1
|
Harmon JS, Khaing ZZ, Hyde JE, Hofstetter CP, Tremblay-Darveau C, Bruce MF. Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy. Sci Rep 2022; 12:21943. [PMID: 36536012 PMCID: PMC9763240 DOI: 10.1038/s41598-022-24986-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrasound localization microscopy (ULM) is a recent advancement in ultrasound imaging that uses microbubble contrast agents to yield vascular images that break the classical diffraction limit on spatial resolution. Current approaches cannot image blood flow at the tissue perfusion level since they rely solely on differences in velocity to separate tissue and microbubble signals; lower velocity microbubble echoes are removed during high pass wall filtering. To visualize blood flow in the entire vascular tree, we have developed nonlinear ULM, which combines nonlinear pulsing sequences with plane-wave imaging to segment microbubble signals independent of their velocity. Bubble localization and inter-frame tracking produces super-resolved images and, with parameters derived from the bubble tracks, a rich quantitative feature set that can describe the relative quality of microcirculatory flow. Using the rat spinal cord as a model system, we showed that nonlinear ULM better resolves some smaller branching vasculature compared to conventional ULM. Following contusion injury, both gold-standard histological techniques and nonlinear ULM depicted reduced in-plane vessel length between the penumbra and contralateral gray matter (-16.7% vs. -20.5%, respectively). Here, we demonstrate that nonlinear ULM uniquely enables investigation and potential quantification of tissue perfusion, arguably the most important component of blood flow.
Collapse
Affiliation(s)
- Jonah S. Harmon
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Zin Z. Khaing
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Jeffrey E. Hyde
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | - Christoph P. Hofstetter
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA 98105 USA
| | | | - Matthew F. Bruce
- grid.34477.330000000122986657Applied Physics Laboratory, University of Washington, Seattle, WA 98105 USA
| |
Collapse
|
2
|
A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:6000. [PMID: 35397639 PMCID: PMC8994783 DOI: 10.1038/s41598-022-09875-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/16/2022] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.
Collapse
|
3
|
Fauss GNK, Strain MM, Huang YJ, Reynolds JA, Davis JA, Henwood MK, West CR, Grau JW. Contribution of Brain Processes to Tissue Loss After Spinal Cord Injury: Does a Pain-Induced Rise in Blood Pressure Fuel Hemorrhage? Front Syst Neurosci 2022; 15:733056. [PMID: 34975424 PMCID: PMC8714654 DOI: 10.3389/fnsys.2021.733056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pain (nociceptive) input soon after spinal cord injury (SCI) expands the area of tissue loss (secondary injury) and impairs long-term recovery. Evidence suggests that nociceptive stimulation has this effect because it promotes acute hemorrhage. Disrupting communication with the brain blocks this effect. The current study examined whether rostral systems exacerbate tissue loss because pain input drives an increase in systolic blood pressure (BP) and flow that fuels blood infiltration. Rats received a moderate contusion injury to the lower thoracic (T12) spinal cord. Communication with rostral processes was disrupted by cutting the spinal cord 18 h later at T2. Noxious electrical stimulation (shock) applied to the tail (Experiment 1), or application of the irritant capsaicin to one hind paw (Experiment 2), increased hemorrhage at the site of injury. Shock, but not capsaicin, increased systolic BP and tail blood flow in sham-operated rats. Cutting communication with the brain blocked the shock-induced increase in systolic BP and tail blood flow. Experiment 3 examined the effect of artificially driving a rise in BP with norepinephrine (NE) in animals that received shock. Spinal transection attenuated hemorrhage in vehicle-treated rats. Treatment with NE drove a robust increase in BP and tail blood flow but did not increase the extent of hemorrhage. The results suggest pain input after SCI can engage rostral processes that fuel hemorrhage and drive sustained cardiovascular output. An increase in BP was not, however, necessary or sufficient to drive hemorrhage, implicating other brain-dependent processes.
Collapse
Affiliation(s)
- Gizelle N K Fauss
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science San Antonio, San Antonio, TX, United States
| | | | - Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Jacob A Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Christopher R West
- Centre for Chronic Disease Prevention and Management, Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Strain MM, Johnston DT, Baine RE, Reynolds JA, Huang YJ, Henwood MK, Fauss GN, Davis JA, Miranda RC, West CR, Grau JW. Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics. J Neurotrauma 2021; 38:3406-3430. [PMID: 34652956 DOI: 10.1089/neu.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nociceptive input diminishes recovery and increases lesion area after a spinal cord injury (SCI). Recent work has linked these effects to the expansion of hemorrhage at the site of injury. The current article examines whether these adverse effects are linked to a pain-induced rise in blood pressure (BP) and/or flow. Male rats with a low-thoracic SCI were treated with noxious input (electrical stimulation [shock] or capsaicin) soon after injury. Locomotor recovery and BP were assessed throughout. Tissues were collected 3 h, 24 h, or 21 days later. Both electrical stimulation and capsaicin undermined locomotor function and increased the area of hemorrhage. Changes in BP/flow varied depending on type of noxious input, with only shock producing changes in BP. Providing behavioral control over the termination of noxious stimulation attenuated the rise in BP and hemorrhage. Pretreatment with the α-1 adrenergic receptor inverse agonist, prazosin, reduced the stimulation-induced rise in BP and hemorrhage. Prazosin also attenuated the adverse effect that noxious stimulation has on long-term recovery. Administration of the adrenergic agonist, norepinephrine 1 day after injury induced an increase in BP and disrupted locomotor function, but had little effect on hemorrhage. Further, inducing a rise in BP/flow using norepinephrine undermined long-term recovery and increased tissue loss. Mediational analyses suggest that the pain-induced rise in blood flow may foster hemorrhage after SCI. Increased BP appears to act through an independent process to adversely affect locomotor performance, tissue sparing, and long-term recovery.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David T Johnston
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rachel E Baine
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Joshua A Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | | | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Gizelle N Fauss
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Rajesh C Miranda
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Christopher R West
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, and College of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Davis JA, Bopp AC, Henwood MK, Baine RE, Cox CC, Grau JW. Pharmacological Transection of Brain-Spinal Cord Communication Blocks Pain-Induced Hemorrhage and Locomotor Deficits after Spinal Cord Injury in Rats. J Neurotrauma 2020; 37:1729-1739. [PMID: 32368946 DOI: 10.1089/neu.2019.6973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma), which engages pain (nociceptive) fibers. Prior research has shown that nociceptive input can increase cell death, expand the area of hemorrhage, and impair long-term recovery. The current study shows that these adverse effects can be blocked by the sodium channel blocker lidocaine applied rostral to a contusion injury. Rats received a lower thoracic (T12) contusion injury, and noxious electrical stimulation (shock) was applied to the tail 24 h later. Immediately before shock treatment, a pharmacological transection was performed by slowly infusing lidocaine at T2. Long-term locomotor recovery was assessed over the next 21 days. Noxious electrical stimulation impaired locomotor recovery, and this effect was blocked by rostral lidocaine. Next, the acute effect of lidocaine was assessed. Tissue was collected 3 h after noxious stimulation, and the extent of hemorrhage was evaluated by assessing hemoglobin content using Western blotting. Nociceptive stimulation increased the extent of hemorrhage. Lidocaine applied at T2 before, but not immediately after, stimulation blocked this effect. A similar pattern of results was observed when lidocaine was applied at the site of injury by means of a lumbar puncture. The results show that a pharmacological transection blocks nociception-induced hemorrhage and exacerbation of locomotor deficits.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Anne C Bopp
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Rachel E Baine
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - Carol C Cox
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
8
|
Short-term inhibition of fibrinolytic system restores locomotor function after spinal cord injury in mice. Sci Rep 2019; 9:16024. [PMID: 31690812 PMCID: PMC6831600 DOI: 10.1038/s41598-019-52621-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is caused by an initial mechanical insult followed by a series of deleterious events that promote the progressive damage of affected tissues. Fibrinolysis, the process by which plasmin degrades cross-linked fibrin clots, has numerous functions in the central nervous system. However, the roles of the fibrinolytic system in SCI pathophysiology remain unknown. We investigated the roles of fibrinolysis in SCI, and explored therapeutic applications targeting fibrinolysis. Plasminogen-deficient (Plg-/-) mice exhibited significantly improved locomotor function in the early phase of SCI (the first 7 days post injury), with significant inhibition of bleeding and vascular permeability, but failed to demonstrate conclusive functional recovery. Consistent with these findings, the short-term administration of tranexamic acid (TXA) in wild-type mice over the first 3 days post injury significantly improved locomotor function after SCI, whereas prolonged TXA administration did not. Prolonged TXA administration resulted in significantly lower levels of matrix metalloproteinase activities in the spinal cord, suggesting that inhibition of the fibrinolytic system impaired tissue remodeling. Our results indicate that the fibrinolytic system has time-dependent biphasic actions following SCI. The temporally optimised modulation of fibrinolytic activity may thus be a novel therapeutic strategy to improve functional outcomes after SCI.
Collapse
|
9
|
Strain MM, Hook MA, Reynolds JD, Huang YJ, Henwood MK, Grau JW. A brief period of moderate noxious stimulation induces hemorrhage and impairs locomotor recovery after spinal cord injury. Physiol Behav 2019; 212:112695. [PMID: 31647990 DOI: 10.1016/j.physbeh.2019.112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that provides a source of pain input. Our studies suggest that this pain input may be detrimental to long-term recovery. In a rodent model, we have shown that engaging pain (nociceptive) fibers caudal to a lower thoracic contusion SCI impairs recovery of locomotor function and increases tissue loss (secondary injury) and hemorrhage at the site of injury. In these studies, nociceptive fibers were activated using intermittent electrical stimulation. The stimulation parameters were derived from earlier studies demonstrating that 6 min of noxious stimulation, at an intensity (1.5 mA) that engages unmyelinated C (pain) fibers, induces a form of maladaptive plasticity within the lumbosacral spinal cord. We hypothesized that both shorter bouts of nociceptive input and lower intensities of stimulation will decrease locomotor function and increase spinal cord hemorrhage when rats have a spinal cord contusion. To test this, the present study exposed rats to electrical stimulation 24 h after a moderate lower thoracic contusion SCI. One group of rats received 1.5 mA stimulation for 0, 14.4, 72, or 180 s. Another group received six minutes of stimulation at 0, 0.17, 0.5, and 1.5 mA. Just 72 s of stimulation induced an acute disruption in motor performance, increased hemorrhage, and undermined the recovery of locomotor function. Likewise, less intense (0.5 mA) stimulation produced an acute disruption in motor performance, fueled hemorrhage, and impaired long-term recovery. The results imply that a brief period of moderate pain input can trigger hemorrhage after SCI and undermine long-term recovery. This highlights the importance of managing nociceptive signals after concurrent peripheral and central nervous system injuries.
Collapse
Affiliation(s)
- Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Michelle A Hook
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Yung-Jen Huang
- ChemPartner, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203 China
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Reynolds JA, Henwood MK, Turtle JD, Baine RE, Johnston DT, Grau JW. Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury. Front Syst Neurosci 2019; 13:44. [PMID: 31551720 PMCID: PMC6746957 DOI: 10.3389/fnsys.2019.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury can undermine long-term recovery and increase tissue loss (secondary injury). Prior work suggests that nociceptive stimulation has this effect because it fosters the breakdown of the blood-spinal cord barrier (BSCB) at the site of injury, allowing blood to infiltrate the tissue. The present study examined whether these effects impact tissue rostral and caudal to the site of injury. In addition, the study evaluated whether cutting communication with the brain, by means of a rostral transection, affects the development of hemorrhage. Eighteen hours after rats received a lower thoracic (T11-12) contusion injury, half underwent a spinal transection at T2. Noxious electrical stimulation (shock) was applied 6 h later. Cellular assays showed that, in non-transected rats, nociceptive stimulation increased hemoglobin content, activated pro-inflammatory cytokines and engaged signals related to cell death at the site of injury. These effects were not observed in transected animals. In the next experiment, the spinal transection was performed at the time of contusion injury. Nociceptive stimulation was applied 24 h later and tissue was sectioned for microscopy. In non-transected rats, nociceptive stimulation increased the area of hemorrhage and this effect was blocked by spinal transection. These findings imply that the adverse effect of noxious stimulation depends upon spared ascending fibers and the activation of rostral (brain) systems. If true, stimulation should induce less hemorrhage after a severe contusion injury that blocks transmission to the brain. To test this, rats were given a mild, moderate, or severe, injury and electrical stimulation was applied 24 h later. Histological analyses of longitudinal sections showed that nociceptive stimulation triggered less hemorrhage after a severe contusion injury. The results suggest that brain-dependent processes drive pain-induced hemorrhage after spinal cord injury (SCI).
Collapse
Affiliation(s)
- Joshua A Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel E Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - David T Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Trivedi A, Noble-Haeusslein LJ, Levine JM, Santucci AD, Reeves TM, Phillips LL. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell Mol Life Sci 2019; 76:3141-3156. [PMID: 31168660 PMCID: PMC11105352 DOI: 10.1007/s00018-019-03176-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Neurotrauma, a term referencing both traumatic brain and spinal cord injuries, is unique to neurodegeneration in that onset is clearly defined. From the perspective of matrix metalloproteinases (MMPs), there is opportunity to define their temporal participation in injury and recovery beginning at the level of the synapse. Here we examine the diverse roles of MMPs in the context of targeted insults (optic nerve lesion and hippocampal and olfactory bulb deafferentation), and clinically relevant focal models of traumatic brain and spinal cord injuries. Time-specific MMP postinjury signaling is critical to synaptic recovery after focal axonal injuries; members of the MMP family exhibit a signature temporal profile corresponding to axonal degeneration and regrowth, where they direct postinjury reorganization and synaptic stabilization. In both traumatic brain and spinal cord injuries, MMPs mediate early secondary pathogenesis including disruption of the blood-brain barrier, creating an environment that may be hostile to recovery. They are also critical players in wound healing including angiogenesis and the formation of an inhibitory glial scar. Experimental strategies to reduce their activity in the acute phase result in long-term neurological recovery after neurotrauma and have led to the first clinical trial in spinal cord injured pet dogs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Psychology, College of Liberal Arts, and Neurology, the Dell Medical School, University of Texas, Austin, TX, 78712, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison D Santucci
- Department of Neuroscience, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
12
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
13
|
Kullmann FA, Beckel JM, McDonnell B, Gauthier C, Lynn AM, Wolf-Johnston A, Kanai A, Zabbarova IV, Ikeda Y, de Groat WC, Birder LA. Involvement of TRPM4 in detrusor overactivity following spinal cord transection in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1191-1202. [PMID: 30054681 PMCID: PMC6186176 DOI: 10.1007/s00210-018-1542-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Transient receptor potential cation channel subfamily M member 4 (TRPM4) has been shown to play a key role in detrusor contractility under physiological conditions. In this study, we investigated the potential role of TRPM4 in detrusor overactivity following spinal cord transection (SCT) in mice. TRPM4 expression and function were evaluated in bladder tissue with or without the mucosa from spinal intact (SI) and SCT female mice (T8-T9 vertebra; 1-28 days post SCT) using PCR, western blot, immunohistochemistry, and muscle strip contractility techniques. TRPM4 was expressed in the urothelium (UT) and detrusor smooth muscle (DSM) and was upregulated after SCT. Expression levels peaked 3-7 days post SCT in both the UT and DSM. Pharmacological block of TRPM4 with the antagonist, 9-Phenanthrol (30 μM) greatly reduced spontaneous phasic activity that developed after SCT, regardless of the presence or absence of the mucosa. Detrusor overactivity following spinal cord injury leads to incontinence and/or renal impairment and represents a major health problem for which current treatments are not satisfactory. Augmented TRPM4 expression in the bladder after chronic SCT supports the hypothesis that TRPM4 channels play a role in DSM overactivity following SCT. Inhibition of TRPM4 may be beneficial for improving detrusor overactivity in SCI.
Collapse
Affiliation(s)
- F Aura Kullmann
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Bronagh McDonnell
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Christian Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Andrew M Lynn
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Amanda Wolf-Johnston
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Anthony Kanai
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Irina V Zabbarova
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Youko Ikeda
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lori A Birder
- Department of Medicine/Renal and Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
14
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 2018; 311:115-124. [PMID: 30268767 DOI: 10.1016/j.expneurol.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
In humans, spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that can engage pain (nociceptive) fibers. Prior work has shown that this nociceptive input can expand the area of tissue damage (secondary injury), undermine behavioral recovery, and enhance the development of chronic pain. Here, it is shown that nociceptive input given a day after a lower thoracic contusion injury in rats enhances the infiltration of red blood cells at the site of injury, producing an area of hemorrhage that expands secondary injury. Peripheral nociceptive fibers were engaged 24 h after injury by means of electrical stimulation (shock) applied at an intensity that engages unmyelinated pain (C) fibers or through the application of the irritant capsaicin. Convergent western immunoblot and cyanmethemoglobin colorimetric assays showed that both forms of stimulation increased the concentration of hemoglobin at the site of injury, with a robust effect observed 3-24 h after stimulation. Histopathology confirmed that shock treatment increased the area of hemorrhage and the infiltration of red blood cells. SCI can lead to hemorrhage by engaging the sulfonylurea receptor 1 (SUR1) transient receptor potential melastatin 4 (TRPM4) channel complex in neurovascular endothelial cells, which leads to cell death and capillary fragmentation. Histopathology confirmed that areas of hemorrhage showed capillary fragmentation. Co-immunoprecipitation of the SUR1-TRPM4 complex showed that it was up-regulated by noxious stimulation. Shock-induced hemorrhage was associated with an acute disruption in locomotor performance. These results imply that noxious stimulation impairs long-term recovery because it amplifies the breakdown of the blood spinal cord barrier (BSCB) and the infiltration of red blood cells, which expands the area of secondary injury.
Collapse
|
16
|
Bianchi B, Smith PA, Abriel H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol Brain 2018; 11:41. [PMID: 29996905 PMCID: PMC6042389 DOI: 10.1186/s13041-018-0385-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022] Open
Abstract
Transient receptor potential melastatin member 4 (TRPM4), a Ca2+-activated nonselective cation channel, has been found to mediate cell membrane depolarization in immune response, insulin secretion, cardiovascular diseases, and cancer. In murine experimental autoimmune encephalomyelitis (EAE), TRPM4 deletion and administration of glibenclamide were found to ameliorate clinical symptoms and attenuate disease progression. However, the exact role of TRPM4 in EAE, as well as the molecular mechanisms underlining TRPM4 contribution in EAE, remain largely unclear. In the present study, EAE was induced in WT C57BL/6 N mice using myelin oligodendrocyte glycoprotein 35–55 (MOG35–55) and TRPM4 protein and mRNA expression were examined in spinal cord membrane extracts. Our results showed that TRPM4 protein and mRNA are upregulated in EAE, and that their upregulation correlated with disease progression. Moreover, newly-developed TRPM4 inhibitors, named compound 5 and compound 6, were shown to exert a better neuroprotection compared to currently used TRPM4 inhibitors in an in vitro model of glutamate-induced neurodegeneration. These results support the hypothesis that TRPM4 is crucial from early stages of EAE, and suggest that these more potent TRPM4 inhibitors could be used as novel protective therapeutic tools in glutamate-induced neurodegeneration.
Collapse
Affiliation(s)
- Beatrice Bianchi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Paul A Smith
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| |
Collapse
|
17
|
Guizar-Sahagun G, Martinez-Cruz A, Franco-Bourland RE, Cruz-García E, Corona-Juarez A, Diaz-Ruiz A, Grijalva I, Reyes-Alva HJ, Madrazo I. Creation of an intramedullary cavity by hemorrhagic necrosis removal 24 h after spinal cord contusion in rats for eventual intralesional implantation of restorative materials. PLoS One 2017; 12:e0176105. [PMID: 28414769 PMCID: PMC5393885 DOI: 10.1371/journal.pone.0176105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Intramedullary hemorrhagic necrosis occurs early after spinal cord injury at the site of injury and adjacent segments. It is considered harmful because of its potential to aggravate secondary injury, and to interfere with axonal regeneration; it might also lead to an unfavorable environment for intralesional implants. Removal of hemorrhagic necrosis has been attempted before with variable results. The invasive nature of these procedures carries the risk of exacerbating damage to the injured cord. The overall objective for this study was to test several strategies for non-damaging removal of hemorrhagic necrosis and characterize the resulting cavity looking for a space for future intralesional therapeutic implants in rats with acute cord injury. Rats were subjected to graded cord contusion, and hemorrhagic necrosis was removed after 24h. Three grades of myelotomy (extensive, medium sized, and small) were tested. Using the small surgical approach to debridement, early and late effects of the intervention were determined by histology and by analytical and behavioral analysis. Appearance and capacity of the resulting cavity were characterized. Satisfactory removal of hemorrhagic necrosis was achieved with all three surgical approaches to debridement. However, bleeding in spared cord tissue was excessive after medium sized and extensive myelotomies but similar to control injured rats after small cord surgery. Small surgical approach to debridement produced no swelling nor acute inflammation changes, nor did it affect long-term spontaneous locomotor recovery, but resulted in modest improvement of myelination in rats subjected to both moderate and severe injuries. Cavity created after intervention was filled with 10 to 15 μL of hydrogel. In conclusion, by small surgical approach to debridement, removal of hemorrhagic necrosis was achieved after acute cord contusion thereby creating intramedullary spaces without further damaging the injured spinal cord. Resulting cavities appear suitable for future intralesional placement of pro-reparative cells or other regenerative biomaterials in a clinically relevant model of spinal cord injury.
Collapse
Affiliation(s)
- Gabriel Guizar-Sahagun
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Department of Experimental Surgery, Proyecto Camina A.C., Mexico City, Mexico
- * E-mail:
| | | | - Rebecca E. Franco-Bourland
- Department of Experimental Surgery, Proyecto Camina A.C., Mexico City, Mexico
- Department of Biochemistry, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Eduardo Cruz-García
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Araceli Diaz-Ruiz
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Israel Grijalva
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Department of Experimental Surgery, Proyecto Camina A.C., Mexico City, Mexico
| | - Horacio J. Reyes-Alva
- Department of Neurology, School of Veterinary Medicine, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Ignacio Madrazo
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Department of Experimental Surgery, Proyecto Camina A.C., Mexico City, Mexico
| |
Collapse
|
18
|
Nicholson JD, Guo Y, Bernstein SL. SUR1-Associated Mechanisms Are Not Involved in Ischemic Optic Neuropathy 1 Day Post-Injury. PLoS One 2016; 11:e0148855. [PMID: 27560494 PMCID: PMC4999058 DOI: 10.1371/journal.pone.0148855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ischemia-reperfusion injury after central nervous system (CNS) injury presents a major health care challenge with few promising treatments. Recently, it has become possible to reduce edema after CNS injury by antagonizing a sulfonylurea receptor 1 (SUR1) regulated ion channel expressed after injury. SUR1 upregulation after injury is a necessary precondition for the formation of this channel, and has been implicated in white matter injury after clinical spinal cord trauma. Glibenclamide, an SUR1 antagonist, appears to have neuroprotective effect against cerebral stroke in an open-label small clinical trial and great effectiveness in reducing damage after varied experimental CNS injury models. Despite its importance in CNS injuries, SUR1 upregulation appears to play no part in rodent anterior ischemic optic neuropathy (rAION) injury as tested by real-time PCR and immunohistochemical staining of rAION-injured rat optic nerve (ON). Furthermore, the SUR1 antagonist glibenclamide administered immediately after rAION injury provided no protection to proximal ON microvasculature 1 day post-injury but may reduce optic nerve head edema in a manner unrelated to ON SUR1 expression. Our results suggest that there may be fundamental differences between rAION optic nerve ischemia and other CNS white matter injuries where SUR1 appears to play a role.
Collapse
Affiliation(s)
- James D. Nicholson
- Department of Ophthalmology Visual Sciences, UMB School of Medicine, Baltimore, MD, United States of America
| | - Yan Guo
- Department of Ophthalmology Visual Sciences, UMB School of Medicine, Baltimore, MD, United States of America
| | - Steven L. Bernstein
- Department of Ophthalmology Visual Sciences, UMB School of Medicine, Baltimore, MD, United States of America
- Department of Anatomy and Neurobiology, UMB School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mayer D, Oevermann A, Seuberlich T, Vandevelde M, Casanova-Nakayama A, Selimovic-Hamza S, Forterre F, Henke D. Endothelin-1 Immunoreactivity and its Association with Intramedullary Hemorrhage and Myelomalacia in Naturally Occurring Disk Extrusion in Dogs. J Vet Intern Med 2016; 30:1099-111. [PMID: 27353293 PMCID: PMC5094511 DOI: 10.1111/jvim.14364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 03/04/2016] [Accepted: 05/23/2016] [Indexed: 01/28/2023] Open
Abstract
Background The pathophysiology of ascending/descending myelomalacia (ADMM) after canine intervertebral disk (IVD) extrusion remains poorly understood. Vasoactive molecules might contribute. Hypothesis/Objectives To investigate the immunoreactivity of endothelin‐1 (ET‐1) in the uninjured and injured spinal cord of dogs and its potential association with intramedullary hemorrhage and extension of myelomalacia. Animals Eleven normal control and 34 dogs with thoracolumbar IVD extrusion. Methods Spinal cord tissue of dogs retrospectively selected from our histopathologic database was examined histologically at the level of the extrusion (center) and in segments remote from the center. Endothelin‐1 immunoreactivity was examined immunohistochemically and by in situ hybridization. Associations between the immunoreactivity for ET‐1 and the severity of intramedullary hemorrhage or the extension of myelomalacia were examined. Results Endothelin‐1 was expressed by astrocytes, macrophages, and neurons and only rarely by endothelial cells in all dogs. At the center, ET‐1 immunoreactivity was significantly higher in astrocytes (median score 4.02) and lower in neurons (3.21) than in control dogs (3.0 and 4.54) (P < .001; P = .004) irrespective of the grade of hemorrhage or myelomalacia. In both astrocytes and neurons, there was a higher ET‐1 immunoreactivity in spinal cord regions remote from the center (4.58 and 4.15) than in the center itself (P = .013; P = .001). ET‐1 mRNA was present in nearly all neurons with variable intensity, but not in astrocytes. Conclusion and Clinical Importance Enhanced ET‐1 immunoreactivity over multiple spinal cord segments after IVD extrusion might play a role in the pathogenesis of ADMM. More effective quantitative techniques are required.
Collapse
Affiliation(s)
- D Mayer
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - M Vandevelde
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Casanova-Nakayama
- Centre for Fish and Wildlife Health, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - S Selimovic-Hamza
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - F Forterre
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Small Animal Surgery, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - D Henke
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, Nilius B, Bryan J, Simard JM. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation 2016; 13:130. [PMID: 27246103 PMCID: PMC4888589 DOI: 10.1186/s12974-016-0599-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background Harmful effects of activated microglia are due, in part, to the formation of peroxynitrite radicals, which is attributable to the upregulation of inducible nitric oxide (NO) synthase (NOS2). Because NOS2 expression is determined by Ca2+-sensitive calcineurin (CN) dephosphorylating nuclear factor of activated T cells (NFAT), and because Sur1-Trpm4 channels are crucial for regulating Ca2+ influx, we hypothesized that, in activated microglia, Sur1-Trpm4 channels play a central role in regulating CN/NFAT and downstream target genes such as Nos2. Methods We studied microglia in vivo and in primary culture from adult rats, and from wild type, Abcc8−/− and Trpm4−/− mice, and immortalized N9 microglia, following activation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS), using in situ hybridization, immunohistochemistry, co-immunoprecipitation, immunoblot, qPCR, patch clamp electrophysiology, calcium imaging, the Griess assay, and chromatin immunoprecipitation. Results In microglia in vivo and in vitro, LPS activation of TLR4 led to de novo upregulation of Sur1-Trpm4 channels and CN/NFAT-dependent upregulation of Nos2 mRNA, NOS2 protein, and NO. Pharmacological inhibition of Sur1 (glibenclamide), Trpm4 (9-phenanthrol), or gene silencing of Abcc8 or Trpm4 reduced Nos2 upregulation. Inhibiting Sur1-Trpm4 increased the intracellular calcium concentration ([Ca2+]i), as expected, but also decreased NFAT nuclear translocation. The increase in [Ca2+]i induced by inhibiting or silencing Sur1-Trpm4 resulted in phosphorylation of Ca2+/calmodulin protein kinase II and of CN, consistent with reduced nuclear translocation of NFAT. The regulation of NFAT by Sur1-Trpm4 was confirmed using chromatin immunoprecipitation. Conclusions Sur1-Trpm4 constitutes a novel mechanism by which TLR4-activated microglia regulate pro-inflammatory, Ca2+-sensitive gene expression, including Nos2.
Collapse
Affiliation(s)
- David B Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Neurosurgery Research Laboratories, 10 S. Pine St, Baltimore, MD, 21201-1595, USA.
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Jason K Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Rudi Vennekens
- Department Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49-Bus 802, Leuven, 3000, Belgium
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, Heidelberg, 69120, Germany
| | - Bernd Nilius
- Department Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49-Bus 802, Leuven, 3000, Belgium
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, WA, 98122, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Makar TK, Gerzanich V, Nimmagadda VKC, Jain R, Lam K, Mubariz F, Trisler D, Ivanova S, Woo SK, Kwon MS, Bryan J, Bever CT, Simard JM. Silencing of Abcc8 or inhibition of newly upregulated Sur1-Trpm4 reduce inflammation and disease progression in experimental autoimmune encephalomyelitis. J Neuroinflammation 2015; 12:210. [PMID: 26581714 PMCID: PMC4652344 DOI: 10.1186/s12974-015-0432-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In experimental autoimmune encephalomyelitis (EAE), deletion of transient receptor potential melastatin 4 (Trpm4) and administration of glibenclamide were found to ameliorate disease progression, prompting speculation that glibenclamide acts by directly inhibiting Trpm4. We hypothesized that in EAE, Trpm4 upregulation is accompanied by upregulation of sulfonylurea receptor 1 (Sur1) to form Sur1-Trpm4 channels, which are highly sensitive to glibenclamide, and that Sur1-Trpm4 channels are required for EAE progression. METHODS EAE was induced in wild-type (WT) and Abcc8-/- mice using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55). Lumbar spinal cords were examined by immunohistochemistry, immuno-Förster resonance energy transfer (immunoFRET), and co-immunoprecipitation for Sur1-Trpm4. WT/EAE mice were administered with the Sur1 inhibitor, glibenclamide, beginning on post-induction day 10. Mice were evaluated for clinical function, inflammatory cells and cytokines, axonal preservation, and white matter damage. RESULTS Sur1-Trpm4 channels were upregulated in EAE, predominantly in astrocytes. The clinical course and severity of EAE were significantly ameliorated in glibenclamide-treated WT/EAE and in Abcc8-/-/EAE mice. At 30 days, the lumbar spinal cords of glibenclamide-treated WT/EAE and Abcc8-/-/EAE mice showed significantly fewer invading immune cells, including leukocytes (CD45), T cells (CD3), B cells (CD20) and macrophages/microglia (CD11b), and fewer cells expressing pro-inflammatory cytokines (TNF-α, IFN-γ, IL-17). In both glibenclamide-treated WT/EAE and Abcc8-/-/EAE mice, the reduced inflammatory burden correlated with better preservation of myelin, better preservation of axons, and more numerous mature and precursor oligodendrocytes. CONCLUSIONS Sur-Trpm4 channels are newly upregulated in EAE and may represent a novel target for disease-modifying therapy in multiple sclerosis.
Collapse
Affiliation(s)
- Tapas K Makar
- Research Service and MS Center of Excellence, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Vamshi K C Nimmagadda
- Research Service and MS Center of Excellence, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Rupal Jain
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Kristal Lam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Fahad Mubariz
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - David Trisler
- Research Service and MS Center of Excellence, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Min Seong Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, WA, 98122, USA.
| | - Christopher T Bever
- Research Service and MS Center of Excellence, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Neurosurgical Service, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA. .,Department of Neurosurgery, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA.
| |
Collapse
|
22
|
Hosier H, Peterson D, Tsymbalyuk O, Keledjian K, Smith BR, Ivanova S, Gerzanich V, Popovich PG, Simard JM. A Direct Comparison of Three Clinically Relevant Treatments in a Rat Model of Cervical Spinal Cord Injury. J Neurotrauma 2015; 32:1633-44. [PMID: 26192071 PMCID: PMC4638208 DOI: 10.1089/neu.2015.3892] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent preclinical studies have identified three treatments that are especially promising for reducing acute lesion expansion following traumatic spinal cord injury (SCI): riluzole, systemic hypothermia, and glibenclamide. Each has demonstrated efficacy in multiple studies with independent replication, but there is no way to compare them in terms of efficacy or safety, since different models were used, different laboratories were involved, and different outcomes were evaluated. Here, using a model of lower cervical hemicord contusion, we compared safety and efficacy for the three treatments, administered beginning 4 h after trauma. Treatment-associated mortality was 30% (3/10), 30% (3/10), 12.5% (1/8), and 0% (0/7) in the control, riluzole, hypothermia, and glibenclamide groups, respectively. For survivors, all three treatments showed overall favorable efficacy, compared with controls. On open-field locomotor scores (modified Basso, Beattie, and Bresnahan scores), hypothermia- and glibenclamide-treated animals were largely indistinguishable throughout the study, whereas riluzole-treated rats underperformed for the first two weeks; during the last four weeks, scores for the three treatments were similar, and significantly different from controls. On beam balance, hypothermia and glibenclamide treatments showed significant advantages over riluzole. After trauma, rats in the glibenclamide group rapidly regained a normal pattern of weight gain that differed markedly and significantly from that in all other groups. Lesion volumes at six weeks were: 4.8±0.7, 3.5±0.4, 3.1±0.3 and 2.5±0.3 mm3 in the control, riluzole, hypothermia, and glibenclamide groups, respectively; measurements of spared spinal cord tissue confirmed these results. Overall, in terms of safety and efficacy, systemic hypothermia and glibenclamide were superior to riluzole.
Collapse
Affiliation(s)
- Hillary Hosier
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - David Peterson
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Kaspar Keledjian
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Bradley R Smith
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | | | - Phillip G Popovich
- 2 Center for Brain and Spinal Cord Repair, the Ohio State University , Columbus, Ohio
| | - J Marc Simard
- 3 Departments of Neurosurgery, Pathology and Physiology, University of Maryland , Baltimore, Maryland
| |
Collapse
|