1
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
2
|
Mishra R, Sharma S, Arora N. Flagellin conjugated Per a 10 and its T cell peptides attenuate airway inflammation and restore cellular function. Immunol Res 2024; 72:1051-1060. [PMID: 38879717 DOI: 10.1007/s12026-024-09507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/07/2024] [Indexed: 11/15/2024]
Abstract
Adjuvants were used to modulate response towards relevant immune cells. The present study aims to investigate FlaA-conjugated Per a 10 and T cell peptides in amelioration of allergic airway disease in mice. Mice given Per a 10 showed allergic features with higher cellular infiltration, IgE, Th-2 cytokines and alarmins. Fusion protein treatment reduced lung inflammation (p < 0.0001) and cellular infiltrates (p < 0.001) with higher IgG2a/IgE indicating resolution of disease. Immunotherapy with FPT1 and FPT3 reduces IL-4, IL-5 and IL-13 levels (p < 0.0001) with a fourfold increase in IFN-γ secretion in BALF. FPT1- and FPT3-treated mice have increased IL-10 and TGF-β levels (p < 0.001) with CD4+Foxp3+ T cells (p < 0.01) indicating Treg response. There was enhanced expression of claudin-1 (1.7-fold) and occludin (fourfold) in lungs of FPT1- and FPT3-treated mice with reduced TSLP (p < 0.01) and IL-33 (p < 0.0001) secretion in BALF indicating recovery of epithelial function. Peptide-conjugated FlaA proteins showed protective immunity in mice and have potential for immunotherapy with restoration of cellular function.
Collapse
Affiliation(s)
- Richa Mishra
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Sharma
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
4
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
5
|
Asoudeh Moghanloo S, Forouzanfar M, Jafarinia M, Fazlollahi MR, Kardar GA. Allergen-specific immunotherapy by recombinant Der P1 allergen-derived peptide-based vaccine in an allergic mouse model. Immun Inflamm Dis 2023; 11:e878. [PMID: 37382249 PMCID: PMC10251762 DOI: 10.1002/iid3.878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/30/2023] Open
Abstract
AIM Increased IgE levels have made house dust mite allergens one of the most frequent causes of allergies worldwide. Treatment reduces the IgE antibodies and types two cytokines, namely interleukin-4 (IL-4) and IL-13. Although existing treatments significantly reduce IgE or IL-4/IL-13, they are very costly. This study aimed to construct a recombinant protein derived from rDer p1 peptides in the form of an immunotherapy approach and to measure the response of IgE and IgG antibodies. METHODS The proteins were isolated, purified, and evaluated using the SDS-PAGE and Bradford test and confirmed by using Western blot. To evaluate immunotherapy efficiency, 24 BALB/C mice were sensitized intraperitoneally with house dust mites (HDM) adsorbed to Aluminum hydroxide (Alum) and randomly divided into four groups of six: control sensitized, HDM extract, rDer p1, and DpTTDp vaccine. To immunization, four groups of random mice were each treated with phosphate-buffered saline, 100 μg of rDer p1 protein, DpTTDp, or HDM extract, every 3 days. Direct ELISA determined HDM-specific IgG and IgE subclasses. Data were analyzed in SPSS and Graph pad prism software. Values of p < .05 were considered significant. RESULTS After immunization of mice, the rDer P1 and recombinant vaccine like HDM extract increased IgG antibody titer and decreased IgE-dependent reactivity in allergic mice to rDer P1. Also, the levels of inflammatory IL-4 and IL-13 cytokines as allergic stimulants decreased. CONCLUSION The use of present available recombinant proteins is considered a viable, cost-effective, and long-term option for providing effective HDM allergy immunotherapy vaccines without side effects.
Collapse
Affiliation(s)
- Soheila Asoudeh Moghanloo
- Department of Molecular Genetics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
- Immunology, Asthma and Allergy Research Institute (IAARI)Tehran University of Medical SciencesTehranIran
| | - Mohsen Forouzanfar
- Department of Molecular Genetics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
| | - Mojtaba Jafarinia
- Department of Molecular Genetics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
| | - Mohammad R. Fazlollahi
- Immunology, Asthma and Allergy Research Institute (IAARI)Tehran University of Medical SciencesTehranIran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute (IAARI)Tehran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol 2023; 60:101330. [PMID: 37084463 DOI: 10.1016/j.coviro.2023.101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
7
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
8
|
Shao H, Min F, Huang M, Wang Z, Bai T, Lin M, Li X, Chen H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit Rev Food Sci Nutr 2022; 64:172-186. [PMID: 35912422 DOI: 10.1080/10408398.2022.2105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.
Collapse
Affiliation(s)
- Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Zhou Y, Li L, Yu Z, Gu X, Pan R, Li Q, Yuan C, Cai F, Zhu Y, Cui Y. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IgE-binding in asthmatic children, and immunogenicity. Pediatr Allergy Immunol 2022; 33:e13835. [PMID: 36003049 DOI: 10.1111/pai.13835] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dust mite extract contains multiple components that, while useful in clinical allergy diagnosis and treatment, can cause serious side effects. Defining components of dust mite extract is important their contributions to allergic disease. This study aimed to characterize a novel dust mite allergen, Der p 22. METHODS We amplified the cDNA encoding Der p 22 from total RNA of the mite Dermatophagoides pteronyssinus, and inserted it into an expression construct for transformation to competent cells. Purified recombinant (r) Der p 22 was tested for IgE-binding reactivity in sera obtained from children with allergic asthma by the Affiliated Wuxi Children's Hospital of Nanjing Medical University (Jiangsu, China). rDer p 22 also was used to challenge BALB/c mice to assess effects on T helper cells and cytokine levels and applied to cultured lung epithelial cells to evaluate apoptosis and cytokine secretion. RESULTS rDer p 22 bound to IgE in 93.75% of sera from pediatric allergic asthma patients. Mice challenged with rDer p 22 had altered Th1/Th2 ratios in spleen and lymph, and lower levels of cytokines IFN-γ but higher levels of IL-4 and IL-10 in alveolar lavage fluid compared with controls (p < .05). Cultured lung epithelial cells had greater apoptosis rates and exhibited higher levels of IL-6, IL-8, and GM-CSF when treated with rDer p 22 compared with control treatment (p < .05). CONCLUSIONS Recombinant Der p 22 exhibited high IgE-binding rates in allergic children, indicating the activity of the recombinant protein and suggesting this novel allergen may be appropriate for inclusion in an allergy diagnostic workup. This finding is supported by in vitro and mouse in vivo studies showing rDer p 22 induced strong allergenic reactivity and apoptosis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pediatrics Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhiwei Yu
- Department of Respiratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaohong Gu
- Department of Respiratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Ruilin Pan
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qingqing Li
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Cunyin Yuan
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Fangfang Cai
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
10
|
Lv X, Chang Q, Wang Q, Jin QR, Liu HZ, Yang SB, Yang PC, Yang G. Flagellin maintains eosinophils in the intestine. Cytokine 2022; 150:155769. [PMID: 34798413 DOI: 10.1016/j.cyto.2021.155769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
Eosinophils (Eos) are the major effector cells in allergic response. The regulation of Eo is not fully understood yet. Flagellin (FGN) has immune regulatory functions. This study aims to elucidate the role of FGN in maintaining Eo at the static status in the intestinal tissues. A mouse food allergy (FA) model was developed. Eo mediator levels in the serum or culture supernatant or intestinal lavage fluids were assessed and used as an indicator of Eo activation. The results showed that less FGN amounts were detected in the FA mouse intestinal tissues, that were negatively correlated with the Eo activation. Mast cell-derived chymase bound FGN to induce FGN degradation. FGN formed complexes with FcγRI on Eos to prevent specific antigens from binding FcγRI, and thus, to prevent Eo activation. Administration of FGN efficiently alleviated experimental FA. In conclusion, FGN plays a critical role in maintaining Eos at static status in the intestine. Administration of FGN can alleviate experimental FA. FGN may be a novel drug candidate to be used in the treatment of Eo-related diseases.
Collapse
Affiliation(s)
- Xiaodan Lv
- Department of Pediatrics, Longgang Maternal and Child Health Care Hospital, Shenzhen, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Qin Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao-Ruo Jin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hua-Zhen Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shao-Bo Yang
- Department of Cadre Clinic, The First Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China.
| |
Collapse
|
11
|
Uthaman S, Pillarisetti S, Hwang HS, Mathew AP, Huh KM, Rhee JH, Park IK. Tumor Microenvironment-Regulating Immunosenescence-Independent Nanostimulant Synergizing with Near-Infrared Light Irradiation for Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4844-4852. [PMID: 33486952 DOI: 10.1021/acsami.0c20063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of photothermal therapy (PTT) and toll-like receptor (TLR)-mediated immunotherapy can elicit antitumor immunity and modulate the immunosuppressive tumor microenvironment (TME). Unlike other TLRs, TLR-5 is a promising target for immune activation, as its expression is well-maintained even during immunosenescence. Here, we developed a unique tumor microenvironment-regulating immunosenescence-independent nanostimulant consisting of TLR-5 adjuvant Vibrio vulnificus flagellin B (FlaB) conjugated onto the surface to an IR 780-loaded hyaluronic acid-stearylamine (HIF) micelles. These HIF micelles induced immune-mediated cell death via PTT when irradiated with a near-infrared laser. In comparison with PTT alone, the combination of in situ-generated tumor-associated antigens produced during PTT and the immune adjuvant FlaB demonstrated enhanced vaccine-like properties and modulated the TME by suppressing immune-suppressive regulatory cells (Tregs) and increasing the fraction of CD103+ migratory dendritic cells, which are responsible for trafficking tumor antigens to draining lymph nodes (DLNs). This combinatorial strategy (i.e., applying a TLR-5 adjuvant targeted to immunosenescence-independent TLR-5 and the in situ photothermal generation of tumor-associated antigens) is a robust system for next-generation immunotherapy and could even be applied in elderly patients, thus broadening the clinical scope of immunotherapy strategies.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Hye Suk Hwang
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam 58128, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University, Hwasun-gun, Jeonnam 58128, Republic of Korea
| |
Collapse
|
12
|
Chen M, Wu Y, Yuan S, Tang M, Zhang L, Chen J, Li L, Wu J, Zhang J, Yin Y. Allergic Rhinitis Improvement in Asthmatic Children After Using Acaricidal Bait: A Randomized, Double-Blind, Cross-Placebo Study. Front Pediatr 2021; 9:709139. [PMID: 34631613 PMCID: PMC8492990 DOI: 10.3389/fped.2021.709139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: This study aimed to evaluate the effects of acaricidal bait use on the house dust mite (HDM) allergen concentration and occurrence of allergic rhinitis (AR) and asthma symptoms in children sensitized to HDMs. Study Design: Sixty-six children (3-12 years old) with AR and asthma sensitized to HDMs were randomly assigned to receive an acaricidal bait intervention for 8 weeks and a placebo intervention for 8 weeks separated by a 4-week washout period. The visual analog scale (VAS) score, rhinitis control assessment test (RCAT) score, rhinoconjunctivitis quality of life questionnaire (RQLQ) score, asthma control questionnaire-5 (ACQ-5) score and HDM allergen levels were monitored. Results: HDM allergen levels were significantly decreased after 8 weeks (Δder p2+f2 2.282 (3.516) μg/g vs. 0.147 (0.25) μg/g, P < 0.05) in the acaricidal bait group compared with the placebo group. The VAS, RCAT and RQLQ scores in the acaricidal bait group were also significantly improved (ΔVAS 7.5 (16) vs. 3 (18), P < 0.05; ΔRCAT-3 (5) vs. 0 (7), P < 0.05; ΔRQLQ 4.5 (8) vs. 1 (8), P < 0.05), but the ACQ-5 score did not improve (ΔACQ-5 0.2 (0.4) vs. 0 (0.65), P > 0.05). Conclusion: Acaricidal bait reduced HDM exposure and improved rhinitis symptoms. This trial is registered at www.chictr.org.cn.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China.,Department of Respiratory Medicine, Shanghai Children's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yufen Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Mingyu Tang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Luanluan Li
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai, China
| |
Collapse
|
13
|
Silva ESD, Pinheiro CS, Pacheco LGC, Alcantara-Neves NM. Dermatophagoides spp. hypoallergens design: what has been achieved so far? Expert Opin Ther Pat 2020; 30:163-177. [PMID: 31913726 DOI: 10.1080/13543776.2020.1712360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Allergic illnesses are one of the most prevalent immunological disorders worldwide and house dust mites are important triggers of these diseases. Allergen-specific immunotherapy (AIT) is an alternative treatment to pharmacotherapy and among its technologies, recombinant hypoallergenic derivatives have shown promising features, turn them into safer and more efficient allergy vaccines.Areas covered: Patents and scientific publications referring to advances in the design of Dermatophagoides spp. hypoallergenic molecules. Data were obtained from the Espacenet® and PubMed websites, using different key terms, advanced tools and Boolean operators for searches. The retrieved data were then descriptively analyzed, taking into consideration clinical targets, geographical, temporal, collaborative, and different classification aspects of the productions.Expert opinion: Joint advances of molecular biology, genetic engineering, and bioinformatics technologies led to progresses in the design of Dermatophagoides spp. hypoallergenic derivatives. Collaborative networks seem to be an interesting way not only to improve technologies in AIT but also to boost the number of patents, publications, and grants for researchers. The observed trend for the use of hypoallergenic hybrid molecules was a fundamental AIT advance and this type of molecule appears to be a more attractive product for companies and more convenient, efficient, and safer allergy immunotherapy for patients.
Collapse
Affiliation(s)
- Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Programa de Pós-Graduação em Imunologia (PPGIm-UFBA), Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Programa de Pós-Graduação em Imunologia (PPGIm-UFBA), Salvador, Brazil
| |
Collapse
|