1
|
Liu G, Wang D, Jia J, Hao C, Ge Q, Xu L, Zhang C, Li X, Mi Y, Wang H, Miao L, Chen Y, Zhou J, Xu X, Liu Y. Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. Neurochem Res 2024; 49:2871-2887. [PMID: 39026086 DOI: 10.1007/s11064-024-04212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Daohui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jianru Jia
- Baoding People's Hospital, Baoding, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jingwen Zhou
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xiaodan Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China.
| |
Collapse
|
2
|
Zhou L, Wang J, Huang J, Song X, Wu Y, Chen X, Tan Y, Yang Q. The role of mesenchymal stem cell transplantation for ischemic stroke and recent research developments. Front Neurol 2022; 13:1000777. [PMID: 36468067 PMCID: PMC9708730 DOI: 10.3389/fneur.2022.1000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 09/08/2023] Open
Abstract
Ischemic stroke is a common cerebrovascular disease that seriously affects human health. However, most patients do not practice self-care and cannot rely on the current clinical treatment for guaranteed functional recovery. Stem cell transplantation is an emerging treatment studied in various central nervous system diseases. More importantly, animal studies show that transplantation of mesenchymal stem cells (MSCs) can alleviate neurological deficits and bring hope to patients suffering from ischemic stroke. This paper reviews the biological characteristics of MSCs and discusses the mechanism and progression of MSC transplantation to provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yang Y, Hu X, Qin Q, Kong F, Peng X, Zhao J, Si J, Yang Z, Xie S. Optimal therapeutic conditions for the neural stem cell-based management of ischemic stroke: a systematic review and network meta-analysis based on animal studies. BMC Neurol 2022; 22:345. [PMID: 36096751 PMCID: PMC9469626 DOI: 10.1186/s12883-022-02875-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/02/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND In order to promote the clinical translation of preclinical findings, it is imperative to identify the most optimal therapeutic conditions and adopt them for further animal and human studies. This study aimed to fully explore the optimal conditions for neural stem cell (NSC)-based ischemic stroke treatment based on animal studies. METHODS The PubMed, Ovid-Embase, and Web of Science databases were searched in December 2021. The screening of search results, extraction of relevant data, and evaluation of study quality were performed independently by two reviewers. RESULTS In total, 52 studies were included for data analysis. Traditional meta-analysis showed that NSCs significantly reduced the modified neurological severity score (mNSS) and volume of cerebral infarct in animal models of ischemic stroke. Network meta-analysis showed that allogeneic embryonic tissue was the best source of NSCs. Further, intracerebral transplantation was the most optimal route of NSC transplantation, and the acute phase was the most suitable stage for intervention. The optimal number of NSCs for transplantation was 1-5×105 in mouse models and 1×106 or 1.8×106 in rat models. CONCLUSIONS We systematically explored the therapeutic strategy of NSCs in ischemic stroke, but additional research is required to develop optimal therapeutic strategies based on NSCs. Moreover, it is necessary to further improve and standardize the design, implementation, measuring standards, and reporting of animal-based studies to promote the development of better animal experiments and clinical research.
Collapse
Affiliation(s)
- Yongna Yang
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Xurui Hu
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Qijie Qin
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China.
| | - Fanling Kong
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Xiaolan Peng
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Jing Zhao
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Jianghua Si
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Zhilong Yang
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| | - Shoupin Xie
- The first people' s hospital of lanzhou city, Lanzhou, 730000, China
| |
Collapse
|
4
|
Guo F, Qin Y, Fu H, Xu F. The impact of COVID-19 on Emergency Department length of stay for urgent and life-threatening patients. BMC Health Serv Res 2022; 22:696. [PMID: 35610608 PMCID: PMC9127479 DOI: 10.1186/s12913-022-08084-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To determine the impact of the Coronavirus disease-2019 (COVID-19) pandemic on the length of stay (LOS) and prognosis of patients in the resuscitation area. METHODS A retrospective analysis of case data of patients in the resuscitation area during the early stages of the COVID-19 pandemic (January 15, 2020- January 14, 2021) was performed and compared with the pre-COVID-19 period (January 15, 2019 - January 14, 2020) in the First Affiliated Hospital of Soochow University. The patients' information, including age, sex, length of stay, and death, was collected. The Wilcoxon Rank sum test was performed to compare the LOS difference between the two periods. Fisher's Exact test and Chi-Squared test were used to analyze the prognosis of patients. The LOS and prognosis in different departments of the resuscitation area (emergency internal medicine, emergency surgery, emergency neurology, and other departments) were further analyzed. RESULTS Of the total 8278 patients, 4159 (50.24%) were enrolled in the COVID-19 pandemic period group, and 4119 (49.76%) were enrolled pre-COVID-19 period group. The length of stay was prolonged significantly in the COVID-19 period compared with the pre-COVID-19 period (13h VS 9.8h, p < 0.001). The LOS in the COVID-19 period was prolonged in both emergency internal medicine (15.3h VS 11.3h, p < 0.001) and emergency surgery (8.7h VS 4.9h, p < 0.001) but not in emergency neurology or other emergency departments. There was no significant difference in mortality between the two cohorts (4.8% VS 5.3%, p = 0.341). CONCLUSION The COVID-19 pandemic was associated with a significant increase in the length of resuscitation area stay, which may lead to resuscitation area crowding. The influence of the COVID-19 pandemic on patients of different departments was variable. There was no significant impact on the LOS of emergency neurology. According to different departments of the resuscitation area, the COVID-19 pandemic didn't significantly impact the prognosis of patients.
Collapse
Affiliation(s)
- Fengbao Guo
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Qin
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hailong Fu
- Clinical laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Feng Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol 2020; 11:605398. [PMID: 33424628 PMCID: PMC7793645 DOI: 10.3389/fphys.2020.605398] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.
Collapse
Affiliation(s)
- Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ira M Herman
- Department of Development, Molecular, and Chemical Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA, United States.,Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, United States
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Zhang S, Jin T, Wang L, Liu W, Zhang Y, Zheng Y, Lin Y, Yang M, He X, Lin H, Chen L, Tao J. Electro-Acupuncture Promotes the Differentiation of Endogenous Neural Stem Cells via Exosomal microRNA 146b After Ischemic Stroke. Front Cell Neurosci 2020; 14:223. [PMID: 32792909 PMCID: PMC7385414 DOI: 10.3389/fncel.2020.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Evidences indicate that exosomes-mediated delivery of microRNAs (miRNAs or miRs) is involved in the neurogenesis of stroke. This study was to investigate the role of exosomal miRNAs in non-drug therapy of electro-acupuncture (EA) regulating endogenous neural stem cells for stroke recovery. Methods: The model of focal cerebral ischemia and reperfusion in rats were established by middle cerebral artery occlusion (MCAO) and treated by EA. The exosomes were extracted from peri-ischemic striatum and identified by exosomal biomarkers, and detected differentially expressed miRNAs with microarray chip. Primary stem cells were cultured, and oxygen–glucose deprivation and reperfusion (OGD/R) was used to mimic vitro ischemic injury. Results: The levels of exosomal biomarkers TSG101 and CD81 were increased in peri-ischemic striatum after EA treatment, and we revealed 25 differentially expressed miRNAs in isolated exosomes, of which miR-146b was selected for further analysis, and demonstrated that EA increased miR-146b expression and its inhibitors could block the effects. Subsequently, we confirmed that EA upregulated miR-146b expression to promote neural stem cells differentiation into neurons in peri-ischemic striatum. In vitro, it was verified that OGD/R hindered neural stem cells differentiation, and miR-146b inhibitors furtherly suppressed its differentiation, simultaneously NeuroD1 was involved in neural stem cells differentiation into neurons. Moreover, in vivo we found EA promoted NeuroD1-mediated neural stem cells differentiation via miR-146b. In addition, EA also could improve neurological deficits through miR-146b after ischemic stroke. Conclusion: EA promotes the differentiation of endogenous neural stem cells via exosomal miR-146b to improve neurological injury after ischemic stroke.
Collapse
Affiliation(s)
- Shenghang Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,The 900 Hospital of the Joint Logistic Team, Fuzhou, China
| | - Tingting Jin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lulu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Yuhao Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunjiao Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
7
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Human Bone Marrow Endothelial Progenitor Cell Transplantation into Symptomatic ALS Mice Delays Disease Progression and Increases Motor Neuron Survival by Repairing Blood-Spinal Cord Barrier. Sci Rep 2019; 9:5280. [PMID: 30918315 PMCID: PMC6437219 DOI: 10.1038/s41598-019-41747-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Convincing evidence demonstrated impairment of the blood-spinal cord barrier (BSCB) in Amyotrophic Lateral Sclerosis (ALS), mainly by endothelial cell (EC) alterations. Replacing damaged ECs by cell transplantation is a potential barrier repair strategy. Recently, we showed that intravenous (iv) administration of human bone marrow CD34+ (hBM34+) cells into symptomatic ALS mice benefits BSCB restoration and postpones disease progression. However, delayed effect on motor function and some severely damaged capillaries were noted. We hypothesized that hematopoietic cells from a restricted lineage would be more effective. This study aimed to establish the effects of human bone marrow-derived endothelial progenitor cells (hBMEPCs) systemically transplanted into G93A mice at symptomatic disease stage. Results showed that transplanted hBMEPCs significantly improved behavioral disease outcomes, engrafted widely into capillaries of the gray/white matter spinal cord and brain motor cortex/brainstem, substantially restored capillary ultrastructure, significantly decreased EB extravasation into spinal cord parenchyma, meaningfully re-established perivascular astrocyte end-feet, and enhanced spinal cord motor neuron survival. These results provide novel evidence that transplantation of hBMEPCs effectively repairs the BSCB, potentially preventing entry of detrimental peripheral factors, including immune/inflammatory cells, which contribute to motor neuron dysfunction. Transplanting EC progenitor cells may be a promising strategy for barrier repair therapy in this disease.
Collapse
|
9
|
Liu W, Wu W, Lin G, Cheng J, Zeng Y, Shi Y. Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Mol Med Rep 2018; 18:1455-1464. [PMID: 29901080 PMCID: PMC6072171 DOI: 10.3892/mmr.2018.9147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/14/2018] [Indexed: 01/25/2023] Open
Abstract
Physical exercise is beneficial for the functional recovery of neurons after stroke. It has been suggested that exercise regulates proliferation and differentiation of endogenous neural stem cells (NSCs); however, the underlying molecular mechanisms are still largely unknown. In the present study, the aim was to investigate whether physical exercise activates the extracellular signal-regulated kinase (ERK) signaling pathway to promote proliferation and differentiation of NSCs in rats with cerebral infarction, thereby improving neurological function. Following middle cerebral artery occlusion, rats underwent physical exercise and neurological behavior was analyzed at various time points. Immunofluorescence staining was performed to detect proliferation and differentiation of NSCs, and western blotting was used to analyze cyclin-dependent kinase 4 (CDK4), Cyclin D1, retinoblastoma protein (p-Rb), P-16, phosphorylated (p)-ERK1/2 and c-Fos expression. The results indicated that physical exercise promoted proliferation and differentiation of NSCs, and led to improved neural function. In addition, the expression levels of CDK4, Cyclin D1, p-Rb, p-ERK1/2 and c-Fos were upregulated, whereas the expression of P-16 was downregulated following exercise. U0126, an inhibitor of ERK signaling, reversed the beneficial effects of exercise. Therefore, it may be hypothesized that physical exercise enhances proliferation and differentiation of endogenous NSCs in the hippocampus of rats with cerebral infarction via the ERK signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Guangyong Lin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jian Cheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanyan Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yu Shi
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
10
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
11
|
Marcet P, Santos N, Borlongan CV. When friend turns foe: central and peripheral neuroinflammation in central nervous system injury. ACTA ACUST UNITED AC 2017; 4:82-92. [PMID: 29670933 PMCID: PMC5901724 DOI: 10.20517/2347-8659.2017.07] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Injury to the central nervous system (CNS) is common, and though it has been well studied, many aspects of traumatic brain injury (TBI) and stroke are poorly understood. TBI and stroke are two pathologic events that can cause severe, immediate impact to the neurostructure and function of the CNS, which has been recognized recently to be exacerbated by the body’s own immune response. Although the brain damage induced by the initial trauma is most likely unsalvageable, the secondary immunologic deterioration of neural tissue gives ample opportunity for therapeutic strategists seeking to mitigate TBI’s secondary detrimental effects. The purpose of this paper is to highlight the cell death mechanisms associated with CNS injury with special emphasis on inflammation. The authors discuss sources of inflammation, and introduce the role of the spleen in the systemic response to inflammation after CNS injury.
Collapse
Affiliation(s)
- Paul Marcet
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Nicole Santos
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Peña ID, Borlongan CV. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Transl Stroke Res 2016; 6:421-9. [PMID: 26482176 DOI: 10.1007/s12975-015-0430-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Collapse
|
13
|
Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:5896061. [PMID: 27293445 PMCID: PMC4886089 DOI: 10.1155/2016/5896061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases.
Collapse
|
14
|
Wang J, Chen Y, Yang Y, Xiao X, Chen S, Zhang C, Jacobs B, Zhao B, Bihl J, Chen Y. Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Mol Brain 2016; 9:12. [PMID: 26842559 PMCID: PMC4738765 DOI: 10.1186/s13041-016-0193-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 01/24/2023] Open
Abstract
Background Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study, we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. Results EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production, apoptosis, and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium, and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). Conclusions Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury, via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
Collapse
Affiliation(s)
- Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China.
| | - Yi Yang
- Wuhan Institute of Physical Education, College of Health Science, Wuhan, 430079, Hubei, China.
| | - Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Bradley Jacobs
- Department of Neurology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA.
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China.
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA. .,Department of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong, China. .,Department of Neurology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA. .,Department of Internal Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, 45435, Ohio, USA.
| |
Collapse
|
15
|
Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. Neuroscience 2015; 295:1-10. [PMID: 25779964 DOI: 10.1016/j.neuroscience.2015.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 01/29/2023]
Abstract
Cerebral ischemic injury involves death of multiple cell types at the ischemic sites. As a key regulator of cell death, the p53 gene has been implicated in the regulation of cell loss in stroke. Less focal damage is found in stroke animals pre-treated with a p53 inhibitor or in traditional p53 knockout (ko) mice. However, whether the p53 gene plays a direct role in regulating neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 ko mice, we utilized a neuronal specific conditional ko mouse line (CamcreTRP53(loxP/loxP)) to achieve forebrain neuronal specific deletion of p53 and examined the role of the p53 gene in ischemia-induced cell death in neurons. Expression of p53 after stroke is examined using the immunohistochemical method and the outcome of stroke is examined by analysis of infarction size and behavioral deficits caused by stroke. Our data showed that p53 expression is upregulated in the ischemic region in neuronal cells in wildtype (wt) mice but not in CamcreTRP53(loxP/loxP) ko mice. Deletion of the p53 gene in forebrain neurons results in a decreased infarction area in ko mice. Locomotor behavior, measured in automated activity chambers, showed that CamcreTRP53(loxP/loxP) ko mice have less locomotor deficits compared to wt mice after middle cerebral artery occlusion (MCAo). We conclude that manipulation of p53 expression in neurons may lead to unique therapeutic development in stroke.
Collapse
|
16
|
Xu Y, Du S, Yu X, Han X, Hou J, Guo H. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regen Res 2015; 9:2053-8. [PMID: 25657721 PMCID: PMC4316468 DOI: 10.4103/1673-5374.147930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Shiwei Du
- Department of Neurosurgery, General Hospital of Armed Police Forces, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Xiao Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Jincai Hou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Hao Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| |
Collapse
|
17
|
Zubcevic J, Santisteban MM, Pitts T, Baekey DM, Perez PD, Bolser DC, Febo M, Raizada MK. Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension 2014; 63:e129-39. [PMID: 24688127 PMCID: PMC4295780 DOI: 10.1161/hypertensionaha.114.02440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| | - Monica M. Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| | - Teresa Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - David M. Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - Pablo D. Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville FL 32610
| | - Donald C. Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville FL 32610
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville FL 32610
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL 32610
| |
Collapse
|
18
|
Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 2014; 21:5. [PMID: 24447306 PMCID: PMC3922747 DOI: 10.1186/1423-0127-21-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background Several lines of evidence have demonstrated that bone marrow-derived mesenchymal stem cells (BM-MSC) release bioactive factors and provide neuroprotection for CNS injury. However, it remains elusive whether BM-MSC derived from healthy donors or stroke patients provides equal therapeutic potential. The present work aims to characterize BM-MSC prepared from normal healthy rats (NormBM-MSC) and cerebral ischemia rats (IschBM-MSC), and examine the effects of their conditioned medium (Cm) on ischemic stroke animal model. Results Isolated NormBM-MSC or IschBM-MSC formed fibroblastic like morphology and expressed CD29, CD90 and CD44 but failed to express the hematopoietic marker CD34. The number of colony formation of BM-MSC was more abundant in IschBM-MSC than in NormBM-MSC. This is in contrast to the amount of Ficoll-fractionated mononuclear cells from normal donor and ischemic rats. The effect of cm of BM-MSC was further examined in cultures and in middle cerebral artery occlusion (MCAo) animal model. Both NormBM-MSC Cm and IschBM-MSC Cm effectively increased neuronal connection and survival in mixed neuron-glial cultures. In vivo, intravenous infusion of NormBM-MSC Cm and IschBM-MSC Cm after stroke onset remarkably improved functional recovery. Furthermore, NormBM-MSC Cm and IschBM-MSC Cm increased neurogenesis and attenuated microglia/ macrophage infiltration in MCAo rat brains. Conclusions Our data suggest equal effectiveness of BM-MSC Cm derived from ischemic animals or from a normal population. Our results thus revealed the potential of BM-MSC Cm on treatment of ischemic stroke.
Collapse
|
19
|
Achyut BR, Varma NRS, Arbab AS. Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. ACTA ACUST UNITED AC 2014; 4. [PMID: 25599002 DOI: 10.4172/2157-7633.1000202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Umbilical cord blood (UCB) derived multipotent stem cells are capable of giving rise hematopoietic, epithelial, endothelial and neural progenitor cells. Thus suggested to significantly improve graft-versus-host disease and represent the distinctive therapeutic option for several malignant and non-malignant diseases. Recent advances in strategies to isolate, expand and shorten the timing of UCB stem cells engraftment have tremendously improved the efficacy of transplantations. Nervous system has limited regenerative potential in disease conditions such as cancer, neurodegeneration, stroke, and several neural injuries. This review focuses on application of UCB derived stem/progenitor cells in aforementioned pathological conditions. We have discussed the possible attempts to make use of UCB therapies to generate neural cells and tissues with developmental and functional similarities to neuronal cells. In addition, emerging applications of UCB derived AC133+ (CD133+) endothelial progenitor cells (EPCs) as imaging probe, regenerative agent, and gene delivery vehicle are mentioned that will further improve the understanding of use of UCB cells in therapeutic modalities. However, safe and effective protocols for cell transplantations are still required for therapeutic efficacy.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|