1
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
2
|
Wen A, Wang J, Deng Q, Ren T, Yang J, Wen G, Ou D. The anti-inflammatory effect of arsenic trioxide effectively mitigates the pathogenic process in local chickens with avian leukosis. Poult Sci 2024; 103:104288. [PMID: 39353327 PMCID: PMC11472604 DOI: 10.1016/j.psj.2024.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Arsenic trioxide (ATO) is a classic first-line treatment for acute promyelocytic leukemia (APL). An increasing number of studies regarding the use of ATO in tumor treatment have shown consistently remarkable results. In this study, subgroup J avian leukosis virus (ALV-J) was used as a model virus, and different doses of ATO were used to treat ALV-J-positive chickens. Sexually mature green-shelled laying hens from the same ALV-J-positive offspring were grouped and treated with one of 3 different doses of ATO. The anti-inflammatory effects of different doses of ATO in ALV-J-positive chickens and their mechanisms were investigated by analyzing levels of inflammatory cytokines, antioxidant parameters and apoptosis-related genes. The results showed that ATO administration mitigated ALV-induced lymphoid leukosis in the liver. ATO inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway and downregulated the expression levels of the inflammatory cytokines IL-1β, IL-6 and TNF-α. The SOD and GSH-Px activities were also increased, and the MDA content was decreased in the serum of ALV-J-positive chickens treated with different doses of ATO, so the antioxidant capacity of ALV-J-positive chickens was improved. The mRNA expression levels of p53, p21 and Bcl-2 in the livers of ALV-J-positive chickens treated with different doses of ATO were significantly downregulated, which induced the apoptosis of tumor cells and slowed the inflammatory response. The combined analysis revealed that the therapeutic effect of 2 mg/kg/dose ATO was superior to that of the other 2 treatments (0.5 and 1 mg/kg/dose ATO). In conclusion, the anti-inflammatory effect of ATO can effectively alleviate the ALV-J pathogenic process. ALV-J serves as a model virus for antiviral tumor research, while ATO provides references for the treatment of such tumors.
Collapse
Affiliation(s)
- Anlin Wen
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025
| | - Jianjun Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025
| | - Qiaomu Deng
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025.
| | - Tao Ren
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025
| | - Jian Yang
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025
| | - Guilan Wen
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025
| | - Deyuan Ou
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China 550025.
| |
Collapse
|
3
|
Ran X, Hu G, Guo W, Li K, Wang X, Liu J, Fu S. Hesperetin regulates the intestinal flora and inhibits the TLR4/NF-κB signaling axis to protect the blood-milk barrier and prevent mastitis. Life Sci 2024; 342:122533. [PMID: 38428570 DOI: 10.1016/j.lfs.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization recommends breastfeeding for 6 months, but mastitis, a common disease during lactation, presents a major obstacle to fulfilling this recommendation. Maternal nutrient intake during lactation has been shown to be related to mastitis. Therefore, this study aimed to explore the effect of hesperetin, a phytonutrient, on mastitis. The oral administration of hesperetin to lipopolysaccharide (LPS)-induced mastitis mice alleviated their pathological damage, reduced the secretion of pro-inflammatory cytokines, and maintained the integrity of their blood-milk barrier. Moreover, our results showed that oral administration of hesperetin regulates the composition of the intestinal flora of mice. Fecal microbial transplantation (FMT) from the mice of hesperetin group alleviated LPS-induced mastitis in recipient mice. In additional, hesperetin attenuated the inflammatory response and increased the expression of tight junction proteins (TJs) in LPS-stimulated mouse mammary epithelial cells (mMECs). Through network pharmacological analysis and further research, we demonstrated hesperetin inhibits the expression of TLR4 and the activation of NF-κB signaling. In conclusion, hesperetin protects the blood-milk barrier and improve mastitis by regulating intestinal flora and inhibiting the activation of TLR4/NF-κB signaling axis. This study provides a theoretical basis for lactating females to consume hesperetin as a supplement to prevent mastitis and maintain mammary health.
Collapse
Affiliation(s)
- Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kefei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
5
|
Mirzaei A, Mirzaei A, Najjar Khalilabad S, Askari VR, Baradaran Rahimi V. Promising influences of hesperidin and hesperetin against diabetes and its complications: a systematic review of molecular, cellular, and metabolic effects. EXCLI JOURNAL 2023; 22:1235-1263. [PMID: 38234970 PMCID: PMC10792178 DOI: 10.17179/excli2023-6577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Hesperidin and hesperetin, two flavonoids with potential therapeutic value, have been extensively studied in the context of diabetes management. The main objective of this research is to ascertain their potential as therapeutic options for managing diabetes and its complications. The present study utilized a systematic review methodology and comprehensively explored relevant literature from databases, including PubMed, Scopus, and Web of Science, from inception until July 2023. The review summarized the outcomes related to the molecular, cellular, and metabolic effects of hesperidin and hesperetin in diabetes and its complications. Hesperetin exhibits a potential treatment for preventing diabetes and its associated complications through modulation of inflammatory cytokine release and expression via the pathway of signaling through Toll-like receptor/Myeloid differentiation factor 88/Nuclear factor-kappa B. Hesperidin shows promise as a biomolecule for treating diabetic neuropathy, primarily through activation of nuclear factor erythroid 2-related factor 2 (Nrf-2), as an antioxidant-response element signaling, leading to neuroprotective effects. Both compounds demonstrated the ability to normalize blood glucose levels and reduce serum and liver lipid levels, making them potential candidates for managing hypoglycemia and hypolipidemia in diabetes. Hesperidin also showed potential benefits against diabetic nephropathy by suppressing transforming growth factor-β1-integrin-linked kinase-Akt signaling and enhancing renal function. Furthermore, hesperidin's antioxidant, anti-inflammatory, and anti-depressant effects in diabetic conditions expanded its potential therapeutic applications. This systematic review provides substantial evidence supporting the consideration of hesperidin and hesperetin for diabetes and its complications. It offers exciting possibilities for developing novel, cost-effective treatment options to enhance diabetes management and patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023; 28:7209. [PMID: 37894687 PMCID: PMC10609456 DOI: 10.3390/molecules28207209] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials.
Collapse
Affiliation(s)
- Arman Arabshomali
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
7
|
Wang Z, Liang M, Li H, Liu B, Yang L. L-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats. Nutr Res Pract 2022; 16:729-744. [PMID: 36467767 PMCID: PMC9702547 DOI: 10.4162/nrp.2022.16.6.729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND/OBJECTIVES 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of L-methionine in rats. MATERIALS/METHODS Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of L-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed L-methionine, which were attributed to the stimulation of GST by L-methionine. With decreasing HNE levels, L-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by L-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by L-methionine. The anti-inflammatory action of L-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to L-methionine availability. The anti-inflammatory mechanism exerted by L-methionine was to inhibit NF-κB activation and to up-regulate GST.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bingxiao Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Lu L, Peng J, Wan P, Peng H, Lu J, Xiong G. Mechanism of Tripterygium wilfordii Hook.F.- Trichosanthes kirilowii Maxim decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking. Front Pharmacol 2022; 13:940773. [PMID: 36386135 PMCID: PMC9650488 DOI: 10.3389/fphar.2022.940773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease. The effective treatment of DKD would rely on the incorporation of a multi-disciplinary. Studies have shown that Tripterygium wilfordii Hook.F. and Trichosanthes kirilowii Maxim have remarkable curative effects in treating DKD, but their combination mechanism has not been fully elucidated. Methods: We explored the mechanism of Tripterygium wilfordii Hook.F.-Trichosanthes kirilowii Maxim decoction (Leigongteng-Tianhuafen Decoction,LTD) in the treatment of DKD by network pharmacology and molecular docking. The main active components and action targets of LTD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of DKD were obtained from GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. Then, an herb-component-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein-protein interaction (PPI) network was constructed to identify hub targets of DKD. The gene ontology (GO) function enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed by RStudio. Finally, molecular docking was performed by AutoDock Vina and PyMOL software to explore the interaction between compounds and targets. Furthermore, the DKD model of human renal tubular cells (HK-2) induced by high glucose (HG) was selected, and the predicted results were verified by western blot analysis and immunofluorescence. Results: A total of 31 active components of LTD were screened out, and 196 targets were identified based on the TCMSP database. A total of 3,481 DKD related targets were obtained based on GeneCards, DisGeNET, and OMIM databases. GO function enrichment analysis included 2,143, 50, and 167 GO terms for biological processes (BPs), cellular composition (CCs), and molecular functions (MFs), respectively. The top 10 enrichment items of BP annotations included response to lipopolysaccharide, response to molecule of bacterial origin, response to extracellular stimulus, etc. CC was mainly enriched in membrane raft, membrane microdomain, plasma membrane raft, etc. The MF of LTD analysis on DKD was predominately involved in nuclear receptor activity, ligand-activated transcription factor activity, RNA polymerase II-specific DNA-binding transcription factor binding, etc. The involvement signaling pathway of LTD in the treatment of DKD included AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, insulin resistance, TNF signaling pathway, etc. Molecular docking results showed that kaempferol, triptolide, nobiletin, and schottenol had a strong binding ability to PTGS2 and RELA. Furthermore, the in vitro experiments confirmed that LTD effectively decreased the expression of PTGS2, NF-κB, JNK, and AKT in the HG-induced DKD model. Conclusion: The findings of this study revealed that the therapeutic efficacy of LTD on DKD might be achieved by decreasing the expression of PTGS2, NF-κB, JNK, and AKT, which might improve insulin resistance, inflammation, and oxidative stress. These findings can provide ideas and supply potential therapeutic targets for DKD.
Collapse
Affiliation(s)
- Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Peijun Wan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hongcheng Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Jiandong Lu, ; Guoliang Xiong,
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Jiandong Lu, ; Guoliang Xiong,
| |
Collapse
|
9
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
10
|
Yang H, Wang Y, Xu S, Ren J, Tang L, Gong J, Lin Y, Fang H, Su D. Hesperetin, a Promising Treatment Option for Diabetes and Related Complications: A Literature Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8582-8592. [PMID: 35801973 DOI: 10.1021/acs.jafc.2c03257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The morbidity and mortality of diabetes have increased dramatically in recent decades. Novel strategies for treating diabetes and its complications with minimal side effects are in urgent need. New monomeric molecules extracted from herbal medicine, which is a form of alternative medicine, are being sought as drug candidates for the treatment of diabetes and its complications. Hesperetin (Hst), a citrus flavonoid, is of increasing interest in scientific studies recently due to its properties in combating diabetes and its complications, whereas existing studies are scattered and unsystematic. Here, we summarized the literature studies over the last 10 years to review the potential therapeutic role of Hst in the prevention and mitigation of diabetes and its complications, intending to provide promising strategies for the clinical management of diabetes and its complications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yujie Wang
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, the First Peoples's Hospital of Changzhou, Changzhou 213003, China
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Jie Ren
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Lidan Tang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Jinhong Gong
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Ying Lin
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|