1
|
Hoch CC, Shoykhet M, Weiser T, Griesbaum L, Petry J, Hachani K, Multhoff G, Bashiri Dezfouli A, Wollenberg B. Isothiocyanates in medicine: A comprehensive review on phenylethyl-, allyl-, and benzyl-isothiocyanates. Pharmacol Res 2024; 201:107107. [PMID: 38354869 DOI: 10.1016/j.phrs.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Shoykhet
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
2
|
Tong M, Yang X, Liu H, Ge H, Huang G, Kang X, Yang H, Liu Q, Ren P, Kuang X, Yan H, Shen X, Qiao Y, Kang Y, Li L, Yang Y, Fan W. The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. Int Immunopharmacol 2023; 117:109924. [PMID: 36848791 DOI: 10.1016/j.intimp.2023.109924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Haixia Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Hao Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Peng Ren
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaoyu Kuang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huan Yan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaorong Shen
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Lin Li
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|