1
|
Sondej D, Pigoń-Zając D, Jaszek M, Stefaniuk D, Matuszewska A, Bielak K, Opielak G, Małecka-Massalska T, Rahnama-Hezavah M, Prendecka-Wróbel M. Is laccase from medicinal mushroom Cerrena unicolor cytotoxic to colon cancer cell line CT-26? PLoS One 2025; 20:e0322211. [PMID: 40338889 PMCID: PMC12061150 DOI: 10.1371/journal.pone.0322211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/18/2025] [Indexed: 05/10/2025] Open
Abstract
INTRODUCTION AND OBJECTIVE Colorectal cancer takes an increasing toll every year. Despite the dynamic development of pharmacology, there is still no drug that would be strong enough to cause apoptosis of cancer cells, but at the same time would be free from numerous side effects. Taking traditional Eastern medicine into account, studies were carried out using an extract - laccase (LAC) from a medical mushroom called Cerrena unicolor- on CT-26 colon cancer cells. Preliminary cytotoxicity tests have already confirmed that the examined extract affects cancer cells and at the same time has no significant effect on L929 cells. The Electric Cell-substrate Impedance Sensing system (ECIS) and standard methods were used in this work. ECIS used in this study is an advanced in vitro impedance measuring system. MATERIALS AND METHODS The CT-26 and L929 cells were treated by five different concentrations of the LAC preparation ranging from 0.025 to 250 μg/mL. Concentrations selected for the ECIS system assay were: 0.25;2.5 and 250 μg/mL. The default optimal frequencies in the ECIS system for Resistance (R) 4000Hz, Impedance (Z) 16000Hz, Capacitance (C) 64000Hz were used. RESLUTS ECIS results demonstrate the potential anti-cancer activity of the laccase preparation against CT-26 cancer cells, and affect theL929 cells in to a lesser extent. Thanks to the use of the ECIS research technique, it was possible to monitor live changes in cell morphology and physiology, which translates into accurate conclusions about the action of the tested preparation.
Collapse
Affiliation(s)
- Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Lublin, Poland
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kamil Bielak
- Student Science Club by Oncological Surgery Clinic, Medical University of Lublin, Lublin, Poland,
| | - Grzegorz Opielak
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Lublin, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Lublin, Poland
| | | | - Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Raal A, Kaldmäe H, Kütt K, Jürimaa K, Silm M, Bleive U, Aluvee A, Adamson K, Vester M, Erik M, Koshovyi O, Nguyen KV, Nguyen HT, Drenkhan R. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga ( Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals (Basel) 2024; 17:1013. [PMID: 39204121 PMCID: PMC11357148 DOI: 10.3390/ph17081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chaga mushroom (Inonotus obliquus) is a pathogenic fungus that grows mostly on birch species (Betula pendula Roth and B. pubescens Ehrh.) and has traditionally been used as an anticancer medicine. This study aimed to compare the chemical composition and cytotoxic activity of chagas growing on both Betula spp. on various cancer cell lines. The freeze-dried extracts contained triterpenes inotodiol, lanosterol betulin, and betulinic acid typical to conks growing on Betula species. The cytotoxic activity of chaga growing on Betula pendula and B. pubescens 80% ethanolic extracts against 31 human cancer cell lines was evaluated by a sulforhodamine B assay. Chaga extract showed moderate activity against all cancer cell lines examined; it did not result in high cytotoxicity (IC50 ≤ 20 µg/mL). The strongest inhibitions were observed with chaga (growing on B. pendula) extract on the HepG2 and CAL-62 cell line and with chaga (from B. pubescens) extract on the HepG2 cell line, with IC50 values of 37.71, 43.30, and 49.99 μg/mL, respectively. The chaga extracts from B. pendula exert somewhat stronger effects on most cancer cell lines studied than B. pubescens extracts, which can be attributed to a higher content of inotodiol in B. pendula extracts. This study highlights the potential of chaga as a source of bioactive compounds with selective anticancer properties. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on B. pubescens.
Collapse
Affiliation(s)
- Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Karin Kütt
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Katrin Jürimaa
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Maidu Silm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia;
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Alar Aluvee
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Kalev Adamson
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Marili Vester
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | | | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Khan Viet Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| |
Collapse
|
3
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Wang L, Wang Y, Wang Z, Zhang X, Chen H, Lin Q, Wang X, Wen Y, Pan X, Guo Z, Wan B. Anticancer potential of grifolin in lung cancer treatment through PI3K/AKT pathway inhibition. Heliyon 2024; 10:e29447. [PMID: 38644824 PMCID: PMC11033154 DOI: 10.1016/j.heliyon.2024.e29447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Grifolin is a natural secondary metabolite isolated from edible fruiting bodies of the mushroom Albatrellus confluens. Grifolin has antitumor activities in several types of cancer. We aimed to determine the effects of grifolin on lung cancer. Methods We determined the proliferation, migration, invasion, and apoptosis of lung cancer cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Ethynyl deoxyuridine, colony formation, wound scratch, transwell, flow cytometry, and xenograft mouse assays. Molecular docking evaluated the binding relation between grifolin and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). The levels of PIK3CA, AKT, and p-AKT were measured by western blot. Results Grifolin (10, 20, or 40 μM) inhibited the proliferation, migration, and invasion of lung cancer cells, and induced cell cycle arrest and apoptosis. Grifolin also decreased CDK4, CDK6, and CyclinD1 expression and significantly decreased PIK3CA and p-AKT expression in lung cancer cells. These anticancer effects were abolished by 740Y-P. Conclusions Grifolin regulates the PI3K/AKT pathway, thus inhibiting lung cancer progression.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Huayong Chen
- Lanshan Central Hospital, Yongzhou, Hunan, 425899, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yuting Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Zhongliang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Shanghai East Hospital of Nanjing Medical University, Shanghai, 200120, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| |
Collapse
|
5
|
Wagle S, Lee JA, Rupasinghe HPV. Synergistic Cytotoxicity of Extracts of Chaga Mushroom and Microalgae against Mammalian Cancer Cells In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:7944378. [PMID: 38268969 PMCID: PMC10807943 DOI: 10.1155/2024/7944378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.
Collapse
Affiliation(s)
- Sajeev Wagle
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
| | - Julie Anne Lee
- Adored Beast Apothecary, 77 Rooney Crescent, Moncton NB E1E 4M4, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax NS B3H 4H7, Canada
| |
Collapse
|
6
|
Amin FG, Elfiky AA, Nassar AM. In silico targeting of SARS-CoV-2 spike receptor-binding domain from different variants with chaga mushroom terpenoids. J Biomol Struct Dyn 2024; 42:1079-1087. [PMID: 37042960 DOI: 10.1080/07391102.2023.2199084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
Terpenoids from the chaga mushroom have been identified as potential antiviral agents against SARS-CoV-2. This is because it can firmly bind to the viral spike receptor binding domain (RBD) and the auxiliary host cell receptor glucose-regulated protein 78 (GRP78). The current work examines the association of the chaga mushroom terpenoids with the RBD of various SARS-CoV-2 variants, including alpha, beta, gamma, delta, and omicron. This association was compared to the SARS-CoV-2 wild-type (WT) RBD using molecular docking analysis and molecular dynamics modeling. The outcomes demonstrated that the mutant RBDs, which had marginally greater average binding affinities (better binding) than the WT, were successfully inhibited by the chaga mushroom terpenoids. The results suggest that the chaga mushroom can be effective against various SARS-CoV-2 variants by targeting both the host-cell surface receptor GRP78 and the viral spike RBD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma G Amin
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya M Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Plehn S, Wagle S, Rupasinghe HV. Chaga mushroom triterpenoids as adjuncts to minimally invasive cancer therapies: A review. Curr Res Toxicol 2023; 5:100137. [PMID: 38046279 PMCID: PMC10692653 DOI: 10.1016/j.crtox.2023.100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer has become the second leading cause of death in the world. Integrative cancer therapy management is continuously evolving to enhance treatment outcomes. Chaga mushroom (Inonotus obliquus) is a parasitic fungus acclaimed to contain pharmaceutical and nutraceutical value in the fight against cancer. In particular, triterpenoid constituents derived from Chaga mushrooms have been recognized for their anti-cancer activity after distinguished cytotoxicity was repeatedly observed in cancer cells treated in vitro with lipophilic fractions of extract compared to aqueous ones. Studies that investigate the anti-cancer activity of Chaga mushroom triterpenoids are reviewed in this article to determine which cancer cell lines demonstrate the greatest susceptibility to them while highlighting the structure-activity relationships that are involved. Triterpenoid supplementation as an adjunct to cancer treatment may be a viable option as inotodiol and 3-β-22 α-dihydroxylanosta-8, 25-diene-24-one have been shown to exhibit anti-cancer activity similar to that of conventional drugs. Advances in addressing bioavailability challenges are also included in this review as studies include in vivo components.
Collapse
Affiliation(s)
- Selina Plehn
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Sajeev Wagle
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| |
Collapse
|
8
|
Zhang Y, Liu Q, Sun Y, Jiang J. Inonotus obliquus sclerotia epidermis were different from internal tissues in compound composition, antioxidant activity, and associated fungi. FEMS Microbiol Lett 2023; 370:fnad126. [PMID: 38017614 DOI: 10.1093/femsle/fnad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Inonotus obliquus is a medicinal fungus with potential for use in various health applications. To better utilize this fungus, this study focused on epidermis and internal tissues of five sclerotia from different regions in Jilin, Inner Mongolia, and Heilongjiang, examining their polyphenols, polysaccharides, flavonoids, and total triterpenes contents. And evaluated the extracts from sclerotia for their total antioxidant capacity and scavenging ability of DPPH free radicals. The study also isolated the associated fungi from the epidermis and internal tissues of three sclerotia. Results revealed that the polyphenol content was higher in the epidermis than in internal tissue of every sclerotium. However, flavonoid and total triterpenoid content was lower in the epidermis of every sclerotium. The polysaccharide content was no significant in different parts of three sclerotia, but the epidermal polysaccharide content in two sclerotia was significantly higher than in internal tissues. The internal tissue extracts from tested sclerotia exhibited better scavenging ability of DPPH free radicals than those from the epidermis. There was no significant difference in total antioxidant capacity among different parts of three sclerotia, and the internal tissues' total antioxidant capacity in two sclerotia was higher than the epidermis. The number and species of associated fungi in the internal tissues were far less than that in the epidermis. The study suggests separating the epidermis and internal tissue for medicinal use. The research provides insights into the bioactive components and associated fungi of I. obliquus to inform its practical application in medicine.
Collapse
Affiliation(s)
- Yijia Zhang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiao Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yong Sun
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Sun J, Li M, Lin T, Wang D, Chen J, Zhang Y, Mu Q, Su H, Wu N, Liu A, Yu Y, Liu Y, Wang S, Yu X, Guo J, Yu W. Cell cycle arrest is an important mechanism of action of compound Kushen injection in the prevention of colorectal cancer. Sci Rep 2022; 12:4384. [PMID: 35288618 PMCID: PMC8921286 DOI: 10.1038/s41598-022-08336-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Compound Kushen injection (CKI) is the most widely used traditional Chinese medicine preparation for the comprehensive treatment of colorectal cancer (CRC) in China, but its underlying molecular mechanisms of action are still unclear. The present study employed a network pharmacology approach, in which we constructed a "bioactive compound-target-pathway" network. Experimental RNA sequencing (RNA-Seq) analysis was performed to identify a key "bioactive compound-target-pathway" network for subsequent experimental validation. Cell cycle, proliferation, autophagy, and apoptosis assays and a model of azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in mice were employed to detect the biological effect of CKI on CRC. Real-time reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry were performed to verify the selected targets and pathways. We constructed a predicted network that included 82 bioactive compounds, 34 targets, and 33 pathways and further screened an anti-CRC CKI "biological compound (hesperetin 7-O-rutinoside, genistein 7-O-rutinoside, and trifolirhizin)-target (p53 and checkpoint kinase 1 [CHEK1])" network that targeted the "cell cycle pathway". Validation experiments showed that CKI effectively induced the cell-cycle arrest of CRC cells in vitro and suppressed the development of CRC in vivo by downregulating the expression of p53 and CHEK1. Our findings confirmed that inducing cell-cycle arrest by CKI is an important mechanism of its anti-CRC action, which provides a direct and scientific experimental basis for the clinical application of CKI.
Collapse
Affiliation(s)
- Jie Sun
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Aiyu Liu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Shaojie Wang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing, China.
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
10
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
11
|
Abu-Reidah IM, Critch AL, Manful CF, Rajakaruna A, Vidal NP, Pham TH, Cheema M, Thomas R. Effects of pH and Temperature on Water under Pressurized Conditions in the Extraction of Nutraceuticals from Chaga ( Inonotus obliquus) Mushroom. Antioxidants (Basel) 2021; 10:1322. [PMID: 34439572 PMCID: PMC8389277 DOI: 10.3390/antiox10081322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
Currently, there is increased interest in finding appropriate food-grade green extraction systems capable of extracting these bioactive compounds from dietary mushrooms for applications in various food, pharmacological, or nutraceutical formulations. Herein, we evaluated a modified Swiss water process (SWP) method using alkaline and acidic pH at low and high temperature under pressurized conditions as a suitable green food grade solvent to obtained extracts enriched with myco-nutrients (dietary phenolics, total antioxidants (TAA), vitamins, and minerals) from Chaga. Ultra-high performance liquid chromatography coupled to high resolution accurate mass tandem mass spectrometry (UHPLC-HRAMS-MS/MS) was used to assess the phenolic compounds and vitamin levels in the extracts, while inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the mineral contents. Over 20 phenolic compounds were quantitatively evaluated in the extracts and the highest total phenolic content (TPC) and total antioxidant activity (TAA) was observed at pH 11.5 at 100 °C. The most abundant phenolic compounds present in Chaga extracts included phenolic acids such as protocatechuic acid 4-glucoside (0.7-1.08 µg/mL), syringic acid (0.62-1.18 µg/mL), and myricetin (0.68-1.3 µg/mL). Vitamins are being reported for the first time in Chaga. Not only, a strong correlation was found for TPC with TAA (r-0.8, <0.0001), but also, with individual phenolics (i.e., Salicylic acid), lipophilic antioxidant activity (LAA), and total antioxidant minerals (TAM). pH 2.5 at 100 °C treatment shows superior effects in extracting the B vitamins whereas pH 2.5 at 60 and 100 °C treatments were outstanding for extraction of total fat-soluble vitamins. Vitamin E content was the highest for the fat-soluble vitamins in the Chaga extract under acidic pH (2.5) and high temp. (100 °C) and ranges between 50 to 175 µg/100 g Chaga. Antioxidant minerals ranged from 85.94 µg/g (pH7 at 100 °C) to 113.86 µg/g DW (pH2.5 at 100 °C). High temperature 100 °C and a pH of 2.5 or 9.5. The treatment of pH 11.5 at 100 °C was the most useful for recovering phenolics and antioxidants from Chaga including several phenolic compounds reported for the first time in Chaga. SWP is being proposed herein for the first time as a novel, green food-grade solvent system for the extraction of myco-nutrients from Chaga and have potential applications as a suitable approach to extract nutrients from other matrices. Chaga extracts enriched with bioactive myconutrients and antioxidants may be suitable for further use or applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ibrahim M. Abu-Reidah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Amber L. Critch
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Charles F. Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Amanda Rajakaruna
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Natalia P. Vidal
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Thu H. Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada; (A.L.C.); (C.F.M.); (A.R.); (N.P.V.); (T.H.P.); (M.C.)
- The Functional Foods Sensory Laboratory, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| |
Collapse
|
12
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
13
|
Lee MG, Kwon YS, Nam KS, Kim SY, Hwang IH, Kim S, Jang H. Chaga mushroom extract induces autophagy via the AMPK-mTOR signaling pathway in breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114081. [PMID: 33798660 DOI: 10.1016/j.jep.2021.114081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaga mushrooms (Inonotus obliquus) are commonly used in traditional treatments in Eastern Europe and Asia due to their diverse pharmacological effects, including anti-tumor and immunologic effects. Thus, many cancer patients take Chaga mushrooms as a complementary medicine, even during chemotherapy or radiotherapy. However, few studies have investigated the effects or molecular targets of Chaga mushrooms in breast cancer. AIM OF THE STUDY Herein, we examined the anticancer effects of Chaga mushrooms in different types of breast cancer cell lines, and explored the underlying molecular mechanism to better understand their effects and benefits. MATERIALS AND METHODS Chaga mushroom extract (CME) was prepared by extracting Chaga mushrooms with 70% ethanol. The cytotoxic effects of CME were assessed by MTT assay and protein expressions were evaluated by western blotting. To evaluate in vivo anti-tumor effects of CME, CME (2 g/kg) was orally administered to 4T1 tumor-bearing BALB/c mice every other day over 30 days (15 administrations), and tumor sizes were measured. Silica gel column chromatography was used to fractionate CME, and major constituents responsible for cytotoxic effects of CME were identified by 1H/13C-NMR and LC-MS. RESULTS CME inhibited the proliferation of 4T1 mouse breast cancer cells in a dose and time-dependent manner. The expression of LC3 and phosphorylation of AMPK were increased by CME, while the phosphorylation of mTOR, S6, and S6K1 were suppressed, suggesting that CME induced autophagy by activating AMPK and inhibiting mTOR signaling pathways. Consistent with its observed cytotoxic effect in vitro, CME effectively suppressed tumor growth in 4T1 tumor-bearing BALB/c mice. In addition, inotodiol and trametenolic acid were identified as the major constituents responsible for the cytotoxic effects of CME on breast cancer cells. Moreover, inotodiol and trametenolic acid-enriched fractions both exhibited cytotoxic effects regardless of breast cancer cell subtypes and did not interfere with the cytotoxic effects of conventional drugs. CONCLUSIONS Taken together, Chaga mushroom extract induced autophagy by activating AMPK and inhibiting the mTOR signaling pathway. Our data suggest Chaga mushrooms may be a beneficial complementary medicine for breast cancer patients.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Yun-Suk Kwon
- Department of Pharmacology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Seo Yeon Kim
- Department of Pharmacy, Woosuk University, 443 Samnye-ro, Wanju, Jeollabuk-do, 55338, Republic of Korea
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, 443 Samnye-ro, Wanju, Jeollabuk-do, 55338, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| | - Hyunsoo Jang
- Department of Radiation Oncology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| |
Collapse
|
14
|
Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR. In vitro Anti-colorectal Cancer Potential of the Medicinal Mushroom Ganoderma neo-japonicum Imazeki in Hyperglycemic Condition: Impact on Oxidative Stress, Cell Cycle and Apoptosis. Nutr Cancer 2021; 74:978-995. [PMID: 34085886 DOI: 10.1080/01635581.2021.1931701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clinical efficacy of chemotherapy is often compromised by diabetogenic glucose on colorectal cancer (CRC). High glucose has been shown to diminish the cytotoxicity of anticancer drugs. The issue can potentially be addressed with natural products. Recently, we revealed that Ganoderma neo-japonicum exhibits inhibitory activities against human colonic carcinoma cells. In this study, the impacts of hexane fraction (Hex, sterol-enriched) and chloroform fraction (Chl, terpenoid-enriched) were further elucidated. The cellular responses, including oxidative stress, cell cycle, and apoptosis were compared between the presence of normal glucose (NG, 5.5 mM) and high glucose (HG, 25 mM). HG promoted cell viability with concomitant elevation of GSH level. Both Hex and Chl fractions stimulated NO production, in addition, induced cell cycle arrest. The apoptotic effect of Hex fraction was glucose-dependent, but Chl fraction triggered apoptosis with an equivalent extent in NG and HG conditions. Overall, the active fractions from G. neo-japonicum show therapeutic potential in managing hyperglycemia-associated CRC.
Collapse
Affiliation(s)
- Meng-Fei Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Solek P, Shemedyuk N, Shemedyuk A, Dudzinska E, Koziorowski M. Risk of wild fungi treatment failure: Phallus impudicus-induced telomere damage triggers p21/p53 and p16-dependent cell cycle arrest and may contribute to male fertility reduction in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111782. [PMID: 33321417 DOI: 10.1016/j.ecoenv.2020.111782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The multifunctional characteristics of Phallus impudicus extract encourage to conduct research for its potential use in medical applications. Well, science is constantly seeking new evidence for the biological activity of extracts of natural origin. Drugs of natural origin should not cause any side effects on the physiological functions of the human body; however, this is not always successful. In this study, we used in vitro approach to evaluate the toxicity of alcohol Phallus impudicus extract on spermatogenic cells. We show, for the first time, cytotoxic properties of Phallus impudicus treatment associated with a decrease in cellular metabolic activity, dysregulation of redox homeostasis and impairment of selected antioxidant cell protection systems. As a consequence, p53/p21- and p16-mediated cell cycle arrest followed by p27 activation is initiated. The observed changes were associated with telomere shortening and numerous DNA damage at the chromosome ends (altered expression pattern of TRF1 and TRF2 proteins), as well as upregulation of cleaved caspase-3 with a decrease in Bcl-2 expression, suggesting induction of apoptotic death. Therefore, these results provide molecular evidence for mechanistic pathways and novel adverse outcomes linked to the Phallus impudicus treatment towards men's health and fertility reduction.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Poland.
| | - Nataliya Shemedyuk
- Department of Biotechnology and Radiology, Stepan Gzhytskyj National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
| | | | - Ewa Dudzinska
- Department of Public Health, Faculty of Health Sciences, Medical University of Lublin, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Poland
| |
Collapse
|
16
|
Zhao Y, Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113321. [PMID: 32877719 DOI: 10.1016/j.jep.2020.113321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
17
|
He L, He X, Liu X, Shi W, Xu X, Zhang Z. A sensitive, precise and rapid LC-MS/MS method for determination of ergosterol peroxide in Paecilomyces cicadae mycelium. Steroids 2020; 164:108751. [PMID: 33075399 DOI: 10.1016/j.steroids.2020.108751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
Ergosterol peroxide (EP) has considerable potential effect against the proliferation of tumor cells. Here, we established a new approach for EP content detection through liquid chromatography-tandem mass spectrometry. The specificity, limit of detection (LOD)/quantitative (LOQ), linearity and range, accuracy, repeatability, and intermediate precision were tested. The EP retention time was 7.18 min. The linear relationship between the mass concentration of nonylphenol and the chromatographic peak area was good within the EP concentration range of 0.1-2.0 μg/mL. The correlation coefficient was 0.994, the regression equation was Y = 27 409.8 × X - 1114.67, the average recovery rate was 82.77%, the relative standard deviation was 11.1%, the LOQ was 50 ng/mL, and the LOD was 20 ng/mL. The detection technique was convenient, accurate, reproducible, and rapid. Therefore, this method could be used for deep liquid fermentation, providing a basis for EP to serve as a quality standard for the fermentation of Paecilomyces cicadae.
Collapse
Affiliation(s)
- Linfu He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoyan He
- Department of Pathology, People's Hospital of Deyang City, Deyang 618000, PR China
| | - Xiaocui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenjing Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaofeng Xu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, PR China.
| | - Zhicai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Edible Mushroom Processing Ministry of Agriculture and Rural Affairs, Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, PR China.
| |
Collapse
|
18
|
Lufenuron induces reproductive toxicity and genotoxic effects in pregnant albino rats and their fetuses. Sci Rep 2020; 10:19544. [PMID: 33177580 PMCID: PMC7658361 DOI: 10.1038/s41598-020-76638-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Insecticides and other agrochemicals have become indispensable components of the agricultural system to ensure a notable increase in crop yield and food production. As a natural consequence, chemical residues result in significantly increased contamination of both terrestrial and aquatic ecosystems. The present study evaluated the teratogenic, genotoxic, and oxidative stress effects of residual-level lufenuron exposure on pregnant rats during the organogenesis gestational period of both mother and fetus. The tested dams were divided into three groups; control (untreated), low-dose group (orally administered with 0.4 mg/kg lufenuron) and high-dose group (orally administered with 0.8 mg/kg lufenuron). The dams of the two treatment groups showed teratogenic abnormalities represented by the asymmetrical distribution of fetuses in both uterine horns, accompanied by observed resorption sites and intensive bleeding in the uterine horns, whereas their fetuses suffered from growth retardation, morphologic malformations, and skeletal deformations. Histologic examination of the liver and kidney tissues obtained from mothers and fetuses after lufenuron exposure revealed multiple histopathologic changes. DNA fragmentation and cell cycle perturbation were also detected in the liver cells of lufenuron-treated pregnant dams and their fetuses through comet assay and flow cytometry, respectively. Moreover, lufenuron-induced oxidative stress in the liver of mothers and fetuses was confirmed by the increased malondialdehyde levels and decreased levels of enzymatic antioxidants (glutathione peroxidase and superoxide dismutase). Taken together, it can be concluded that lufenuron has a great potential in exerting teratogenic, genotoxic, and oxidative stresses on pregnant rats and their fetuses upon chronic exposure to residual levels during the organogenesis gestational period. The obtained results in the present study imply that women and their fetuses may have the same risk.
Collapse
|
19
|
Szychowski KA, Skóra B, Pomianek T, Gmiński J. Inonotus obliquus - from folk medicine to clinical use. J Tradit Complement Med 2020; 11:293-302. [PMID: 34195023 PMCID: PMC8240111 DOI: 10.1016/j.jtcme.2020.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
The Inonotus obliquus (I. obliquus) mushroom was traditionally used to treat various gastrointestinal diseases. For many years, mounting evidence has indicated the potential of I. obliquus extracts for treatment of viral and parasitic infections. Furthermore, substances from I. obiquus have been shown to stimulate the immune system. The most promising finding was the demonstration that I. obliquus has hypoglycemic and insulin sensitivity potential. This review summarizes the therapeutic potential of I. obliquus extracts in counteracting the progression of cancers and diabetes mellitus as well as their antiviral and antiparasitic activities and antioxidant role. As shown by literature data, various authors have tried to determine the molecular mechanism of action of I. obliquus extracts. Two mechanisms of action of I. obliquus extracts are currently emerging. The first is associated with the broad-sense impact on antioxidant enzymes and the level of reactive oxygen species (ROS). The other is related to peroxisome proliferator-activated receptor gamma (PPARγ) effects. This receptor may be a key factor in the anti-inflammatory, antioxidant, and anti-cancer activity of I. obliquus extracts. It can be concluded that I. obliquus fits the definition of functional food and has a potentially positive effect on health beyond basic nutrition; however, studies that meet the evidence-based medicine (EBM) criteria are needed. Extracts or polysaccharides from I. obliquus exhibit an anti-cancer potential in vitro. Extracts or polysaccharides from I. obliquus exhibit anti-inflammation potential. Extracts or polysaccharides from I. obliquus exhibit hypoglycemic and insulin sensitivity potential.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Tadeusz Pomianek
- Department of Management, Faculty of Administration and Social Sciences, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
20
|
Blocking Effect of Chaga Mushroom (Inonotus oliquus) Extract for Immune Checkpoint CTLA-4/CD80 Interaction. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inonotus obliquus, also known as the Chaga mushroom, has been used as a traditional medicine to treat many different diseases in Asia. Ethanol and water extraction were performed to examine the blocking effect of the Chaga mushroom on the CTLA-4/CD80 interaction. The inhibitory activities of the Chaga mushroom/70% EtOH extract (CME) and the Chaga mushroom/water extract (CMW) were confirmed using several cell-based assays. To identify the contents of major compounds CME and CMW, we performed HPLC analysis. The content of lanosterol (1) in CME was 0.41%. Our findings provide experimental evidence that the Chaga mushroom can develop a small-molecule inhibitor that blocks the CTLA-4/CD80 interaction.
Collapse
|
21
|
Practical Application of "About Herbs" Website: Herbs and Dietary Supplement Use in Oncology Settings. ACTA ACUST UNITED AC 2020; 25:357-366. [PMID: 31567464 DOI: 10.1097/ppo.0000000000000403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Integrative Medicine Service at Memorial Sloan Kettering Cancer Center developed and maintains About Herbs (www.aboutherbs.com), which provides summaries of research data including purported uses, adverse effects, and herb-drug interactions for about 284 dietary supplements. Using Google Analytics, we found the website registered more than 26,317,000 hits since November 2002. The 10 most searched-for herbs/supplements of 2018 are chaga mushroom, turmeric, ashwagandha, reishi mushroom, graviola, Active Hexose-Correlated Compound, boswellia, dandelion, green tea, and Coriolus versicolor. Here we discuss their safety, herb-drug interactions, and appropriate uses in the oncology setting, based on literature searches in PubMed. Over the past 16 years, the evidence for use of these supplements is based mostly on preclinical findings, with few well-designed studies and limited trials conducted in cancer patients. It is important to familiarize health care professionals about popular supplements, so patients can be informed to make decisions that maximize benefits and minimize risks.
Collapse
|
22
|
Sadowska A, Zapora E, Sawicka D, Niemirowicz-Laskowska K, Surażyński A, Sułkowska-Ziaja K, Kała K, Stocki M, Wołkowycki M, Bakier S, Pawlik A, Jaszek M, Muszyńska B, Car H. Heterobasidion annosum Induces Apoptosis in DLD-1 Cells and Decreases Colon Cancer Growth in In Vivo Model. Int J Mol Sci 2020; 21:ijms21103447. [PMID: 32414138 PMCID: PMC7279362 DOI: 10.3390/ijms21103447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
Application of substances from medicinal mushrooms is one of the interesting approaches to improve cancer therapy. In this study, we commenced a new attempt in the field of Heterobasidion annosum (Fr.) Bref. sensu lato to further extend our knowledge on this basidiomycete fungus. For this purpose, analysis of the active substances of Heterobasidion annosum methanolic extract and also its influence on colorectal cancer in terms of in vitro and in vivo experiments were performed. In vivo studies on mice were conducted to verify its acute toxicity and to further affirm its anticancer potential. Results indicated that all the most common substances of best known medicinal mushrooms that are also responsible for their biological activity are present in tested extracts. In vitro tests showed a high hemocompatibility and a significant decrease in viability and proliferation of DLD-1 cells in a concentration-dependent manner of Heterobasidion annosum extract. The studies performed on xenograft model of mice showed lower tendency of tumor growth in the group of mice receiving Heterobasidion annosum extract as well as mild or moderate toxicity. Obtained results suggest beneficial potential of Heterobasidion annosum against colon cancer as cytotoxic agent or as adjuvant anticancer therapy.
Collapse
Affiliation(s)
- Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (K.N.-L.); (H.C.)
- Correspondence: ; Tel.: +48-85-748-5554
| | - Ewa Zapora
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (E.Z.); (M.S.); (M.W.); (S.B.)
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (K.N.-L.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (K.N.-L.); (H.C.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Marcin Stocki
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (E.Z.); (M.S.); (M.W.); (S.B.)
| | - Marek Wołkowycki
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (E.Z.); (M.S.); (M.W.); (S.B.)
| | - Sławomir Bakier
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (E.Z.); (M.S.); (M.W.); (S.B.)
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.P.); (M.J.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.P.); (M.J.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (K.N.-L.); (H.C.)
| |
Collapse
|
23
|
Eid JI, Das B. Molecular insights and cell cycle assessment upon exposure to Chaga (Inonotus obliquus) mushroom polysaccharides in zebrafish (Danio rerio). Sci Rep 2020; 10:7406. [PMID: 32366825 PMCID: PMC7198532 DOI: 10.1038/s41598-020-64157-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Chaga (Inonotus obliquus) mushroom is considered as one of the most powerful antioxidants across the world. Though the therapeutic effects of Chaga components are well characterized in vitro, the in vivo developmental effects are not elucidated in detail. In this study, we assessed the in vivo developmental effects of Chaga polysaccharides in zebrafish, along with revealing the effects on cell cycle and apoptosis. Chaga mushroom polysaccharides comprised xylulose, rhamnose, mannose, glucose, inositol, and galactose, in addition to phenolic compounds; zebrafish embryos exhibited normal embryonic development upon transient exposure to Chaga extract (24 hours). Most embryos (>90%) were found to be healthy even at high concentrations (5 mg/mL). In addition, staining with the DNA binding dye, acridine orange showed that Chaga polysaccharides alleviated oxidative stress. Flow cytometric analysis using H2DCFDA that specifically binds to cells with fragmented DNA showed significantly reduced levels of intracellular reactive oxygen species (ROS) (p < 0.05), which in turn reduced apoptosis in the developing embryos. Cell cycle analysis by measuring the DNA content using flow cytometry revealed that Chaga polysaccharides moderately arrested the cells at G1 stage, thereby inhibiting cell proliferation that can be further explored in cancer studies. Overall, transient exposure of Chaga polysaccharide extract reduced intracellular ROS and assisted in the normal development of zebrafish.
Collapse
Affiliation(s)
- Jehane Ibrahim Eid
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
24
|
Fang Z, Lin M, Li C, Liu H, Gong C. A comprehensive review of the roles of E2F1 in colon cancer. Am J Cancer Res 2020; 10:757-768. [PMID: 32266089 PMCID: PMC7136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
E2F transcription factor 1 (E2F1) is a member of the E2F family of transcription factors. E2F1 binds to DNA with dimerization partner (DP) proteins through an E2 recognition site. The dissociation of E2F1 from retinoblastoma (Rb) protein recovers its transcriptional activity, which drives the cell cycle from the G1 to S phase. E2F1 has been shown to be involved in cellular proliferation, differentiation, and apoptosis in colon cancer. It was recently found that E2F1 also participates in the metastasis and chemoresistance of colon cancer. There are abundant experimental data regarding the actions of E2F1, which can be grouped as either pro-tumorigenic or pro-apoptotic. Despite a growing interest and plentiful data, there is currently no review that focuses on the role of E2F1 in colon cancer. Research on E2F1 and colon cancer has been scattered over various genes and microRNAs (miRNAs) that affect E2F1 expression. Here, we provide the first review that aims to consider and dissect all of the elucidated complex behaviors of E2F1 in colon cancer. This review also provides an analysis and conclusion regarding the current understanding of E2F1 in colon cancer in order to facilitate the direction of future research.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
- Department of Gastroenterology, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
| | - Min Lin
- Central Laboratory, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
| | - Chunxiao Li
- Department of Gastroenterology, Ningbo First HospitalNingbo 315010, China
| | - Hong Liu
- Zhejiang Normal University-Jinhua People’s Hospital Joint Center for Biomedical ResearchJinhua 321004, China
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple UniversityPhiladelphia, PA 19140, USA
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221002, China
| |
Collapse
|
25
|
Gründemann C, Reinhardt JK, Lindequist U. European medicinal mushrooms: Do they have potential for modern medicine? - An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153131. [PMID: 31790898 DOI: 10.1016/j.phymed.2019.153131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The application of mushrooms for health purposes has a long tradition and is very common in Asian countries. This trend is also becoming increasingly popular in the western hemisphere. However, mushrooms from European tradition are being treated in a restrained manner despite having significant potential as drugs or as sources of pure bioactive substances. AIM The present review provides an overview of the most important mushrooms used in European ethnomedical traditions and explores their pharmacological potential and the challenges for the development of new drugs from these sources of natural products. METHOD Mushroom species were selected based on information in old herbal books and dispensaries, uninterrupted use and scientific literature in the PubMed database up to June 2019. RESULTS Traditional experiences and modern studies have demonstrated that medical mushrooms used in European traditions have promising distinct pharmacological potential mediated through defined mechanisms (anti-tumour, anti-inflammatory, anti-oxidative and anti-bacterial). However, the number of modern chemical, biological and pharmacological studies remains relatively small, and some mushroom species have not been studied at all. Unfortunately, no valid clinical studies can be found. Unlike the case with herbal and fungal drugs from traditional Chinese medicine, we are far from comprehensively exploring this potential. CONCLUSIONS Mushrooms from traditional European medicine have the potential to be used in modern medicine. Considerable research, interdisciplinary collaboration, involvement of the pharmaceutical industry, time and money are necessary to explore this potential not only in the form of dietary supplements but also in the form of approved drugs.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Breisacher Str. 115B, 79111 Freiburg, Germany.
| | - Jakob K Reinhardt
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ulrike Lindequist
- Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, F.-l.-Jahn-Str. 17, 17487 Greifswald, Germany
| |
Collapse
|
26
|
Duru KC, Kovaleva EG, Danilova IG, Bijl P. The pharmacological potential and possible molecular mechanisms of action ofInonotus obliquusfrom preclinical studies. Phytother Res 2019; 33:1966-1980. [DOI: 10.1002/ptr.6384] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Kingsley C. Duru
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Elena G. Kovaleva
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Irina G. Danilova
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
- Institute of Immunology and Physiology of the Ural BranchRussia Academy of Science Yekaterinburg Russia
| | - Pieter Bijl
- Department of Pharmacology, Faculty of Medicine and Health SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
27
|
Vieira Gomes DC, de Alencar MVOB, dos Reis AC, de Lima RMT, de Oliveira Santos JV, da Mata AMOF, Soares Dias AC, da Costa JS, de Medeiros MDGF, Paz MFCJ, Gayoso e Almendra Ibiapina Moreno LC, Castro e Sousa JMD, Islam MT, Melo Cavalcante AADC. Antioxidant, anti-inflammatory and cytotoxic/antitumoral bioactives from the phylum Basidiomycota and their possible mechanisms of action. Biomed Pharmacother 2019; 112:108643. [DOI: 10.1016/j.biopha.2019.108643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
|
28
|
Szychowski KA, Rybczyńska-Tkaczyk K, Tobiasz J, Yelnytska-Stawasz V, Pomianek T, Gmiński J. Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int J Mol Sci 2017; 18:1934. [PMID: 28885559 PMCID: PMC5618583 DOI: 10.3390/ijms18091934] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/05/2023] Open
Abstract
Mushrooms have long been used for medicinal and food purposes for over a thousand years, but a complete elucidation of the health-promoting properties of mushrooms through regulating gut microbiota has not yet been fully exploited. Mushrooms comprise a vast, and yet largely untapped, source of powerful new pharmaceutical substances. Mushrooms have been used in health care for treating simple and common diseases, like skin diseases and pandemic diseases like AIDS. This review is aimed at accumulating the health-promoting benefits of edible mushrooms through gut microbiota. Mushrooms are proven to possess anti-allergic, anti-cholesterol, anti-tumor, and anti-cancer properties. Mushrooms are rich in carbohydrates, like chitin, hemicellulose, β and α-glucans, mannans, xylans, and galactans, which make them the right choice for prebiotics. Mushrooms act as a prebiotics to stimulate the growth of gut microbiota, conferring health benefits to the host. In the present review, we have summarized the beneficial activities of various mushrooms on gut microbiota via the inhibition of exogenous pathogens and, thus, improving the host health.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, No. 28 Jinfeng Road, Tangjiawan, Zhuhai 519085, Guangdong, China.
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Baojun Xu
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, No. 28 Jinfeng Road, Tangjiawan, Zhuhai 519085, Guangdong, China.
| |
Collapse
|
31
|
Lee MS, Kim MS, Yoo JK, Lee JY, Ju JE, Jeong YK. Enhanced anticancer effects of a mixture of low-dose mushrooms and Panax ginseng root extracts in human colorectal cancer cells. Oncol Rep 2017; 38:1597-1604. [PMID: 28714027 DOI: 10.3892/or.2017.5796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/30/2017] [Indexed: 11/05/2022] Open
Abstract
Worldwide, colorectal cancer is the third most common cancer in men and the second most common in women. As conventional colorectal cancer therapies result in various side effects, there is a need for adjuvant therapy that can enhance the conventional therapies without complications. In this study, we investigated the anticancer effects of combined mixture of the several medicinal mushrooms and Panax ginseng root extracts (also called Amex7) as an adjuvant compound in the treatment of human colorectal cancer. We observed the in vivo inhibitory effect of Amex7 (1.25, 6.25, and 12.5 ml/kg, oral administration, twice daily) on tumor growth in a mouse model xenografted with HT-29 human colorectal cancer cells. In vitro, at 6, 12, and 24 h after 4% Amex7 treatment, we analyzed cell cycle by flow cytometry and the expression levels of cell cycle progression, apoptosis, and DNA damage repair-related proteins using immunoblotting and immunofluorescence staining in HT-29 cell line. As a result, Amex7 significantly suppressed tumor growth in HT-29 human colorectal cancer cells and xenografts. In vitro, Amex7 induced G2/M arrest through the regulation of cell cycle proteins and cell death by apoptosis and autophagy. Additionally, Amex7 consistently induced DNA damage and delayed the repair of Amex7-induced DNA damage by reducing the level of HR repair proteins. In conclusion, Amex7 enhanced anticancer effects through the induction of G2/M arrest and cell death, including apoptosis and autophagy. Furthermore, Amex7 impaired DNA damage repair. The present study provides a scientific rationale for the clinical use of a combined mixture of medicinal mushrooms and P. ginseng root extracts as an adjuvant treatment in human colorectal cancer.
Collapse
Affiliation(s)
- Mi So Lee
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jae Kuk Yoo
- Han Kook Shin Yak Pharmaceutical Co., Ltd., Nonsan 33023, Republic of Korea
| | - Ji Young Lee
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jae Eun Ju
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Youn Kyoung Jeong
- Radiation Non-clinical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
32
|
Nikitina SA, Khabibrakhmanova VR, Sysoeva MA. [Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:369-75. [PMID: 27562990 DOI: 10.18097/pbmc20166204369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on the chemical composition of triterpenic and steroid compounds, isolated from the chaga mushroom grown in natural environment or in a synthetic culture have been summarized. Special attention has been paid to the biological activity of chaga mushroom extracts and these particular compounds against various cancer cell lines in vitro and in vivo. This analysis has demonstrated some common features in inhibition of growth of various cell lines by chaga mushroom components. In this context, the most active are triterpene compounds containing OH group at C-22 and a side chain unsaturated bond.
Collapse
Affiliation(s)
- S A Nikitina
- Kazan National Research Technological University, Kazan, Russia
| | | | - M A Sysoeva
- Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
33
|
Nikitina SA, Habibrakhmanova VR, Sysoeva MA. Chemical composition and biological activity of triterpenes and steroids of chaga mushroom. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|