1
|
Jeerawattanawart S, Angkasekwinai P. Intestinal IL-25 prevents high-fat diet-induced obesity by modulating the cholesterol transporter NPC1L1 expression in the intestinal epithelial cells. Sci Rep 2025; 15:10445. [PMID: 40140439 PMCID: PMC11947149 DOI: 10.1038/s41598-025-95516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
The intestine is essential for digestion and nutrient absorption, and its altered function contributes to metabolic dysregulation and obesity-induced intestinal inflammation. Intestinal immune responses have been associated with the regulation of metabolic dysfunction during obesity. Given that the epithelial cell-derived cytokine IL-25 has been demonstrated to regulate metabolic disorders, we sought to examine the role of intestinal IL-25 in modulating a high-fat diet (HFD)-induced obesity. We found that mice on a high-fat diet exhibited decreased IL-25 expression in the small intestine. Intestinal IL-25 mRNA levels displayed an inverse association with plasma triglycerides, total cholesterol, glucose levels, and the expression of the cholesterol transporter Npc1l1 in the intestine. In HFD-induced obesity, transgenic mice overexpressing IL-25 in the intestinal epithelial cells demonstrated diminished mRNA expression of intestinal genes related to glucose, cholesterol, and fat absorption, along with chylomicron production, while also systemically decreasing plasma glucose, total cholesterol, and triglyceride levels, fat accumulation, and weight gain. In vitro, IL-25 treatment of human intestinal Caco-2 cells directly decreased cholesterol uptake and downregulated the expression of NPC1L1 and its transcriptional regulator, SREBP2. These findings highlight IL-25 as a potential modulator in the intestine that regulates intestinal cholesterol absorption and systemic metabolism in obesity.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, 12000, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
2
|
Iwamoto Y, Kimura T, Dan K, Iwamoto H, Sanada J, Fushimi Y, Katakura Y, Shimoda M, Yamasaki Y, Nogami Y, Shirakiya Y, Nakanishi S, Mune T, Kaku K, Kaneto H. Tirzepatide, a dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist, exhibits favourable effects on pancreatic β-cells and hepatic steatosis in obese type 2 diabetic db/db mice. Diabetes Obes Metab 2024; 26:5982-5994. [PMID: 39344853 DOI: 10.1111/dom.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
AIM Tirzepatide, a dual agonist of glucagon-like peptide receptor and glucose-dependent insulinotropic polypeptide receptor, is expected to exhibit high clinical efficacy in obese type 2 diabetic patients. We evaluated the effects of tirzepatide on pancreatic β-cells and the liver, an insulin-target organ, in a mouse model of obese type 2 diabetes mellitus. MATERIALS AND METHODS Obese type 2 diabetic db/db mice (BKS.Cg-/+ Leprdb/+ Leprdb/Jcl*) were used in this study. Starting at 7 weeks of age, mice were treated with tirzepatide (30 nmol/kg, subcutaneous injection twice a week) or semaglutide (200 nmol/kg, subcutaneous injection twice a week). The control group received phosphate-buffered saline (40-50 μL/subcutaneous injection twice a week). After 4 weeks of drug administration, pancreatic β-cells and the liver were removed and examined. RESULTS Compared to the control group, blood glucose and body weight were significantly reduced in the group that received either tirzepatide or semaglutide (p < 0.001 and p < 0.05, respectively). Fasting insulin was significantly higher in the semaglutide and tirzepatide groups compared to the control group (p < 0.001). β-Cell mass and quality of insulin granules in β-cells similarly increased in the semaglutide and tirzepatide groups compared to the control group (p < 0.05 and p < 0.001, respectively). The fat staining area in the liver in oil red O staining and the liver-spleen ratio in computed tomography showed improvement only in the tirzepatide group (p < 0.001 and p < 0.005, respectively). Liver macrophage M1/M2 ratio similarly improved with semaglutide and tirzepatide (p < 0.05). CONCLUSION Tirzepatide and semaglutide exhibited similar potent glucose-lowering effects. At concentrations used in the present experiments, tirzepatide exhibited more beneficial effects on β-cell-related gene expression, insulin granule count and glucose-stimulated insulin secretion compared to semaglutide. In addition, tirzepatide exhibited a stronger favourable effect on hepatic fat deposition and improved inflammation in the liver. This is the first report showing that tirzepatide, a novel diabetes drug, exhibits a superior effect on pancreatic β-cells and the liver of obese type 2 diabetic mice.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Dan
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideyuki Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Junpei Sanada
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiro Fushimi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yukino Katakura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Masashi Shimoda
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuki Yamasaki
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuka Nogami
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiko Shirakiya
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kohei Kaku
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
3
|
Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023; 28:molecules28041571. [PMID: 36838559 PMCID: PMC9959726 DOI: 10.3390/molecules28041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhen Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| |
Collapse
|
4
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Liang C, Hao F, Yao X, Qiu Y, Liu L, Wang S, Yu C, Song Z, Bao Y, Yi J, Huang Y, Wu Y, Zheng L, Sun Y, Wang G, Yang X, Yang S, Sun L, Li Y. Hypericin maintians PDX1 expression via the Erk pathway and protects islet β-cells against glucotoxicity and lipotoxicity. Int J Biol Sci 2019; 15:1472-1487. [PMID: 31337977 PMCID: PMC6643136 DOI: 10.7150/ijbs.33817] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
A decrease in islet β-cell mass is closely associated with the development and progression of diabetes. Therefore, protection against β-cell loss is an essential measure to prevent and treat diabetes. In this study, we investigated the protective effects of non-photoactivated hypericin, a natural compound, on β-cells both in vitro and in vivo. In vitro, hypericin greatly improved INS-1 cell viability under high-glucose and high-fatty-acid conditions by inhibiting glucotoxicity- and lipotoxicity-induced apoptosis and nitric oxide (NO) production. Then, we further demonstrated that hypericin elicited its protective effects against glucotoxicity and lipotoxicity in INS-1 cells by attenuating the reduction in pancreatic duodenal homeobox-1 (PDX1) expression and Erk activity. In vivo, prophylactic or therapeutic use of hypericin inhibited islet β-cell apoptosis and enhanced the anti-oxidative ability of pancreatic tissue in high-fat/high-sucrose (HFHS)-fed mice, thus alleviating β-cell loss and maintaining or improving β-cell mass and islet size. More importantly, hypericin treatment decreased fasting blood glucose, improved glucose intolerance and insulin intolerance, and alleviated hyperinsulinaemia in HFHS-fed mice. Therefore, hypericin showed preventive and therapeutic effects against HFHS-induced onset of type II diabetes in mice. Hypericin possesses great potential for development as an anti-diabetes drug in the future.
Collapse
Affiliation(s)
- Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Fang Hao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Xinlei Yao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Ye Qiu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Lei Liu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Zhenbo Song
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Yin Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Ying Sun
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Shaonian Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China
| | - Yuxin Li
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Skinner S, Connes P, Sigaudo-Roussel D, Lo M, Liu KL, Nader E, Josset-Lamaugarny A, Charrin E, Martin C, Romanet-Faes C, Diaw M, Pialoux V, Fromy B. Altered blood rheology and impaired pressure-induced cutaneous vasodilation in a mouse model of combined type 2 diabetes and sickle cell trait. Microvasc Res 2018; 122:111-116. [PMID: 30513282 DOI: 10.1016/j.mvr.2018.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Type 2 diabetes (T2D)-related vascular dysfunction and hemorheological abnormalities could possibly be amplified by sickle cell trait (SCT). These alterations could potentially increase the risk of vascular complications in individuals with combined T2D and SCT. Therefore, this study used a mouse model to determine whether vascular function and blood rheology were more severely altered in combined T2D and SCT than in T2D or SCT alone. METHODS Townes transgenic mice with or without SCT received a 12-week high fat high sucrose or standard diet to create models of combined T2D-SCT, T2D, SCT, and controls. Pressure-induced vasodilation (PIV) and sodium nitroprusside (SNP)-mediated vasodilation in-vivo, and hemorheological parameters were measured. RESULTS No significant differences in blood viscosity, hematocrit, erythrocyte deformability, or PIV were observed between the control and T2D mice, or the control and SCT mice. However, blood viscosity, erythrocyte deformability, and PIV were significantly altered in the T2D-SCT mice compared to the control mice. There were no differences in SNP response between the groups. CONCLUSIONS Although neither T2D nor SCT alone had significant effects on blood rheology parameters or vascular function, combined T2D-SCT mice had significantly altered blood rheology and significantly impaired vascular function.
Collapse
Affiliation(s)
- Sarah Skinner
- LIBM EA7424, UCBL 1, Villeurbanne, France; Labex GR-Ex, Paris, France
| | - Philippe Connes
- LIBM EA7424, UCBL 1, Villeurbanne, France; Labex GR-Ex, Paris, France; Institut Universitaire de France, Paris, France.
| | | | - Ming Lo
- UMR 5305 CNRS, Lyon, France; Université de Lyon 1, UMR 5305, Lyon, France
| | - Kiao Ling Liu
- UMR 5305 CNRS, Lyon, France; Université de Lyon 1, UMR 5305, Lyon, France
| | - Elie Nader
- LIBM EA7424, UCBL 1, Villeurbanne, France; Labex GR-Ex, Paris, France
| | | | | | - Cyril Martin
- LIBM EA7424, UCBL 1, Villeurbanne, France; Labex GR-Ex, Paris, France
| | | | - Mor Diaw
- Laboratory of Physiology and Functional Exploration, FMPO, UCAD, Dakar, Senegal
| | - Vincent Pialoux
- LIBM EA7424, UCBL 1, Villeurbanne, France; Labex GR-Ex, Paris, France; Institut Universitaire de France, Paris, France
| | - Bérengère Fromy
- UMR 5305 CNRS, Lyon, France; Université de Lyon 1, UMR 5305, Lyon, France
| |
Collapse
|
7
|
Mena HA, Zubiry PR, Dizier B, Schattner M, Boisson-Vidal C, Negrotto S. Acidic preconditioning of endothelial colony-forming cells (ECFC) promote vasculogenesis under proinflammatory and high glucose conditions in vitro and in vivo. Stem Cell Res Ther 2018; 9:120. [PMID: 29720269 PMCID: PMC5930427 DOI: 10.1186/s13287-018-0872-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. Methods Cord blood-derived CD34+ cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14–21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). Results We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced signs of inflammation in the animals receiving preconditioned ECFC. Conclusions Acidic preconditioning improved ECFC survival and angiogenic activity in the presence of proinflammatory and damage signals present in the ischemic milieu, even under high glucose conditions, and increased their therapeutic potential for postischemia tissue regeneration in a murine model of type 2 diabetes. Collectively, our data suggest that acidic preconditioning of ECFC is a simple and inexpensive strategy to improve the effectiveness of cell transplantation in diabetes, where tissue repair is highly compromised. Electronic supplementary material The online version of this article (10.1186/s13287-018-0872-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hebe Agustina Mena
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Pacheco de Melo, 3081, Buenos Aires, Argentina
| | - Paula Romina Zubiry
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Pacheco de Melo, 3081, Buenos Aires, Argentina
| | - Blandine Dizier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM, UMR-S1140, Paris, France
| | - Mirta Schattner
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Pacheco de Melo, 3081, Buenos Aires, Argentina
| | - Catherine Boisson-Vidal
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM, UMR-S1140, Paris, France
| | - Soledad Negrotto
- Experimental Thrombosis Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine-CONICET, Pacheco de Melo, 3081, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Bhatta A, Sangani R, Kolhe R, Toque HA, Cain M, Wong A, Howie N, Shinde R, Elsalanty M, Yao L, Chutkan N, Hunter M, Caldwell RB, Isales C, Caldwell RW, Fulzele S. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model. Mol Cell Endocrinol 2016; 422:211-220. [PMID: 26704078 PMCID: PMC4824063 DOI: 10.1016/j.mce.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/21/2023]
Abstract
A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases.
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Rajnikumar Sangani
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Michael Cain
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Abby Wong
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Nicole Howie
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Rahul Shinde
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Mohammed Elsalanty
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Monty Hunter
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Cell Biology and Anatomy and Vascular Biology Center, Georgia Regents University; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Carlos Isales
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Sadanand Fulzele
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
9
|
Taira R, Yamaguchi S, Shimizu K, Nakamura K, Ayabe T, Taira T. Bacterial cell wall components regulate adipokine secretion from visceral adipocytes. J Clin Biochem Nutr 2015; 56:149-54. [PMID: 25759521 PMCID: PMC4345181 DOI: 10.3164/jcbn.14-74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest a relationship between intestinal microbiota and metabolic syndromes; however, the underlying mechanism remains unclear. To clarify this issue, we assessed the effects of bacterial cell wall components on adiponectin, leptin and resistin secretion from rat visceral adipocytes in vitro. We also measured the relative population of Firmicutes and Bacteroidetes in fecal microbiota and the amount of fecal mucin as an intestinal barrier function, when mice were fed a high-fat diet. In the present study, we demonstrated that bacterial cell wall components affect the secretion of adipokines, depending on the presence of antigens from gram-positive or gram-negative bacteria. Lipopolysaccharide markedly inhibited adiponectin, leptin, and resistin secretion, whereas peptidoglycan increased adiponectin secretion and decreased resistin secretion in vitro. In vivo experiments showed that the high-fat diet increased the population of Firmicutes and decreased that of Bacteroidetes. In contrast, the high-fat diet downregulated the stool output and fecal mucin content. These results demonstrate that bacterial cell wall components affect the onset of metabolic syndromes by mediating the secretion of adipokines from visceral adipose tissue. Furthermore, we believe that metabolic endotoxemia is not due to the increasing dominance of gram-negative bacteria, Bacteroidetes, but due to the depression of intestinal barrier function.
Collapse
Affiliation(s)
- Risa Taira
- Division of Biology, Department of Biological Sciences, School of Science, Hokkaido University, Kita10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Sayori Yamaguchi
- Cosmo Bio Co., Ltd., Primary Cell Division, YS Bldg, 1-12 12 Nishimachi-kita, Sapporo 063-0061, Japan
| | - Kyoko Shimizu
- Cosmo Bio Co., Ltd., Primary Cell Division, YS Bldg, 1-12 12 Nishimachi-kita, Sapporo 063-0061, Japan
| | - Kiminori Nakamura
- Department of Cell Biological Science, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, North 21 West 11, Kita-ku, Sapporo 001-0021, Japan
| | - Tokiyoshi Ayabe
- Department of Cell Biological Science, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, North 21 West 11, Kita-ku, Sapporo 001-0021, Japan
| | - Toshio Taira
- Cosmo Bio Co., Ltd., Primary Cell Division, YS Bldg, 1-12 12 Nishimachi-kita, Sapporo 063-0061, Japan
| |
Collapse
|