, the highest levels of TG and TC were observed among the treated groups. D. candidum-treated groups also demonstrated reduced levels of the serum proinflammatory cytokines, IL-6, IL-12, TNF-α and IFN-γ. The sections of liver tissue examined during histopathology in the high concentration 400 mg/kg D. candidum group recovered well from CCl4 damage; however, the sections in the 200 mg/kg D. candidum group revealed necrosis to a more serious degree. RT-PCR analysis was conducted on inflammation-associated genes, including nuclear factor (NF)-κB, IκB-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in the livers of the mice. The 400 mg/kg D. candidum group demonstrated significantly decreased mRNA expression levels of NF-κB, iNOS and COX-2, but an increased expression level of IκB-α when compared with the CCl4-treated control group. Furthermore, using NMR, 11 compounds were identified in the D. candidum leaf, whose functional contents may aid the preventive effect observed in the current study. Therefore, D. candidum may potentially contribute to the prevention of CCl4-induced hepatic damage in vivo.
Collapse
Affiliation(s)
| | | | - QIANG WANG
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - YU QIAN
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - KAI ZHU
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - XIN ZHAO
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|
13
|
Zhao X, Song JL, Jung OS, Lim YI, Park KY. Chemical properties and in vivo gastric protective effects of bamboo salt. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0120-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|