1
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Song EM, Joo YH, Choe AR, Park Y, Tae CH, Hong JT, Moon CM, Kim SE, Jung HK, Shim KN, Cho KA, Jo I, Jung SA. Three-dimensional culture method enhances the therapeutic efficacies of tonsil-derived mesenchymal stem cells in murine chronic colitis model. Sci Rep 2021; 11:19589. [PMID: 34599237 PMCID: PMC8486762 DOI: 10.1038/s41598-021-98711-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tonsil-derived mesenchymal stem cells (TMSCs) showed therapeutic effects on acute and chronic murine colitis models, owing to their immunomodulatory properties; therefore, we evaluated enhanced therapeutic effects of TMSCs on a murine colitis model using three-dimensional (3D) culture method. The expression of angiogenic factors, VEGF, and anti-inflammatory cytokines, IL-10, TSG-6, TGF-β, and IDO-1, was significantly higher in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P < 0.05). At days 18 and 30 after inducing chronic colitis, disease activity index scores were estimated to be significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001 and P < 0.001, respectively) and 2D-TMSC-treated groups (P = 0.022 and P = 0.004, respectively). Body weight loss was significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001) and 2D-TMSC-treated groups (P = 0.005). Colon length shortening was significantly recovered in the 3D-TMSC-treated group compared to that in the 2D-TMSC-treated group (P = 0.001). Histological scoring index was significantly lower in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P = 0.002). These results indicate that 3D-cultured TMSCs showed considerably higher therapeutic effects in a chronic murine colitis model than those of 2D-cultured TMSCs via increased anti-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Eun Mi Song
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yang Hee Joo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - A Reum Choe
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yehyun Park
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chung Hyun Tae
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Ji Teak Hong
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hye-Kyung Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Ki-Nam Shim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
3
|
Jung H, Son GM, Lee JJ, Park HS. Therapeutic Effects of Tonsil-derived Mesenchymal Stem Cells in an Atopic Dermatitis Mouse Model. In Vivo 2021; 35:845-857. [PMID: 33622877 DOI: 10.21873/invivo.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Mesenchymal stem cells (MSCs) have been suggested as an alternative therapeutic option in atopic dermatitis. Palatine tonsils are lymphoepithelial tissue located around the oropharynx and have been proposed as one of the important alternative sources of MSCs. The purpose of this study was to evaluate the protective and therapeutic effects of tonsil-derived MSCs (TMSCs) in a 2,4-dinitrofluorobenzene (DNFB)-induced mouse model of atopic dermatitis (AD). MATERIALS AND METHODS The effect of TMSCs was evaluated in 20 C57BL/6J mice that were randomly divided into four groups (normal, DNFB-PBS, DNFB-TMSC7, and DNFB-TMSC16 group). TMSCs were subcutaneously injected into DNFB-sensitized mice on day 7 (DNFB-TMSC7 group) and day 16 (DNFB-TMSC16 group). Several parameters of inflammation were assessed. RESULTS Subcutaneously injected TMSCs significantly improved the inflammatory symptoms in a DNFB-induced AD model mice, particularly showing therapeutic effects rather than protective effects. TMSC treatment inhibited T-cell-mediated inflammatory responses by decreasing the levels of IL-6, IL-1β, TNF-α (Th1 cell marker), IL-4 (Th2 cell marker), and B-cell-mediated serum IgE. In contrast, TMSCs enhanced the anti-inflammatory cytokine TGF-β. CONCLUSION In vitro and in vivo results suggest that TMSC treatment improved inflammatory skin lesions in the DNFB-induced AD mice model via immunomodulatory effects of the TMSCs. TMSCs inhibit T-cell and B-cell mediated responses, and enhance the anti-inflammatory responses.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea
| | - Gil Myeong Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hae Sang Park
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea; .,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Lee KE, Jung SA, Joo YH, Song EM, Moon CM, Kim SE, Jo I. The efficacy of conditioned medium released by tonsil-derived mesenchymal stem cells in a chronic murine colitis model. PLoS One 2019; 14:e0225739. [PMID: 31790467 PMCID: PMC6886802 DOI: 10.1371/journal.pone.0225739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Tonsil-derived mesenchymal stem cells (TMSC) have characteristics of MSC and have many advantages. In our previous studies, intraperitoneal (IP) injection of TMSC in acute and chronic colitis mouse models improved the disease activity index, colon length, and the expression levels of proinflammatory cytokines. However, TMSC were not observed to migrate to the inflammation site in the intestine. The aim of this study was to verify the therapeutic effect of conditioned medium (CM) released by TMSC (TMSC-CM) in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. TMSC-CM was used after seeding 5×105 cells onto a 100 mm dish and culturing for 5-7 days. TMSC-CM was concentrated (TMSC-CM-conc) by three times using a 100 kDa cut-off centrifugal filter. Seven-week-old C57BL/6 mice were randomly assigned to the following 5 groups: 1) normal, 2) colitis, 3) TMSC, 4) TMSC-CM, and 5) TMSC-CM-conc. Chronic colitis was induced by continuous oral administration of 1.5% dextran sulfate sodium (DSS) for 5 days, followed by 5 additional days of tap water feeding. This cycle was repeated two more times (total 30 days). Phosphate buffered saline (in the colitis group), TMSC, TMSC-CM, and TMSC-CM-conc were injected via IP route 4, 4, 12, and 4 times, respectively. Reduction of disease activity index, weight gain, recovery of colon length, and decreased in the expression level of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and IL-17 were observed at day 30 in the treatment groups, compared to control. However, histological colitis scoring and the expression level of tumor necrosis factor α and IL-10 did not differ significantly between each group. TMSC-CM showed an equivalent effect to TMSC related to the improvement of inflammation in the chronic colitis mouse model. The data obtained support the use of TMSC-CM to treat inflammatory bowel disease without any cell transplantation.
Collapse
Affiliation(s)
- Ko Eun Lee
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
- * E-mail:
| | - Yang-Hee Joo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Eun Mi Song
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|