1
|
Patchen BK, Zhang J, Gaddis N, Bartz TM, Chen J, Debban C, Leonard H, Nguyen NQ, Seo J, Tern C, Allen R, DeMeo DL, Fornage M, Melbourne C, Minto M, Moll M, O'Connor G, Pottinger T, Psaty BM, Rich SS, Rotter JI, Silverman EK, Stratford J, Graham Barr R, Cho MH, Gharib SA, Manichaikul A, North K, Oelsner EC, Simonsick EM, Tobin MD, Yu B, Choi SH, Dupuis J, Cassano PA, Hancock DB. Multi-ancestry genome-wide association study reveals novel genetic signals for lung function decline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.25.24317794. [PMID: 39649580 PMCID: PMC11623738 DOI: 10.1101/2024.11.25.24317794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Rationale Accelerated decline in lung function contributes to the development of chronic respiratory disease. Despite evidence for a genetic component, few genetic associations with lung function decline have been identified. Objectives To evaluate genome-wide associations and putative downstream functionality of genetic variants with lung function decline in diverse general population cohorts. Methods We conducted genome-wide association study (GWAS) analyses of decline in the forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and their ratio (FEV1/FVC) in participants across six cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. Genotypes were imputed to TOPMed (CHARGE cohorts) or Haplotype Reference Consortium (HRC) (UK Biobank) reference panels, and GWAS analyses used generalized estimating equation models with robust standard error. Models were stratified by cohort, ancestry, and sex, and adjusted for important lung function confounders and genotype principal components. Results were combined in cross-ancestry and ancestry-specific meta-analyses. Selected top variants were tested for replication in two independent COPD-enriched cohorts. Measurements and Main Results Our discovery analyses included 52,056 self-reported White (N=44,988), Black (N=5,788), Hispanic (N=550), and Chinese American (N=730) participants with a mean of 2.3 spirometry measurements and 8.6 years of follow-up. Functional mapping of GWAS meta-analysis results identified 361 distinct genome-wide significant (p<5E-08) variants in one or more of the FEV1, FVC, and FEV1/FVC decline phenotypes, which overlapped with previously reported genetic signals for several related pulmonary traits. Of these, 8 variants, or 20.5% of the variant set available for replication testing, were nominally associated (p<0.05) with at least one decline phenotype in COPD-enriched cohorts (White [N=4,778] and Black [N=1,118]). Using the GWAS results, gene-level analysis implicated 38 genes, including eight (XIRP2, GRIN2D, SATB1, MARCHF4, SIPA1L2, ANO5, H2BC10, and FAF2) with consistent associations across ancestries or decline phenotypes. Annotation class analysis revealed significant enrichment of several regulatory processes for corticosteroid biosynthesis and metabolism. Drug repurposing analysis identified 43 approved compounds targeting eight of the implicated 38 genes. Conclusions Our multi-ancestry GWAS meta-analyses identified numerous genetic loci associated with lung function decline. These findings contribute knowledge to the genetic architecture of lung function decline, provide evidence for a role of endogenous corticosteroids in the etiology of lung function decline, and identify drug targets that merit further study for potential repurposing to slow lung function decline and treat lung disease.
Collapse
Affiliation(s)
- Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jingwen Zhang
- Boston University School of Public Health, Boston, MA
| | | | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics, Medicine, Epidemiology, Health Systems and Population Health, University of Washington, Seattle, WA
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine Debban
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD
| | - Ngoc Quynh Nguyen
- School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Jungkun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Courtney Tern
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Richard Allen
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Carl Melbourne
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- UK Biobank, Ltd., Stockport, UK
| | | | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Tess Pottinger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Biostatistics, Medicine, Epidemiology, Health Systems and Population Health, University of Washington, Seattle, WA
| | - Stephen S Rich
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - R Graham Barr
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Ani Manichaikul
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Kari North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | | | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Bing Yu
- School of Public Health, University of Texas Health Science Center, Houston, TX
| | | | - Josee Dupuis
- Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Québec
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
2
|
Nkoy FL, Stone BL, Deering-Rice CE, Zhu A, Lamb JG, Rower JE, Reilly CA. Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes. Int J Mol Sci 2024; 25:6548. [PMID: 38928254 PMCID: PMC11203737 DOI: 10.3390/ijms25126548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Genetic variation among inhaled corticosteroid (ICS)-metabolizing enzymes may affect asthma control, but evidence is limited. This study tested the hypothesis that single-nucleotide polymorphisms (SNPs) in Cytochrome P450 3A5 (CYP3A5) would affect asthma outcomes. Patients aged 2-18 years with persistent asthma were recruited to use the electronic AsthmaTracker (e-AT), a self-monitoring tool that records weekly asthma control, medication use, and asthma outcomes. A subset of patients provided saliva samples for SNP analysis and participated in a pharmacokinetic study. Multivariable regression analysis adjusted for age, sex, race, and ethnicity was used to evaluate the impact of CYP3A5 SNPs on asthma outcomes, including asthma control (measured using the asthma symptom tracker, a modified version of the asthma control test or ACT), exacerbations, and hospital admissions. Plasma corticosteroid and cortisol concentrations post-ICS dosing were also assayed using liquid chromatography-tandem mass spectrometry. Of the 751 patients using the e-AT, 166 (22.1%) provided saliva samples and 16 completed the PK study. The e-AT cohort was 65.1% male, and 89.6% White, 6.0% Native Hawaiian, 1.2% Black, 1.2% Native American, 1.8% of unknown race, and 15.7% Hispanic/Latino; the median age was 8.35 (IQR: 5.51-11.3) years. CYP3A5*3/*3 frequency was 75.8% in White subjects, 50% in Native Hawaiians and 76.9% in Hispanic/Latino subjects. Compared with CYP3A5*3/*3, the CYP3A5*1/*x genotype was associated with reduced weekly asthma control (OR: 0.98; 95% CI: 0.97-0.98; p < 0.001), increased exacerbations (OR: 6.43; 95% CI: 4.56-9.07; p < 0.001), and increased asthma hospitalizations (OR: 1.66; 95% CI: 1.43-1.93; p < 0.001); analysis of 3/*3, *1/*1 and *1/*3 separately showed an allelic copy effect. Finally, PK analysis post-ICS dosing suggested muted changes in cortisol concentrations for patients with the CYP3A5*3/*3 genotype, as opposed to an effect on ICS PK. Detection of CYP3A5*3/3, CYPA35*1/*3, and CYP3A5*1/*1 could impact inhaled steroid treatment strategies for asthma in the future.
Collapse
Affiliation(s)
- Flory L. Nkoy
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - Bryan L. Stone
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Angela Zhu
- Department of Pediatrics, University of Utah School of Medicine, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA; (F.L.N.); (B.L.S.); (A.Z.)
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Joseph E. Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S 2000 E, Room 201 Skaggs Hall, Salt Lake City, UT 84112, USA; (C.E.D.-R.); (J.G.L.); (J.E.R.)
| |
Collapse
|
3
|
Al-Isawi Z, Kadhim S, Yahya Y, Hadi NR. Stress as a possible cause of a high incidence of hypertension and diabetes and a low incidence of asthma in the Iraqi population. J Med Life 2023; 16:434-441. [PMID: 37168309 PMCID: PMC10165509 DOI: 10.25122/jml-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 05/13/2023] Open
Abstract
Hypertension and diabetes represent a significant public health burden worldwide and are significant risk factors for heart disease and stroke. Nevertheless, Iraqi people, in particular, experience higher levels of stress due to political instability and economic issues. The study aimed to investigate the prevalence of common morbidities among Iraqi patients and the possible relationship with exposure to stress. The data was collected from patients (n=500) who attended the health center in Najaf, Iraq, between 25 August 2021 and 30 September 2021. The prevalence of hypertension, diabetes, and asthma among Iraqi people was determined along with patients' awareness and control of these conditions. In addition, patients were asked about their experiences with stress, including the type of stress they encountered. Our findings revealed that nearly 47% of patients involved in this study had hypertension, with the highest percentage in patients over 40. Moreover, the incidence of diabetes was 12%, with the highest incidence in the age group of 40-59. The incidence of asthma was lower in all groups. Data analysis concerning exposure to stress demonstrated that about 60% of patients suffer from a stressful life. We found that the incidence of hypertension and diabetes was high while the incidence of asthma was low. This study also reveals that a considerable number of people were unaware of their hypertension and diabetes. Exposure to daily life stress among Iraqi people may play a role in the observed incidence of these morbidities.
Collapse
Affiliation(s)
- Zahraa Al-Isawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Kufa, Iraq
- Corresponding Author: Zahraa Al-Isawi, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Kufa, Iraq. E-mail:
| | - Salim Kadhim
- College of Pharmacy, University of Alkafeel, Kufa, Iraq
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Yahya Yahya
- College of Pharmacy, University of Alkafeel, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
4
|
Kachroo P, Stewart ID, Kelly RS, Stav M, Mendez K, Dahlin A, Soeteman DI, Chu SH, Huang M, Cote M, Knihtilä HM, Lee-Sarwar K, McGeachie M, Wang A, Wu AC, Virkud Y, Zhang P, Wareham NJ, Karlson EW, Wheelock CE, Clish C, Weiss ST, Langenberg C, Lasky-Su JA. Metabolomic profiling reveals extensive adrenal suppression due to inhaled corticosteroid therapy in asthma. Nat Med 2022; 28:814-822. [PMID: 35314841 PMCID: PMC9350737 DOI: 10.1038/s41591-022-01714-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
The application of large-scale metabolomic profiling provides new opportunities for realizing the potential of omics-based precision medicine for asthma. By leveraging data from over 14,000 individuals in four distinct cohorts, this study identifies and independently replicates 17 steroid metabolites whose levels were significantly reduced in individuals with prevalent asthma. Although steroid levels were reduced among all asthma cases regardless of medication use, the largest reductions were associated with inhaled corticosteroid (ICS) treatment, as confirmed in a 4-year low-dose ICS clinical trial. Effects of ICS treatment on steroid levels were dose dependent; however, significant reductions also occurred with low-dose ICS treatment. Using information from electronic medical records, we found that cortisol levels were substantially reduced throughout the entire 24-hour daily period in patients with asthma who were treated with ICS compared to those who were untreated and to patients without asthma. Moreover, patients with asthma who were treated with ICS showed significant increases in fatigue and anemia as compared to those without ICS treatment. Adrenal suppression in patients with asthma treated with ICS might, therefore, represent a larger public health problem than previously recognized. Regular cortisol monitoring of patients with asthma treated with ICS is needed to provide the optimal balance between minimizing adverse effects of adrenal suppression while capitalizing on the established benefits of ICS treatment.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Rachel S Kelly
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meryl Stav
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Mendez
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Dahlin
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Djøra I Soeteman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Health Decision Science, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Su H Chu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mengna Huang
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Margaret Cote
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Knihtilä
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen Lee-Sarwar
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberta Wang
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ann Chen Wu
- Harvard Pilgrim Health Care Institute and Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Yamini Virkud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pei Zhang
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute, Stockholm, Sweden
| | | | - Elizabeth W Karlson
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E Wheelock
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wang B, Zhao C, Wang Z, Yang KA, Cheng X, Liu W, Yu W, Lin S, Zhao Y, Cheung KM, Lin H, Hojaiji H, Weiss PS, Stojanović MN, Tomiyama AJ, Andrews AM, Emaminejad S. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. SCIENCE ADVANCES 2022; 8:eabk0967. [PMID: 34985954 PMCID: PMC8730602 DOI: 10.1126/sciadv.abk0967] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In2O3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array–based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.
Collapse
Affiliation(s)
- Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaoqing Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenzhuo Yu
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haisong Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannaneh Hojaiji
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanović
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - A. Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| |
Collapse
|
6
|
Parra LA, Hastings PD. Challenges to Identity Integration Indirectly Link Experiences of Heterosexist and Racist Discrimination to Lower Waking Salivary Cortisol in Sexually Diverse Latinx Emerging Adults. Front Psychol 2020; 11:228. [PMID: 32161561 PMCID: PMC7053485 DOI: 10.3389/fpsyg.2020.00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Heterosexist and racist discrimination may adversely impact neurobiological processes implicated in the physical and psychosocial well-being of sexually diverse Latinx people. Yet, little is known about how experiences of both heterosexist and racist discrimination are associated with adrenocortical and psychological functioning in groups of people with multiply marginalized social group identities. Through the application of the intersectionality, minority stress, and allostatic load frameworks, it was hypothesized that experiences of heterosexist and racist discrimination would be associated with disruptions to diurnal salivary cortisol patterns and challenges to identity integration. A group of sexually diverse (self-identified lesbian, gay, bisexual, and queer) Latinx emerging adults (N = 51; ages 18-29, M = 24.06 years; SD = 2.73) provided saliva samples and completed a series of questionnaires during a four-day testing protocol. Heterosexist and racist discrimination were both positively associated with challenges to identity integration. Challenges to identity integration, in turn, were associated with lower intercepts of diurnal cortisol slopes, and heterosexist and racist discrimination were indirectly associated with lower cortisol intercepts via challenges to identity integration. These findings suggest that experiences of heterosexist and racist discrimination may interconnect by challenging sexual and ethnic/racial identity integration and disrupting adaptive adrenocortical regulation among sexually diverse Latinx emerging adults.
Collapse
Affiliation(s)
- Luis Armando Parra
- Department of Human Ecology, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| | - Paul David Hastings
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Baker EK, Richdale AL, Hazi A, Prendergast LA. Assessing a hyperarousal hypothesis of insomnia in adults with autism spectrum disorder. Autism Res 2019; 12:897-910. [DOI: 10.1002/aur.2094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Emma K. Baker
- School of Psychology and Public Health, Olga Tennison Autism Research CentreLa Trobe University Bundoora VIC Australia
- Diagnosis and DevelopmentMurdoch Children's Research Institute Parkville VIC Australia
- Department of PaediatricsUniversity of Melbourne Parkville VIC Australia
| | - Amanda L. Richdale
- School of Psychology and Public Health, Olga Tennison Autism Research CentreLa Trobe University Bundoora VIC Australia
| | - Agnes Hazi
- School of Psychology and Public HealthLa Trobe University Bundoora VIC Australia
| | - Luke A. Prendergast
- Department of Mathematics and StatisticsLa Trobe University Bundoora VIC Australia
| |
Collapse
|
8
|
Han CH, Chung JH. Association of asthma and sleep insufficiency among South Korean adolescents: analysis of web-based self-reported data from the Korean youth risk behavior web-based survey. J Asthma 2019; 57:253-261. [PMID: 30657005 DOI: 10.1080/02770903.2019.1565827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Weekend oversleep or catch-up sleep is common among adolescents, but relatively few data are available with regard to its effects on asthma. Our aim was to investigate whether weekend oversleep is associated with ever having asthma among Korean adolescents. Methods: We analyzed web-based self-reported data from the Korean Youth Risk Behavior Web-based Survey in 25,927 physician-diagnosed adolescent asthma cases and 266,160 non-asthma cases. Self-report questionnaires were used to assess socioeconomic status, health behaviors, psychological factors and sleep patterns. Multiple logistic regression after adjusting for factors was used to determine the association between sleep and asthma. Results: The asthma group slept less (≤5 hours: 23.9% vs. 22.8%) had a later weekend bedtime (≥1:00 AM: 58.1% vs. 57.8%), and an earlier weekend wake time (≤7:00 AM: 18.1% vs. 17.0%) compared to the non-asthma group. After multiple logistic regression, a sleep duration ≤5 hours (odds ratio (OR), 1.09; 95% confidence interval (CI), 1.04-1.14) and weekend "early bird" (weekend wake time ≤7:00 AM: OR, 1.03; 95% CI, 1.00-1.07) were significantly associated with an increased frequency of asthma. Long weekend catch-up sleep (weekend sleep duration minus weekday sleep duration ≥2 hours) was significantly associated with a decreased frequency of asthma (OR, 0.98; 95% CI, 0.94-0.99). Conclusion: Long weekend catch-up sleep, as an indicator of insufficient weekday sleep, is associated with a decreased frequency of asthma in Korean adolescents.
Collapse
Affiliation(s)
- Chang Hoon Han
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jae Ho Chung
- Division of Pulmonology, Department of Internal Medicine, International St. Mary`s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|